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 What is physical design?
 To translating logic circuits into silicon

 Switch speed is critical
 The electrical characteristics of a logic gate depend on the aspect

ratios of the transistors (In Chapter 6, we will discuss it)

 In other words, this is due to both the current flow levels and the
parasitic resistance and capacitance (In Chapter 3)

 Layout can be very time consuming
 Design gates to fit together nicely

 Build a library of standard cells

 Standard cell design methodology
 VDD and GND should abut (standard height)

 Adjacent gates should satisfy design rules

 nMOS at bottom and pMOS at top

 All gates include well and substrate contacts

Physical Design

Figure 5.1 Polygons in 
physical design
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Example: N-Well COMS Inverter

The cross-section view and layout 
of a CMOS(n-well) inverter
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Minimum N-Well width 1.7 
um

Minimum Metal1 extension 
of Contact 0.15 um

Contact size 0.4 * 0.4 um

Minimum N-Well extension 
of P+ Diffusion 1.2 um

Minimum Metal1 width 0.5 
um

Minimum PIMP extension 
of P+ Diffusion 0.25 um

Minimum Diffusion width 
0.3 um

Minimum NIMP extension 
of N+ Diffusion 0.25 um

Minimum Diffusion 
extension of Contact is 0.15 
um

Minimum Contact to 
Contact spacing 0.4 um

Minimum Poly1 width 0.35 
um

Minimum clearance from 
Contact on Diffusion region 
to a Poly gate 0.3 um

Minimum POLY1 extension 
of Diffusion 0.4 um
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Basic Concepts

 Our study to this point shows that the topology of 
the transistor network establishes the logic function

 Another aspect of logic is switching speed which is 
crucially important to modern chip design

 The electrical characteristics of a logic gate depends 
on the transistor aspect ratios (W/L)

 Physical design must address both of theses areas

 We will focus on studying the basics of circuit layout 
in this chapter

EE 432 VLSI Modeling and Design 6



fAcUlty of engineering - AlexAndriA University 2013fAcUlty of engineering - AlexAndriA University 2013

 Layout Editor
 draw multi-vertices polygons which represent physical design 

layers

 Manhattan geometries, only 90º angles

 Manhattan routing: run each interconnect layer perpendicular 
to each other

 Design Rules Check (DRC)
 checks rules for each layer (size, separation, overlap)

 must pass DRC or will fail in fabrication

 Parameter Extraction
 create netlist of devices (tx, R, C) and connections

 extract parasitic Rs and Cs, lump values at each line (R) / 
node (C)

Layout CAD Tools
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 Layout vs. Schematic (LVS)
 compare layout to schematic

 check devices, connections, power routing

 can verify device sizes also

 ensures layout matches schematic exactly

 passing LVS is final step in layout

Layout CAD Tools
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Basic Structure of nWell

Figure 5.2 Minimum 
line width and space

 nWell technology
1. Start with p-type substrate

2. nWell

3. Active

4. Poly

5. pSelect

6. nSelect

7. Active contact

8. Poly contact

9. Metal1

10. Via

11. Metal2

12. Overglass

 Manhattan geometries
» Where all turns are multiples of 90o

» If in an arbitrary manner, then must be
sure what the structures are supported
by the fabrication process
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 An n-well is required at every location where a pFET is to be 
made

 It is often possible to merge adjacent n-wells together into one

 n-well must be connected to the power supply VDD when used for pFETs

n-Wells

Wnw = minimum width of an n-well mask feature
Snw-nw = minimum edge-to-edge spacing of adjacent n-wells

Figure 5.3 n-well structure and mask

(a) Cross-section (b) Mask set
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 n-well
 required everywhere 

pMOS is needed 

 rules
 minimum width

 minimum separation 
to self

 minimum separation 
to nMOS Active

 minimum overlap of 
pMOS Active

Example
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Active Areas

 Silicon devices are built on active areas of the 
substrate

Figure 5.4 Active area definition

(a) Cross-section (b) Active patterns

Wa = minimum width of an Active feature
Sa-a = minimum edge-to-edge spacing of Active mask polygons

FOX = NOT (Active)          (5.1)

FOX + Active = Surface     (5.2)
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 Active

 required everywhere a transistor is needed

 any non-Active region is FOX

 rules
 minimum width

 minimum separation to other Active

Example
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Doped Silicon Regions

