ELEMENTS OF PHYSICAL DESIGN

Dr. Mohammed M. Farag

Faculty of Engineering Alexandria University

Outline

- Basic Concepts
- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor
- Cell Concepts
- Design Hierarchies

Physical Design

What is physical design?

- To translating logic circuits into silicon
- Switch speed is critical
 - The electrical characteristics of a logic gate depend on the aspect ratios of the transistors (In Chapter 6, we will discuss it)
 - In other words, this is due to both the current flow levels and the parasitic resistance and capacitance (In Chapter 3)

Layout can be very time consuming

- Design gates to fit together nicely
- Build a library of standard cells
- Standard cell design methodology
 - VDD and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Figure 5.1 Polygons in physical design

L

Example: N-Well COMS Inverter

EE 432 VLSI Modeling and Design

pimp

2013

Basic Concepts

- Our study to this point shows that the topology of the transistor network establishes the logic function
- Another aspect of logic is switching speed which is crucially important to modern chip design
- The electrical characteristics of a logic gate depends on the transistor aspect ratios (W/L)
- Physical design must address both of theses areas
- We will focus on studying the basics of circuit layout in this chapter

Layout CAD Tools

- Layout Editor
 - draw multi-vertices polygons which represent physical design layers
 - Manhattan geometries, only 90° angles
 - Manhattan routing: run each interconnect layer perpendicular to each other
- Design Rules Check (DRC)
 - checks rules for each layer (size, separation, overlap)
 - must pass DRC or will fail in fabrication
- Parameter Extraction
 - create netlist of devices (tx, R, C) and connections
 - extract parasitic Rs and Cs, lump values at each line (R) / node (C)

Layout CAD Tools

- Layout vs. Schematic (LVS)
 - compare layout to schematic
 - check devices, connections, power routing
 - can verify device sizes also
 - ensures layout matches schematic exactly
 - passing LVS is final step in layout

2013

Outline

Basic Concepts

- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor

Cell Concepts

Design Hierarchies

Basic Structure of nWell

nWell technology

- I. Start with p-type substrate
- 2. nWell
- 3. Active
- 4. Poly
- 5. pSelect
- 6. nSelect
- 7. Active contact
- 8. Poly contact
- 9. Metall
- 10. Via
- II. Metal2
- 12. Overglass

Figure 5.2 Minimum line width and space

- Manhattan geometries
 - » Where all turns are multiples of 90°
 - » If in an arbitrary manner, then must be sure what the structures are supported by the fabrication process

EE 432 VLSI Modeling and Design

n-Wells

- An n-well is required at every location where a pFET is to be made
 - □ It is often possible to merge adjacent n-wells together into one
 - \Box n-well must be connected to the power supply V_{DD} when used for pFETs

W_{nw} = minimum width of an n-well mask feature S_{nw-nw} = minimum edge-to-edge spacing of adjacent n-wells

Figure 5.3 n-well structure and mask

Example

n-well

- required everywhere 10λ
 pMOS is needed
- rules
 - minimum width
 - minimum separation to self
 - minimum separation to nMOS Active
 - minimum overlap of pMOS Active

Active Areas

Silicon devices are built on active areas of the substrate

W_a = minimum width of an Active feature

S_{a-a} = minimum edge-to-edge spacing of Active mask polygons

FOX = NOT (Active) (5.1)FOX + Active = Surface (5.2)

Example

□ Active

- required everywhere a transistor is needed
- any non-Active region is FOX

rules

minimum width

minimum separation to other Active

MOSIS SCMOS rules; λ =0.3µm for AMI C5N

Doped Silicon Regions

EE 432 VLSI Modeling and Design

2013

Example

n/p Select

- defines regions to be doped n+ and p+
- tx S/D = Active AND Select NOT Poly
- tx gate = Active AND Select AND Poly
- rules
 - minimum overlap of Active
 - same for pMOS and nMOS
 - several more complex rules available

MOSFETs (1/2)

Physically, the poly line is deposited before the ion implant, and acts to block dopants from entering the silicon

nFETs

 W_p = minimum poly width S_{p-p} = minimum poly-to-poly spacing $L = W_p$ = minimum width (length) of a Poly line d_{po} = minimum extension of Poly beyond Active

> $nFET = (nSelect) \cap (Active) \cap (Poly)$ (5.) $n+ = (nSelect) \cap (Active) \cap (NOT [Poly])$ (5.)

