LOGIC DESIGN WITH **MOSFETS**

Dr. Mohammed Morsy

Faculty of Engineering Alexandria University

 \Box The Fundamental MOSFETs □ Ideal Switches and Boolean Operations □ MOSFETs as Switches **□ Basic Logic Gates in CMOS** □ Complex Logic Gates in CMOS **□ Transmission Gate Circuits Outline**

Faculty of Engineering - Alexandria University

nMOS Transistor

- Four terminals: gate (G) , source (S) , drain (D) , body (B)
- □ Gate–oxide–body stack looks like a capacitor
	- Gate and body are conductors
	- \blacksquare SiO₂ (oxide) is a very good insulator
	- Called metal oxide semiconductor (MOS) capacitor
	- **Exen though gate is no longer made of metal**

nMOS Operation (1/2)

- \Box Body is usually tied to ground (0 V)
- \Box When the gate is at a low voltage
	- **P**-type body is at low voltage
	- Source-body and drain-body diodes are OFF
	- **D** No current flows, transistor is OFF

nMOS Operation (2/2)

- \Box When the gate is at a high voltage
	- **<u>n</u>** Positive charge on gate of MOS capacitor
	- **n** Negative charge attracted to body
	- **Inverts a channel under gate to n-type**
	- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

□ Similar, but doping and voltages reversed

- Body tied to high voltage (VDD)
- Gate "low": transistor ON
- Gate "high": transistor OFF
- **Bubble indicates inverted behavior**

□ The Fundamental MOSFETs □ Ideal Switches and Boolean Operations □ MOSFETs as Switches **□ Basic Logic Gates in CMOS** □ Complex Logic Gates in CMOS **□ Transmission Gate Circuits Outline**

Ideal Switches (1/3)

- **D** CMOS integrated circuits use bi-directional devices called MOSFETs as logic switches
	- » Controlled switches, e.g, assert-high and assert-low switches
- **□** An assert-high switch is showing in Figure 2.1

Figure 2.1 Behavior of an assert-high switch

Ideal Switches (2/3) b a $g = (a \cdot 1) \cdot b = (a \cdot 1) \cdot b$ $g = a \cdot b$ - 61 $(a \cdot 1) \cdot b$ $a \cdot 1$ Input Output Figure 2.2 Series-connected switches α $a \cdot 1$ b $+$ $g = (a \cdot 1) + (b \cdot 1) = a + b$ \bullet $f = a + b$ 1_o $b \cdot 1$ Input Output Figure 2.4 Parallel-connected switches

□ The Fundamental MOSFETs □ Ideal Switches and Boolean Operations MOSFETs as Switches **□ Basic Logic Gates in CMOS** □ Complex Logic Gates in CMOS **□ Transmission Gate Circuits Outline**

MOSFET as Switches **D MOSFET: Metal-Oxide-Semiconductor** Gate Field-Effect Transistor □ nFET: an n-channel MOSFET that uses negatively charged electrons for electrical Drain Source current flow (a) nFET symbol **D** pFET: a p-channel MOSFET that uses positive charges for current flow Gate **In many ways, MOSFETs behave like the** *idealized switches* introduced in the previous section Drain Source \Box The voltage applied to the gate determines (b) pFET symbol the current flow between the source and Figure 2.9 Symbols used for nFETs and pFETs drain terminals

MOSFET as Switches

- □ Early generations of silicon MOS logic circuits used both *positive* and *negative supply voltages* as Figure 2.10 showing
- **n** Modern designs require only a single positive voltage V_{DD} and the ground connection, e.g. $V_{DD} = 5 V$ and 3.3V or lower
- \Box The relationship between logic variables *x* and it's voltages V_x

 $0 \leq V_{\rm r} \leq V_{\rm DD}$ $x = 0$ *means that* $V_x = 0V$ (2.14) (2.15)

 $\int x = 1$ *means that* $V_x = V_{nn}$

(a) Power supply connection (b) Logic definitions

Figure 2.11 Single voltage power supply

Switching Characteristics of MOSFET

\Box In general,

- **Low voltages correspond to logic 0 values**
- **High voltages correspond to logic I values**
- \blacksquare The transition region between the highest logic 0 voltage and the lowest logic 1 voltage is undefined

\Box nFET

$$
y = x \cdot A
$$
 which is valid iff $A = 1$ (2.16)

pFET

$$
y = x \cdot \overline{A}
$$
 which is valid iff $A = 0$ (2.17)