Figure 5.5 Design of a n+ regions

(a) Cross-section (b) Mask set

 Thermal technique called diffusion
» Create n+ (ndiff, [Arsenic, As] or 

[Phosphorus, p] ) and p+ (pdiff, [Boron, 
B] ) regions

Figure 5.6 Design of a p+ regions

(a) Cross-section (b) Mask set

Wa = minimum width of an Active area
Sa-n = minimum Active-to-nSelect spacing

p+ = (pSelect)    (Active)    (nWell)     (5.4)

Wa = minimum width of an Active area
Sa-p = minimum Active-to-pSelect spacing
Sp-nw = minimum pSelect-to-nSelect spacing

 

n+ = (nSelect)    (Active)                      (5.3)
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 n/p Select
 defines regions to be doped n+ and p+

 tx S/D = Active AND Select NOT Poly

 tx gate = Active AND Select AND Poly

 rules
 minimum overlap of Active

 same for pMOS and nMOS

 several more complex rules available

Example
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

MOSFETs (1/2)

Figure 5.7 nFET structure

(a) Cross-section (b) Layout view

Figure 5.8 Masks for the nFET

Wp = minimum poly width
Sp-p = minimum poly-to-poly spacing

L = Wp = minimum width (length) of a Poly line
dpo = minimum extension of Poly beyond Active

nFET = (nSelect)    (Active)    (Poly)             (5.5)
n+ = (nSelect)    (Active)    (NOT [Poly])     (5.6)


 

 Physically, the poly line is deposited
before the ion implant, and acts to
block dopants from entering the
silicon

 nFETs
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 pFETs

MOSFETs (2/2)

pFET = (pSelect)    (Active)    (Poly)    (nWell)           (5.7)
p+ = (pSelect)    (Active)    (nWell)    (NOT [Poly] )  (5.8)

Figure 5.9 pFET structure

(a) Cross-section (b) Layout view

Figure 5.10 Masks for the pFET

 
  


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 Poly

 high resistance conductor (can be used for short 
routing)

 primarily used for tx gates

 rules

 minimum size

 minimum space to self

 minimum overlap of gate

 minimum space to Active

Example
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 Draw and EffectiveValues in MOSFETs
 The critical dimensions of a MOSFET are the

channel length L and the channel widthW

 The physical length is small than L due to
lateral doping during the implant annealing
step
 Leff: electrical or effective channel length

 Lo: overlap distance on both sides

 The channel width is also small than the
drawn value due to reduction of active area
by the field oxide growth

Drawn and Effective in MOSFETs

Figure 5.11 Drawn and 
effective dimensions of a 

MOSFET

(a) Drawn Layout

(b) Finished view

Leff = L – 2Lo (5.9)
Leff = L - ΔL (5.10)

eff

eff

L

W
(5.12)

Weff = W – ΔW      (5.11)
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 An active contact is a cut in the Ox1 that
allows the first layer of metal1 to contact an
active n+ or p+ region

 A square contact is obtained if, however, it is
not uncommon to have aspect rations other
than 1:1

Active Contacts

Figure 5.12 Active 
contact formation

(a) Cross-section

(b) General mask set

Sa-ac = minimum spacing between Active and Active 
Contact
dac, v = vertical size of the contact
dac, h = horizontal size of the contact

dac, v = dac, h = dac              (5.13)
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 Contacts
 Contacts to Metal1, from 

Active or Poly
 use same layer and rules for 

both

 must be SQUARE and 
MINIMUM SIZED

 rules
 exact size

 minimum overlap by 
Active/Poly

 minimum space to Contact

 minimum space to gate

Design Rules: 3
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 Metal1 is used as interconnect for signals
and power supply distribution

 Every contact is characterized by a resistance

 Since the contacts are all in parallel, the effective
resistance of the Metal1-Active connection with
N contacts is reduced to

Metal1 (1/3)

Figure 5.13 Metal1 line 
with Active Contact

(a) Cross-section

(b) General mask set

Wm1 = minimum width of a Metal1 line
Sm1-ac = minimum spacing from Metal1 to Active 
Contact

Rc = contact resistance Ω

ceffc R
N

R
1

,  (5.14)