MOSFETs (2/2)

pFETs

Figure 5.9 pFET structure

Figure 5.10 Masks for the pFET

Example

Poly

- high resistance conductor (can be used for short routing)
- primarily used for tx gates
- rules
 - minimum size
 - minimum space to self
 - minimum overlap of gate
 - minimum space to Active

19

2013

Drawn and Effective in MOSFETs

- Draw and Effective Values in MOSFETs
 - The critical dimensions of a MOSFET are the channel length L and the channel width W
- The physical length is small than L due to lateral doping during the implant annealing step
 - \Box L_{eff} : electrical or effective channel length
 - \Box *L*_o: overlap distance on both sides

 $L_{eff} = L - 2L_{o}$ (5.9) $L_{eff} = L - \Delta L$ (5.10)

The channel width is also small than the drawn value due to reduction of active area by the field oxide growth

$$W_{eff} = W - \Delta W \quad (5.11)$$

$$\frac{W_{eff}}{L_{eff}} \quad (5.12)$$

(b) Finished view

Figure 5.11 Drawn and effective dimensions of a MOSFET

Drawn ➡ L ➡

(a) Drawn Layout

EE 432 VLSI Modeling and Design

Active Contacts

An active contact is a cut in the OxI that allows the first layer of metall to contact an active n+ or p+ region

- $d_{ac,v}$ = vertical size of the contact
- $d_{ac, h}$ = horizontal size of the contact

A square contact is obtained if, however, it is not uncommon to have aspect rations other than I:I

$$d_{ac, v} = d_{ac, h} = d_{ac}$$
 (5.13)

Figure 5.12 Active contact formation

EE 432 VLSI Modeling and Design

Design Rules: 3

Contacts

- Contacts to Metall, from Active or Poly
 - use same layer and rules for both
- must be SQUARE and MINIMUM SIZED
- rules
 - exact size
 - minimum overlap by Active/Poly
 - minimum space to Contact
 - minimum space to gate

note: due to contact size and overlap rules, min. active size at contact will be $2+1.5+1.5=5\lambda$

22

Metall (1/3)

- Metall is used as interconnect for signals and power supply distribution
 - W_{m1} = minimum width of a Metal1 line S_{m1-ac} = minimum spacing from Metal1 to Active Contact
 - Every contact is characterized by a resistance

 R_c = contact resistance Ω

□ Since the contacts are all in parallel, the effective resistance of the Metall-Active connection with N contacts is reduced to s_{ac-m}

$$R_{c, eff} = \frac{1}{N} R_c \qquad (5.14)$$

Metal1

 w_{m1}

Metal1

Ox1

Select

Active

 s_{a-ac}

(a) Cross-section

(b) General mask set

Figure 5.13 Metal1 line

with Active Contact n+ or p+

Sac-ac

sm1-ac

Metal1

Example

Metall

- Iow resistance conductor used for routing
- rules
 - minimum size
 - minimum space to self
 - minimum overlap of Contact

Metall (2/3)

Metall allows access to the active regions of MOSFETs using the Active Contact oxide cut as Figure 5.15

S_{p-ac} = minimum spacing from Poly to Active Contact

- S_{a-p} = minimum spacing from Active to Poly
- A Poly Contact mask is used to allow electrical connections between Metall and the polysilicon gate as Figure 5.16

 S_{p-p} = minimum Poly-to-Poly spacing

Example

3λ I

6λ

if wide

Į3λ

Vias

- Connects Metall to Metal2
- must be SQUARE and MINIMUM SIZED
- rules
 - exact size
 - space to self
 - minimum overlap by Metal1/Metal2
 - minimum space to Contact
 - minimum space to Poly/Active edge

Metal2

- Iow resistance conductor used for routing
- rules
 - minimum size
 - minimum space to self
 - minimum overlap of Via

1λ

Metall (3/3)

Example: A pair of series-connected FETs sharing the central n+ region as Figure 5.17