 $A = 1$

 $A = 0$

Figure 2.13 pFET switching characteristics

(a) Open (b) Closed

nMOS FET Threshold Voltages

- An nFET is characterized by a threshold voltage V_{Tn} that is positive, typical is around V_{Tn} = 0.5 V to 0.7V
- $I_{\text{GS}_n} \leq V_{\text{Tx}}$, then the transistor acts like an open (**off**) circuit and there is no current flow between the drain and source
- $I_{\text{GS}_n} \geq V_{_{T_n}}$, then the nFET drain and source are connected and the equivalent switch is closed (**on**)
- \Box Thus, to define the voltage V_A that is associated with the binary variable *A*

$$
V_A = V_{GSn} \tag{2.20}
$$

(a) Gate-source voltage

(b) Logic translation

Figure 2.14 Threshold voltage of an nFET

pMOS FET Threshold Voltages

- \Box An pFET is characterized by a threshold voltage V_{T_p} that is negative, typical is around V_{T_p} = -0.5 V to $-0.8V$
	- I If $V_{SGp} \leq |V_{Tp}|$, then the transistor acts like an open (**off**) switch and there is no current flow between the drain and source
	- I If $V_{\textit{SGp}} \geq |V_{\textit{Tp}}|$, then the pFET drain and source are connected and the equivalent switch is closed (**on**)
- □ Thus, to the applied voltage V_A we first sum voltage to write

$$
V_{A} + V_{SGp} = V_{DD}
$$
 (2.23)
\n
$$
\Rightarrow V_{A} = V_{DD} - V_{SGp}
$$
 (2.24)
\n
$$
V_{A} = V_{DD}
$$

\n
$$
V_{AD} - |V_{Tp}|
$$
 (2.25)

Note that the transition between a logic 0 and a logic 1 is at Eqn (2.25) !

(a) Source-gate voltage

(2.26)

Figure 2.15 pFET threshold voltage

nFET Pass Characteristics

- \Box An ideal electrical switch can pass any voltage applied to it
- \Box As Figure 2.16(b), the output voltage *V*_v is reduced to a value

$$
V_1 = V_{DD} - V_{Tn}
$$
 (2.27) since $V_{GSn} = V_{Tn}$

which is less than the input voltage VDD, called **threshold voltage loss**

 \Box Thus, we say that the nFET can only pass a **weak logic 1**; in other word, the nFET is said to pass a **strong logic** $0 \rightarrow \infty$ can pass a voltage in the range $[0, V]$

(a) Logic 0 transfer

(b) Logic 1 transfer

Figure 2.16 nFET pass characteristics

pFET Pass Characteristics

 \Box Figure 2.17(a) portrays the case where $V_x =$ V_{DD} corresponding to a logic 1 input. The output voltage is

 $V_y = V_{DD}$ (2.29), which is an ideal logic 1 level

 \Box Figure 2.17(b), the transmitted voltage can only drop to a minimum value of

$$
V_{y} = \begin{vmatrix} V_{Tp} \end{vmatrix} \qquad (2.30) \quad since \quad V_{SGp} = \begin{vmatrix} V_{Tp} \end{vmatrix}
$$

- \Box The results of the above discussion
	- **n** nFETs pass strong logic 0 voltages, but weak logic 1 values
	- **p** pFETs pass strong logic 1 voltages, but weak logic 0 levels
	- **u** Use pFETs to pass logic 1 voltages of V_{DD}
	- **u** Use nFETs to pass logic 0 voltages of $V_{SS} = 0$ V

(a) Logic 0 transfer

Outline

- □ The Fundamental MOSFETs
- □ Ideal Switches and Boolean Operations
- □ MOSFETs as Switches
- □ Basic Logic Gates in CMOS
- □ Complex Logic Gates in CMOS
- **□ Transmission Gate Circuits**

Basic Logic Gates in CMOS

 \Box Digital logic circuits are nonlinear networks that use transistors as electronic switches to divert e^{a} . one of the supply voltages V_{DD} or 0 V to the $\frac{1}{2}$ b \bullet output

 \Box The general switching network

(a) $f = 1$ output

(b) $f = 0$ output

Figure 2.18 General CMOS logic gate
Figure 2.19 Operation of a CMOS logic gate

The NOT Gate (1/2)

The NOT Gate (2/2)

The NOR Gate (1/2)

NOR (2/2)

Ë IIII

Figure 2.28 NOR2 in CMOS

\mathcal{V} \mathcal{X}			Mpx Mpy Mnx Mny		
$0\quad 0$	on	on	off	off	
Ω	on	off	off	on	$\left(\right)$
0	off	on	on	off	θ
	off	off	on	on	$\left(\right)$

Figure 2.30 NOR3 in CMOS

Faculty of Engineering - Alexandria University

E IIII

NAND (2/2)

Ë IIII

Figure 2.34 CMOS NAND2 logic circuit

Figure 2.35 Operational summary of the NAND2 gate

Figure 2.36 NAND3 in CMOS

Outline

- **D** The Fundamental MOSFETs
- □ Ideal Switches and Boolean Operations
- □ MOSFETs as Switches
- **□ Basic Logic Gates in CMOS**
- □ Complex Logic Gates in CMOS
- **□ Transmission Gate Circuits**

Complex Logic Gate (1/3)

 \Box Complex or combinational logic gates

- **<u>n</u>** Useful in VLSI system-level design
- \Box Consider a Boolean expression $F(a,b,c) = \overline{a \cdot (b+c)}$

$$
F(a,b,c) = \overline{a \cdot (b+c)}
$$

\n
$$
= \overline{a} + \overline{(b+c)}
$$

\n
$$
= [\overline{a} + (\overline{b} \cdot \overline{c})] \cdot 1
$$
\n(2.50)