Figure 5.14 Multiple contacts
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 Metal1
 low resistance conductor used for routing

 rules
 minimum size

 minimum space to self

 minimum overlap of Contact

Example
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Metal1 (2/3)

Figure 5.15 Drain and source 
FET terminals using Metal1

(a) Cross-section (b) Layout

Figure 5.16 Poly Contact

(a) Cross-section (b) Layout

 Metal1 allows access to the active regions 
of MOSFETs using the Active Contact 
oxide cut as Figure 5.15

 A Poly Contact mask is used to allow
electrical connections between Metal1
and the polysilicon gate as Figure 5.16

Sp-ac = minimum spacing from Poly  to Active 
Contact
Sa-p = minimum spacing from Active to Poly

Sp-p = minimum Poly-to-Poly spacing
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 Vias
 Connects Metal1 to Metal2
 must be SQUARE and MINIMUM 

SIZED
 rules

 exact size
 space to self
 minimum overlap by Metal1/Metal2
 minimum space to Contact
 minimum space to Poly/Active edge

 Metal2
 low resistance conductor used for 

routing

 rules
 minimum size
 minimum space to self
 minimum overlap of Via

Example
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 Example: A pair of series-connected
FETs sharing the central n+ region as
Figure 5.17

 Example: Parallel-connected FETs as
Figure 5.18

 Example: allow for the size of the
contact itself, plus two units of poly-
active spacing as Figure 5.19
 Enforced twice Sp-a

Metal1 (3/3)

Figure 5.17 Series-connected FETs

(a) Cross-section (b) Layout

Figure 5.18 Parallel-
connected nFETs

Sp-p = minimum Poly-to-Poly 
spacing

Sg-g = dac + 2 Sp-

ac

Figure 5.19 Different 
channel widths using 
the same active region

(distance between the two gates)
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Vias and Higher Level Metals

Figure 5.20 Metal1-Metal2 
connection using a Via mask

(a) Cross-section

(b) Layout

 Model CMOS processes add several additional
layers of metal that can be used for signal and
power distribution

Metal1 → Metal2 → Metal3 → Metal4

dv = dimension of a Via (may be different for vertical direction)
wm2 = minimum width of Metal2 feature
sm2-m2 = minimum spacing between adjacent Metal2 features
sv-m1 = minimum spacing between Via and Metal1 edges
Sv-m2 = minimum spacing between Via and Metal2 edges
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Latch-up

Figure 5.22 Characteristics 
of 4-layer pnpn device

(a) Structure (b) Behavior

Figure 5.21 Latch-up 
current flow path

 Latch-up: is a condition that can
occur in a circuit fabricated in a
bulk CMOS technology
» The key to understanding latch-up is

noting that the bulk technology gives a
4-layers pnpn structure between the
power supplyVDD and ground

» If VDD reaches the breakover voltage
VBO, the blocking is overwhelmed by
internal electric fields
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Equivalent circuit of CMOS latchup

EE 432 VLSI Modeling and Design 30

• When one of the two 
bipolar transistors gets 
forward biased (due to 
current flowing through 
the well, or substrate), it 
feeds the base of the 
other transistor

• This positive feedback 
increases the current 
until the circuit fails or 
burns out
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 Latch-up avoiding method
» to steer the current out of the “bad” path

 Include and n-Well contact every time a pFET is connected to the
power supplyVDD, and

 Include a p-substrate contact every time and nFET is connected to a
ground rail

» Silicon-on-insulator, SOI

» Twintub: using two separate wells for FETs, an n-well for
pFETs and a p-well for nFETs

Latch-up Prevention
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 n+ is formed whenever Active is 
surrounded by nSelect; this is also called 
ndiff.

 p+ is formed whenever Active is 
surrounded by pSelect; this is also called 
pdiff.

 A nFET is formed whenever Poly cuts an 
n+ region into two separate segments.

 A pFET is formed whenever Poly cuts an 
p+ region into two separate segments.

 No electrical current path exists 
between conducting layer (n+, p+, Poly, 
Metal, etc.) unless a contact cut (Active 
Contact, Poly Contact, or Via) is 
provided.

