GENERAL VLSI SYSTEM COMPONENTS

Dr. Mohammed M. Farag

Faculty of Engineering Alexandria University

Multiplexers

Gate-level NAND 2:1 multiplexor.

Gate-level 4:1 MUX

(a) Symbol

(b) Logic diagram

(a) TG circuit

(b) Pass transistors

Multiplexor using switch logic.

A 4:1 MUX using instanced 2:1 devices.

2013

Multiplexers (2)

4:1 MUX using nFET pass transistors.

Simple 4:1 pass-FET MUX layout.

Multiplexers (3)

I

Split-array 4:1 MUX for full-rail output.

Multiplexers (4)

F

5

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

Decoders

T

(a) Symbol and table

(b) NOR2 implementation

An active-high 2/4 decoder.

T

<i>s</i> ₁ <i>s</i> ₀	d_0	d_1	d_2	d_3
$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	0	1	1	1
	1	0	1	1
	1	1	0	1
	1	1	1	0

(a) Symbol and table

(b) NAND2 implementation

Active low 2/4 decoder.

Comparators

F

Comparators (2)

4-bit magnitude comparator logic.

Comparator output summary.

Condition	GT	LT		
a > b	1	0		
a < b	0	1		
a = b	0	0		

Comparators (3)

J

Comp 8 logic diagram.

Additional logic for A_EQ_B and Enable features.

Comparators (4)

I.

8-bit comparator system.

Encoders

A

	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0	Q_3	Q_2	Q_1	Q_0
ſ	0	0	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	0	1	_	1	0	0	1
	0	0	0	0	0	1	-	-	1	0	1	0
	0	0	0	0	1	-	-	-	1	0	1	1
	0	0	0	1	-	-	-	-	1	1	0	0
	0	0	1	-	-	-	-	-	1	1	0	1
	0	1	-	-	-	-	-	-	1	1	1	0
	1	-	-	-	-	-	-	-	1	1	1	1
	0	0	0	0	0	0	0	0	0	0	0	0
	d_7 has highest priority							$Q_3 = 1$ when $d_i = 1$				
	d_0 has lowest priority							for any $i = 0,, 7$				

Symbol for priority encoder

Function table for an 8-bit priority encoder.

Encoders (2)

F

Logic diagram for the priority encoder.

Encoders (3)

I

(b) Q1 circuit Q0 and Q1 circuits for the 8-bit priority encoder.

Rotators and Shifters

I

General rotator.

A 4-bit rotate-right network.

I

2013

Rotators and Shifters (2)

Rotators and Shifters (3)

An 8 X 4 barrel shifter.

FET-array barrel shifter.

2013

Latches and Flip-Flops

(a) Symbol

(b) Logic diagram

(a) Symbol

Gated D-latch with Enable control.

CMOS circuit for a D-latch.

AOI CMOS gate for D-latch with Enable.

Latches and Flip-Flops (2)

(a) Bistable circuit

(b) Ring oscillator

Closed-loop inverter configurations.

(a) Stable states

(b) CMOS circuit

Operation of a bistable circuit.

Latches and Flip-Flops (3)

Adding an input node to the bistable circuit.

(a) CMOS TG version

(b) nFET pass gates

D-latch using oppositely phased switches.

T

Latches and Flip-Flops (4)

(a) Load with C = 1

(b) Hold with C = 0

Operation of the D-latch.

J

Latches and Flip-Flops (5)

(a) C²MOS static latch

(b) Dynamic latch

₀ •-0

0 •

 $\frac{1}{\underline{I}} C_s$

• Q

 V_{DD}

Φ •

φ.

D•

C2MOS-based D-latch circuits.

Latches and Flip-Flops (6)

Master-slave D-type flip-flop.

(a) Positive edgetriggered DFF (b) Negative edgetriggered DFF

Edge-triggered DFF symbols.

Latches and Flip-Flops (7)

Alternate circuitry for the master-slave DFF.

Latches and Flip-Flops (8)

Clear/Set controls.

2013

Latches and Flip-Flops (9)

DFF modified to a TFF circuit using feedback.

F

Latches and Flip-Flops (10)

(a) Wiring diagram

(b) Symbol

D-type flip-flop with Load control.

Latches and Flip-Flops (11)

CMOS master-slave FF with Load control.

(b) Hold with $\phi = 1$, *Load* = 0

(c) Hold with $\phi = 0$, *Load* = 0

Operation of the CMOS DFF with load control.

Registers

T

(a) Internal construction

(b) Basic symbol

Construction of an *n*-bit register.

2013

Registers (2)

One-bit static multiport register circuit.

An *n*-bit static multiport register.