Expanding by simply ANDing the result with a logical I

$$
F = \overline{a} \cdot 1 + (\overline{b} \cdot \overline{c}) \cdot 1 \tag{2.51}
$$

Complex Logic Gate (2/3)

Figure 2.37 Logic function example

Figure 2.38 pFET circuit for *F* function from equation (2.51)

Figure 2.39 nFET circuit for F

Figure 2.40 Karnaugh for nFET circuit

Complex Logic Gate (3/3)

\Box The characteristics of Complementary **CMOS**

- \Box For CMOS circuits, due to the completely symmetrical structure, if the input voltage is $0 \sim$ VDD (full swing), the output signal is also VDD to 0 (inverting) the full-swing (strong output levels).
- \Box There is no static power consumption.
- \Box Process variations will not affect the full swing output of CMOS circuits. Such variations would perhaps affect the electrical characteristics such as the speed or power consumption, etc., but do not affect its proper function. This feature leverages reliable mass production of CMOS VLSI circuits.

Figure 2.41 Finished complex CMOS logic gate circuit

Structured Logic Design (1/4)

□ CMOS logic gates are intrinsically inverting

Output always produces a *NOT operation* acting on the input variables

Figure 2.42 Origin of the inverting characteristic of CMOS gates

Structured Logic Design (2/4)

 α $a \bullet$ $(a+b)$ $b \bullet$

Figure 2.45 nFET OAI circuit

Y

(b) Parallel-connected nFETs

Figure 2.43 nFET logic formation

Structured Logic Design (3/4)

Figure 2.46 pFET logic formation

(a) pFET AOI circuit

(b) pFET OAI circuit

(b) Series-connected pFETs
Figure 2.47 pFET arrays for AOI and OAI gates

Structured Logic Design (4/4)

Faculty of Engineering - Alexandria University

Bubble Pushing

(a) NAND - OR

(a) Parallel-connected pFETs

(b) NOR - AND

Figure 2.52 Bubble pushing using DeMorgan rules

(b) Series-connected pFETs

Figure 2.51 Assert-low models for pFETs

XOR and XNOR Gates

An important example of using an AOI circuit is constructing Exclusive-OR (XOR) and Exclusive-NOR circuits

 $a \oplus b = a \cdot b + a \cdot b$

 $a \oplus b = a \cdot b + a \cdot b$

$$
\Rightarrow a \oplus b = \overline{(\overline{a} \oplus b)} = \overline{a \cdot b + \overline{a} \cdot \overline{b}} \qquad (2.73)
$$

 $\Rightarrow \overline{a \oplus b} = \overline{\overline{a \cdot b + a \cdot b}}$

$$
(2.74)
$$

(2.71)

(2.72)

 \boldsymbol{b} $a \oplus b$ α $\overline{0}$ $\mathbf{0}$ Ω Ω $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ 1 Ω Figure 2.56 XOR

(a) Exclusive-OR (b) Exclusive-NOR

Figure 2.57 AOI XOR and XNOR gates

Figure 2.58 General naming convention

Outline

- **D** The Fundamental MOSFETs
- □ Ideal Switches and Boolean Operations
- □ MOSFETs as Switches
- **□ Basic Logic Gates in CMOS**
- □ Complex Logic Gates in CMOS
- □ Transmission Gate Circuits

Transmission Gate Circuits

- □ A CMOS TG is created by connecting an nFET and pFET in parallel
	- **Bi-directional**
	- **The Transmit the entire voltage range [0,** V_{DD} **]**

$$
y = x \cdot s \quad \text{iff} \quad s = 1 \tag{2.78}
$$

Figure 2.60 Transmission gate (TG)

Logic Design using TG (1/3)

□ Multiplexors

O TG based 2-to-1 multiplexor

Figure 2.61 A TG-based 2-to-1 multiplexor

The 2-to-1 extended to a 4:1 network by using the 2-bit selector word (s_1, s_2)

$$
F = P_0 \cdot \overline{s_1} \cdot \overline{s_0} + P_1 \cdot \overline{s_1} \cdot s_0 + P_2 \cdot s_1 \cdot \overline{s_0} + P_3 \cdot s_1 \cdot s_0 \tag{2.80}
$$

(a) XOR circuit (b) XNOR circuit

 \boldsymbol{h}

 $a \cdot \overline{b} + \overline{a} \cdot b = a \oplus b$

 (2.81) \uparrow \uparrow \uparrow (2.82)

Figure 2.62 TG-based exclusive-OR and exclusive-NOR circuits

□ TG based OR gate

$$
f = a \cdot (\overline{a}) + \overline{a} \cdot b
$$

= $a + \overline{a} \cdot b$ (2.83)
= $a + b$

 \bullet a \oplus b

Figure 2.63 A TG-based OR gate

Logic Design using TG (3/3)

□ Alternate XOR/XNOR Circuits

- **n** Mixing TGs and FETs which are designed for exclusive-OR and equivalence (XNOR) functions
- It's important in adders and error detection/correction algorithms

Figure 2.64 An XNOR gate that used both TGs and FETs