Layout Editors
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Figure 5.25 Drawing complex 
polygons using rectangles

(a) Structure (b) Behavior

Figure 5.24 Layer key for layout 
drawings in this book
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The Not Cell

Figure 5.43 Not layout using vertical FETsFigure 5.42 NOT gate width horizontal FETs

(a) Schematic

(b) Cell layout

(a) Basic cell

(b) 2X cell
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NAND2 and NOR2

Figure 5.46 Alternate 
NAND2 and NOR2 cells

Figure 5.45 NAND2 and NOR2 
layouts using vertical FETS

(a) NAND2

(b) NOR2

(a) NAND2

(b) NOR2 Figure 5.47 Complex 
logic gate example
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 Horizontal Tx (W run 
vertically)

 can increase tx width with fixed pitch 
(space between power rails)

 cells short & wide

 Vertical Tx (W runs 
horizontally)

 pitch sets max tx width

 cells taller & narrow

Transistor Orientation
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 Layout with Horizontal Tx
 pitch sets max txsize

 Layout with Vertical Tx
 allows tx size scaling 

without changing pitch

 Vertical Tx with 2x scaling

Inverter Layout Options
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 vertical transistors
 for smaller pitch 

(height) and wider 
cell

 large horizontal 
transistors

 for larger pitch 
(height) and 
narrower cell

NAND/NOR Layout Alternatives
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 FET are specified by the aspect ratio (W/L)

 Combine with the processing parameters to give the 
electrical characteristic of the transistor

 Given the gate area by AG = LW

 Since 

 Since

FET Sizing

Figure 5.36 Basic geometry 
of a FET 

CG = CoxWL     (5.19)
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


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(5.26)

(5.27)

(5.21, 5.22)

(5.24, 5.25) (r = 2 ~ 3)

pFETs don’t conduct as well as nFETs

(Since C is proportional to W)
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Unit Transistors

 Unit transistor is the minimum-size
MOSFET

» As Figure 5.38, the minimum width is
now

b

a

w

w

L

W










min

paoxG wwCC 

dc = dimension of the contact
sa-ac = spacing between Active and Active Contact

( gate capacitance)

( the aspect ratio )(5.30)

(5.31) Figure 5.37 Geometry of a 
minimum-size FET

Figure 5.38 Minimum-size FETs 
with Active Contact features

(a) Active contact (b) Small 
Wa

W = dc + 2sa-ac
(5.32)
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 Once a unit FET has been selected, it’s useful
to allow it to be scaled in size

 Reference 1X  2X  4X

 However, Altering the size of the transistor
changes its resistance and capacitance

 Denote R1X and C1X be the R and C of the 1X
device

Scaling Technology

XSX SWW 1

XX WW 14 4

XSX
X

SX SCC
S

R
R 1

1 

XX
X

X CC
R

R 12
1

2 2
2



XX RR 11 )2/(2 

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(S: Scaling factor)

(S = 4)

(decided by FET size)

(S = 2)

Figure 5.39 Scaling of the unit transistor

Figure 5.40 Scaling of series-
connected FET chain(Figure 5.40)
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Gate Design for Transient Performance

Figure 7.34 Relative FET sizing

(a) Inverter

(b) NAND2 (c) NOR2
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Gate Design for Transient Performance (2)

Figure 7.35 Sizing for 3-input gates

(a) NAND3 (b) NOR3

 Extend to large chains as Figure 7.35

 Example
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Figure 7.36 Sizing of a complex logic gate
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 Physical Design of Logic Gates

 FET Sizing and the Unit Transistor

 Cell Concepts

 Design Hierarchies

Outline
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 Each physical design file 
is called a “cell”

 “Primitive” cells, 
polygon-level

 create “cell library” of 
basic functions

 Expanding library with 
more complex cells

 primitive library cells 
added as to higher level 
cells to create more 
complex logic functions

 the instantiated (added) 
cell is called an “instance”

The Cell Concept
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 Cell Pitch = Height of standard cells
 measured between VDD & GND rails

 A: top of VDD to bottom of GND (we will 
use this)

 B: interior size, without power rails

 C: middle of GND to middle of VDD

 Cell Boundary
 max extension of any layer (except nwell)

 set boundary so that cells can be placed 
side-by-side without any rule violations

 extend power rails 1.5λ(or 2λto be safe) 
beyond any active/poly/metal layers

 extend n-well to cell boundary (or beyond) 
to avoid breaks in n-well

Layout Cell Definitions

EE 432 VLSI Modeling and Design 47



fAcUlty of engineering - AlexAndriA University 2013fAcUlty of engineering - AlexAndriA University 2013