 S_{p-p} = minimum Poly-to-Poly spacing

Example: Parallel-connected FETs as Figure 5.18

 $S_{g-g} = d_{ac} + 2S_{p-}$ (distance between the two gates) ac

- Example: allow for the size of the contact itself, plus two units of polyactive spacing as Figure 5.19
 - □ Enforced twice S_{p-a}

Figure 5.18 Parallel- Figure 5.19 Different connected nFETs

channel widths using the same active region

n+p

(a) Cross-section

(b) Layout

Vias and Higher Level Metals

Model CMOS processes add several additional layers of metal that can be used for signal and power distribution

 $Metal1 \rightarrow Metal2 \rightarrow Metal3 \rightarrow Metal4$

 $d_v = dimension of a Via (may be different for vertical direction)$ $w_{m2} = minimum width of Metal2 feature$ $s_{m2-m2} = minimum spacing between adjacent Metal2 features$ $s_{v-m1} = minimum spacing between Via and Metal1 edges$ $S_{v-m2} = minimum spacing between Via and Metal2 edges$

(b) Layout

Figure 5.20 Metal1-Metal2 connection using a Via mask

EE 432 VLSI Modeling and Design

Latch-up

Latch-up: is a condition that can occur in a circuit fabricated in a bulk CMOS technology

- » The key to understanding latch-up is noting that the bulk technology gives a **4-layers pnpn** structure between the power supply VDD and ground P
- » If VDD reaches the **breakover voltage** V_{BO} , the blocking is overwhelmed by internal electric fields

(a) Structure

(b) Behavior

Figure 5.22 Characteristics of 4-layer pnpn device

Equivalent circuit of CMOS latchup

- When one of the two bipolar transistors gets forward biased (due to current flowing through the well, or substrate), it feeds the base of the other transistor
- This positive feedback increases the current until the circuit fails or burns out

Latch-up Prevention

Latch-up avoiding method

- » to steer the current out of the "bad" path
 - Include and n-Well contact every time a pFET is connected to the power supply VDD, and
 - Include a p-substrate contact every time and nFET is connected to a ground rail
- » Silicon-on-insulator, SOI
- » Twintub: using two separate wells for FETs, an n-well for pFETs and a p-well for nFETs

Layout Editors

- n+ is formed whenever Active is surrounded by nSelect; this is also called ndiff.
- p+ is formed whenever Active is surrounded by pSelect; this is also called pdiff.
- A nFET is formed whenever Poly cuts an n+ region into two separate segments.
- A pFET is formed whenever Poly cuts an p+ region into two separate segments.
- No electrical current path exists between conducting layer (n+, p+, Poly, Metal, etc.) unless a contact cut (Active Contact, Poly Contact, or Via) is provided.

Figure 5.24 Layer key for layout drawings in this book

Figure 5.25 Drawing complex polygons using rectangles

- Basic Concepts
- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor
- Cell Concepts
- Design Hierarchies

The Not Cell

(a) Schematic

(b) Cell layout

Figure 5.42 NOT gate width horizontal FETs

(a) Basic cell

(b) 2X cell Figure 5.43 Not layout using vertical FETs

2013

EE 432 VLSI Modeling and Design

NAND2 and NOR2

35

Transistor Orientation

Horizontal Tx (W run vertically)

- can increase tx width with fixed pitch (space between power rails)
- cells short & wide

Vertical Tx (W runs horizontally)

- pitch sets max tx width
- cells taller & narrow

Inverter Layout Options

- Layout with Horizontal Tx
 - pitch sets max txsize
- Layout with Vertical Tx
 - allows tx size scaling without changing pitch
- Vertical Tx with 2x scaling

vertical

EE 432 VLSI Modeling and Design

NAND/NOR Layout Alternatives

EE 432 VLSI Modeling and Design

2013

- Basic Concepts
- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor
- Cell Concepts
- Design Hierarchies

FET Sizing

- **FET** are specified by the aspect ratio (W/L)
 - Combine with the processing parameters to give the electrical characteristic of the transistor
 - Given the gate area by $A_G = LW$

$$C_{\rm G} = C_{\rm ox} WL \quad (5.19)$$

Since

$$R_{chan} = R_{s,c} \left(\frac{L}{W} \right) \Rightarrow R_{chan} \propto \frac{1}{W}$$
 (5.21, 5.22)
 $\mu_n > \mu_p$

