SYSTEM SPECIFICATIONS USING VERILOG HDL

Dr. Mohammed M. Farag

Faculty of Engineering Alexandria University

Static Random Access Memory, SRAM

SRAM : cells use a simple bistable circuit to hold a data bit

Three states: hold, write, and read operations

Figure 13.1 General SRAM cell

(b) 4T cell with poly resistors

Figure 13.2 CMOS SRAM circuits

SRAM (1/2)

Figure 13.3 6T SRAM cell design parameters

Write 1: in worst case, $V_1 = 0$, $V_2 = V_{DD}$ $\rightarrow (\beta_A/\beta_n = 2)$ Why?? *nA W L W L* (W/L) (W/L) (13.1)

n

(a) Write 1 operation

SRAM (2/2)

E IIII

Figure 13.6 Example of a basic 6-T SRAM cell layout

Figure 13.7 A 2-port CMOS SRAM cell

Figure 13.8 4-cell SRAM group

Outline

- □ The Static RAM
- SRAM Arrays
- Dynamic RAM
- **ROM** Arrays
- **Logic Arrays**

SRAM Arrays (1/4)

Figure 13.9 High-level view of an SRAM

Figure 13.11 Cell arrangement in a core region

Figure 13.12 Row driver circuit

Figure 13.10 Central SRAM block architecture

SRAM Arrays (2/4)

JUNI

Figure 13.13 Column MUX/DeMUX network for 8-bit words

Figure 13.14 Logic 1 column driver

Figure 13.15 Basic addressing scheme

Figure 13.16 Address latch circuit

SRAM Arrays (3/4)

a
Alli

Figure 3.17 Pre-charge and I/O circuit for a single column

SRAM Arrays (4/4)

i IIII

Figure 3.18 Expanded view of column circuitry Figure 13.19 Write circuitry example

Sensing Operation

Figure 3.20 Example of a sensing scheme for the read operation

$$
v_d = (v^+ - v^-) \tag{13.5}
$$

$$
v_{out} = Av_d = A(v^+ - v^-) \quad (13.6)
$$

$$
I_{SS} = I_{D1} + I_{D2} \tag{13.7}
$$

(a) Circuit diagram (b) Current flow

Figure 3.21 Single-ended differential amplifier

Figure 3.22 Dual-amplifier scheme for the sense amplifier network

An example: A Drowsy SRAM

Outline

- □ The Static RAM
- □ SRAM Arrays
- Dynamic RAM
- **ROM** Arrays
- **Logic Arrays**

DRAM (1/3)

- Dynamic RAM (DRAM)
	- **D** Smaller than SRAM cells
	- **Higher density** storages arrays
	- A_S the central system memory in *microco*mputer systems **Require more** peripheral direuitry10) $V_s = V_{\text{max}} = V_{DD} - V_{Tn}$ (13.9)

Figure 13.23 1T DRAM cell

Figure 3.24 Write and hold operations in a DRAM cell

DRAM (2/3)

 Charge Leakage: When V_G < V_T , a MOSFET is cutoff but still admits small leakage currents $\left(\frac{dQ_s}{dq}\right)$ Ļ $=\frac{dQ}{dV}$ $I_L = -\left(\frac{dQ_s}{dH}\right)$ (13.11) I J $\left(\frac{dV_s}{\cdot}\right)$ l $=-C_s\left(\frac{dV}{dt}\right)$ $I_L = -C_s \frac{dV_s}{dt}$ (13.12)

$$
I_L \approx -C_s \left(\frac{\Delta V_s}{\Delta t}\right) \tag{13.13}
$$

$$
t_h = \Delta t \approx \left(\frac{C_s}{I_L}\right) (\Delta V_s)
$$
 (hold time or retention time)

$$
t_h = \left(\frac{50 \times 10^{-15}}{1 \times 10^{-9}}\right)(1) = 0.5 \,\mu s \quad (13.15) \quad (I_L = 1 \text{ nA, } C_s = 50 \text{ fF, and } \Delta V_s = 1 \text{ V})
$$

h $f_{\text{refresh}} \approx \frac{1}{2t}$ $\approx \frac{1}{2}$ (13.16) (refresh frequency)

Figure 3.25 Charge leakage in a DRAM cell

DRAM (3/3)

Mn **VSS** $\frac{1}{n+1}$ $n+$ Storage Si capacitor

Figure 3.28 A DRAM cell using a trench capacitor

Figure 3.26 Read operation in a DRAM cell

$$
Q_s = C_s V_s \tag{13.17}
$$

$$
Q_s = C_s V_f + C_{bi} V_f \qquad (13.18)
$$

$$
V_f = \left(\frac{C_s}{C_s + C_{bit}}\right) V_s \tag{13.19}
$$

Figure 13.29 Visualization of stacked capacitor structure

E DIII

DRAM Array and Peripheral Circuit

Divided-Word Line Architectures

Figure 13.30 Basic for a divided-word Figure 13.31 Logic for a DWL design line architecture RAM layout

Outline

- □ The Static RAM
- □ SRAM Arrays
- Dynamic RAM
- ROM Arrays
- **Logic Arrays**

Data

01101010

10010011

01110111

11011000

00101100

ROM

E IIII

Figure 13.33 Logic diagram for a NOR-based ROM

Figure 13.34 ROM array using pseudo-nMOS circuitry

Figure 13.35 Map for ROM layout

Figure 13.36 ROM layout based on FET map

□ Electrically-erasable EPROMs (E²PROMs) are used to store the BIOS code in PC, and allow the user to

E ²PROMs

i IIII

Figure 13.40 Programming a floating-gate FET

 $+V_{prog}$ **Contractor** $n+$ $n+$ Tunnelling p region 吉

Figure 13.41 Fowler-Nordheim tunnelling

Figure 13.42 EEPROM cell with write line

Outline

- □ The Static RAM
- □ SRAM Arrays
- Dynamic RAM
- **ROM** Arrays
- Logic Arrays

Programmable Logic Array, PLA (1/2)

Figure 13.43 Structure of an AND-OR PLA Figure 13.44 Logic gate diagram of the PLA

Programmable Logic Array, PLA (2/2)

(a) AND-OR logic

g

 $\frac{a}{b}$

AND

Figure 13.45 NOR-gate PLA logic

Figure 13.47 Generic NOR-based logic plane

Gate Array

E IIII

Figure 13.48 Transistor arrangement in a gate array