 Internal Routing
 use lowest routing layer possible, typically poly and metal1

 keep all possible routing inside power rails

 keep interconnects as short as possible

 Bulk (substrate/well) Contacts
 must have many contacts to p-substrate and n-well (at least 1 

for each connection to power/ground rails)

 consider how signals will be routed in/out of the cells (don’t 
block access to I/O signals with substrate/well contacts)

Cell Layout Guidelines
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 S/D Area Minimization
 minimize S/D junction areas to keep capacitance low

 I/O Pads
 Placement: must be able to route I/O signals out of cell

 Pad Layer: metal1 for smaller cells, metal2 acceptable in 
larger cells

 Cell Boundary
 extend VDD and GND rail at least 1.5λbeyond internal 

features

 extend n-well to cell boundary to avoid breaks in higher level 
cell

Cell Layout Guidelines (2)
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 Cell View
 see only I/O ports (including power), typically in Metal1

 can’t see internal layer polygons of the primitive

 Ports
 all signals that connect to higher level cells

 physical locations of the layout cell, typically in Metal1or 
Metal2

 Metal1 vs Metal2 ports
 best to keep ports in Metal1 for primitives

 always try to use only the lowest level metals you can

Cell View and Cell Ports
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Cell-based Design

 Cell-based: once a set are defined, they
may be used to create more complex
networks

 A function using unit gate of Figure 5.26

 In this case, a new complex cell F1 will
become to the new unit component, and
this block without decomposing it into
the primitive cells

Figure 5.26 Logic gates as basic cells

Figure 5.27 Creation of a 
new cell using basic units

(a) Primitive (b) New complex cell

baf 

NANDNOT XX  2

(5.16)

(5.17)
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Cell-based: VDD & VSS Placement

Figure 5.28 VDD and VSS 
power supply lines

 Power supply lines placement

» Both are shown on the Metal1

» Pitch

» The two are related by, where WDD is the 
width of the power supply lines

Dm1-m1 = Edge-to-Edge distance 
between VDD and VSS

Pm1-m1 = Distance between the middle 
of the VDD and VSS lines

Pm1-m1 =Dm1-m1 + WDD      (5.18)
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 Tiling Placement

 Arrays of parallel metal1are 
used for interconnect

 Both Metal1 and Metal2 are 
used for routing which gives 
more flexibility

 Metal1 arrays consume 
significant area leading to a 
decreased chip density

Cell-based: FET Placement
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 A high-density technique is to 
alternate VDD and VSS power 
lines

 “Inverted logic cells” are defined 
to be flipped in relation to the 
rows of “Logic cells”

 High-density placement rate

 Major drawback: must use 
Metal2 or higher metal layer to 
achieve this approach

Weinberger Image Placement

Figure 5.33 Weinberger image array

Figure 5.34 FET placement in 
a Weinberger array
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Design Hierarchies

Figure 5.48 Primitive polygon-
level library entries

Figure 5.49 Expanding the library 
with more complex cells

 Top-down hierarchy design

 Bottom-up hierarchy design

Figure 5.50 Cell hierarchy

Figure 5.51 Effect of the flatten operation
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 Start with Primitives
 basic transistor-level 

gates/functions
 optimize performance and layout
 layout with polygons

 Build larger cells from primitives
 layout with instances of 

primitives
 polygons for transistors and 

routing

 Build even larger cells
 layout with instances of lower 

level cells
 polygons only for signal routing

 Repeat for necessary levels of 
hierarchy until Final Chip

Hierarchical Design

EE 432 VLSI Modeling and Design 57

• Advantages of Hierarchical Design:
• allow layout optimization within each cell
• eases layout effort at higher level

• higher level layout deal with 
interconnects rather than tx layout

Primitives must be done using custom techniques, but higher 
level layout can use automated (place-and-route) CAD tools
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 Building Functions from Primitives
 instantiate one or more lower-level cells to from higher-level 

function

 Example: f = a ��

Hierarchical Design Concepts
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 Final Chip
 flatten all cells to create one level of polygons

 allows masks to be made for each layout layer

 removes hierarchy

IMPORTANT:

Don’t flatten your cells! There are other ways to peak (see) lower 
level cells instantiated within a higher level cell

Hierarchical Design Concepts (2)
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