Since

$$r = \frac{\mu_n}{\mu_p} \Rightarrow \frac{R_p}{R_n} = r$$
 (5.24, 5.25) ($r = 2 \sim 3$)

(5.26)

(5.27)

$$I_{S}$$

 $\downarrow I_D$

Figure 5.36 Basic geometry of a FET

pFETs don't conduct as well as nFETs

(Since C is proportional to W)

EE 432 VLSI Modeling and Design

 $C_{Gp} = rC_{Gn}$

 $\left(\frac{W}{L}\right)_p = r \left(\frac{W}{L}\right)_n$

Unit Transistors

Unit transistor is the minimum-size MOSFET

$$\left(\frac{W}{L}\right)_{\min} = \frac{w_a}{w_b}$$
 (5.30) (the aspect ratio)

 $C_G = C_{ox} w_a w_p$ (5.31) (gate capacitance)

d_c = dimension of the contact s_{a-ac} = spacing between Active and Active Contact

» As Figure 5.38, the minimum width is now

$$W = d_c + 2s_{a-ac}$$
 (5.32)

Figure 5.37 Geometry of a minimum-size FET

EE 432 VLSI Modeling and Design

Scaling Technology

- Once a unit FET has been selected, it's useful to allow it to be scaled in size
 - □ Reference $IX \rightarrow 2X \rightarrow 4X$
 - However, Altering the size of the transistor changes its resistance and capacitance
- Denote R_{IX} and C_{IX} be the *R* and *C* of the IX device

$$W_{SX} = SW_{1X}$$
(5.33) (S: Scaling factor)

$$W_{4X} = 4W_{1X}$$
(5.34) (S = 4)

$$R_{SX} = \frac{R_{1X}}{S}$$
C_{SX} = SC_{1X} (5.35) (decided by FET size)

$$R_{2X} = \frac{R_{1X}}{2}$$
C_{2X} = 2C_{1X} (5.36) (S = 2)

 $2(R_{1X}/2) = R_{1X}$ (5.37) (Figure 5.40)

Figure 5.39 Scaling of the unit transistor

Figure 5.40 Scaling of seriesconnected FET chain

2013

EE 432 VLSI Modeling and Design

Gate Design for Transient Performance

Gate Design for Transient Performance (2)

Extend to large chains as Figure 7.35

$$\beta_{N} = 3\beta_{n}, \beta_{P} = \beta_{p} \qquad (7.177)$$

$$\left(\frac{W}{L}\right)_{N} = 3\left(\frac{W}{L}\right)_{n}, \left(\frac{W}{L}\right)_{P} = \left(\frac{W}{L}\right)_{p} \qquad (7.178)$$

$$\beta_{N} = \beta_{n}, \beta_{P} = 3\beta_{p} \qquad (7.179)$$

$$\left(\frac{W}{L}\right)_{N} = \left(\frac{W}{L}\right)_{n}, \left(\frac{W}{L}\right)_{P} = 3\left(\frac{W}{L}\right)_{p} \qquad (7.180) \qquad (a) \text{ NAND3}$$
Figure 7.35

Example

$$f = \overline{(a \cdot b + c \cdot d) \cdot x}$$
(7.181)

$$\beta_N = 3\beta_n = \beta_{N1}$$
(7.182)

$$\beta_P = 2\beta_p$$
(7.183)

$$\beta_{P1} = \beta_p$$
(7.184)

$$\beta_{P1} = \beta_P = 2\beta_P$$
(7.185)

(a) NAND3 (b) NOR3 Figure 7.35 Sizing for 3-input gates

Figure 7.36 Sizing of a complex logic gate

2013

EE 432 VLSI Modeling and Design

- Basic Concepts
- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor
- Cell Concepts
- Design Hierarchies

The Cell Concept

- Each physical design file is called a "cell"
- "Primitive" cells, polygon-level
 - create "cell library" of basic functions
- Expanding library with more complex cells
 - primitive library cells added as to higher level cells to create more complex logic functions
 - the instantiated (added) cell is called an "instance"

Layout Cell Definitions

Cell Pitch = Height of standard cells

- measured between VDD & GND rails
 - A: top of VDD to bottom of GND (we will use this)
 - B: interior size, without power rails
 - C: middle of GND to middle of VDD

Cell Boundary

- max extension of any layer (except nwell)
 - set boundary so that cells can be placed side-by-side without any rule violations
 - extend power rails 1.5λ(or 2λto be safe) beyond any active/poly/metal layers
 - extend n-well to cell boundary (or beyond) to avoid breaks in n-well

Cell Layout Guidelines

Internal Routing

- use lowest routing layer possible, typically poly and metal l
- keep all possible routing inside power rails
- keep interconnects as short as possible
- Bulk (substrate/well) Contacts
 - must have many contacts to p-substrate and n-well (at least I for each connection to power/ground rails)
 - consider how signals will be routed in/out of the cells (don't block access to I/O signals with substrate/well contacts)

Cell Layout Guidelines (2)

- S/D Area Minimization
 - minimize S/D junction areas to keep capacitance low
- I/O Pads
 - Placement: must be able to route I/O signals out of cell
 - Pad Layer: metal1 for smaller cells, metal2 acceptable in larger cells
- Cell Boundary
 - extend VDD and GND rail at least 1.5λbeyond internal features
 - extend n-well to cell boundary to avoid breaks in higher level cell

Cell View and Cell Ports

Cell View

- see only I/O ports (including power), typically in Metal I
- can't see internal layer polygons of the primitive

Ports

Cell-level view of INV, NAND, and NOR primitives

- all signals that connect to higher level cells
- physical locations of the layout cell, typically in Metal1 or Metal2
- Metall vs Metal2 ports
 - best to keep ports in Metall for primitives
 - always try to use only the lowest level metals you can

Cell-based Design

- Cell-based: once a set are defined, they may be used to create more complex networks
- □ A function using unit gate of Figure 5.26

 $f = \overline{a} \cdot b \tag{5.16}$

- $\Rightarrow 2X_{NOT} + X_{NAND} \quad (5.17)$
- In this case, a new complex cell FI will ^v become to the new unit component, and this block without decomposing it into the primitive cells

Figure 5.26 Logic gates as basic cells

Figure 5.27 Creation of a new cell using basic units

Cell-based: FET Placement

Tiling Placement

- Arrays of parallel metallare used for interconnect
- Both Metal I and Metal2 are used for routing which gives more flexibility
- Metall arrays consume significant area leading to a decreased chip density

Weinberger Image Placement

- A high-density technique is to alternate VDD and VSS power lines
 - "Inverted logic cells" are defined to be flipped in relation to the rows of "Logic cells"
 - High-density placement rate
- Major drawback: must use
 Metal2 or higher metal layer to achieve this approach

Figure 5.33 Weinberger image array

- Basic Concepts
- Design Rules
- Physical Design of Logic Gates
- FET Sizing and the Unit Transistor
- Cell Concepts
- Design Hierarchies

Design Hierarchies

- Top-down hierarchy design
- Bottom-up hierarchy design

Figure 5.48 Primitive polygonlevel library entries

Figure 5.49 Expanding the library with more complex cells

Figure 5.50 Cell hierarchy

Figure 5.51 Effect of the flatten operation

2013

EE 432 VLSI Modeling and Design

Hierarchical Design

- Start with Primitives
 - basic transistor-level gates/functions
 - optimize performance and layout
 - layout with polygons

Build larger cells from primitives

- layout with instances of primitives
- polygons for transistors and routing
- Build even larger cells
 - layout with instances of lower level cells
 - polygons only for signal routing
- Repeat for necessary levels of hierarchy until Final Chip

- Advantages of Hierarchical Design:
 - allow layout optimization within each cell
 - eases layout effort at higher level
 - higher level layout deal with interconnects rather than tx layout

Primitives must be done using custom techniques, but higher level layout can use automated (place-and-route) CAD tools

Hierarchical Design Concepts

Building Functions from Primitives

- instantiate one or more lower-level cells to from higher-level function
- Example: $f = a \overline{b}$

Hierarchical Design Concepts (2)

Final Chip

- flatten all cells to create one level of polygons
- allows masks to be made for each layout layer
- removes hierarchy

IMPORTANT:

Don't flatten your cells! There are other ways to peak (see) lower level cells instantiated within a higher level cell

