
 1

CMOS VLSI Design
Lab 3: Controller Design and Verification

The controller for your MIPS processor is responsible for generating the signals to the
datapath to fetch and execute each instruction. It lacks the regular structure of the
datapath. In the first section of the lab, you will design the ALU decoder control logic by
hand. You will discover how this becomes tedious and error-prone even for small
designs. For larger blocks, especially designs that might require bug fixes late in the
design process, hand place and route becomes exceedingly onerous. Therefore, you will
use a PLA generator to automatically generate the combinational logic for the control
FSM.

I. ALUDec Logic

The ALUDec logic is responsible for decoding a 2-bit ALUOp signal and a 6-bit funct
field of the instruction to produce three multiplexer control lines for the ALU. Two of
the signals select which type of ALU operation is performed and the third determines if
input B is inverted.

The function of the ALUDec logic is defined in Chapter 1 of CMOS VLSI Design. The
Verilog code in Figure 1 is an equivalent description of the logic. Note that the main
controller will never produce an ALUOp of 11, so that case need not be considered. The
processor only handles the five R-type instructions listed, so you can treat the result of
other funct codes as don’t cares and optimize your logic accordingly.

typedef enum logic [5:0] {ADD = 6'b100000,
 SUB = 6'b100010,
 AND = 6'b100100,
 OR = 6'b100101,
 SLT = 6'b101010} functcode;

module aludec(input logic [1:0] aluop,
 input logic [5:0] funct,
 output logic [2:0] alucontrol);

 always_comb
 case (aluop)
 2'b00: alucontrol = 3'b010; // add for lb/sb/addi
 2'b01: alucontrol = 3'b110; // subtract (for beq)
 default: case(funct) // R-Type instructions
 ADD: alucontrol = 3'b010;
 SUB: alucontrol = 3'b110;
 AND: alucontrol = 3'b000;
 OR: alucontrol = 3'b001;
 SLT: alucontrol = 3'b111;
 default: alucontrol = 3'b101; // should never happen
 endcase
 endcase
endmodule

Figure 1: System Verilog code for ALUDec module

 2

Make a copy of your lab2_xx directory and name it lab3_xx. Create an aludec
schematic in your mips8 library. Using the logic gates from Muddlib, design a
combinational circuit to compute the ALUControl[2:0] signals from ALUOp[1:0] and
Funct[5:0]. As Funct[5:4] are always 10 for any instruction under consideration, you
may omit them as don’t cares. Try to minimize the number of gates required because that
will save you time and space in the layout.

When you are drawing your schematic, create wide green busses for the inputs and export
them. You can tap off individual bits by connecting the narrow blue wires to the gates
and labeling them as shown in Figure 2. In fact, Electric connects by name in
schematics, so it is not even necessary to explicitly draw the connection (though showing
the connection is good practice because it makes the schematic more readable).

Figure 2: Tapping busses

Next, create an aludec layout. Remember to use metal2 vertically and metal1
horizontally. When you are done, provide exports for VDD, GND, and the eight inputs
and three outputs.

Run DRC, ERC, and NCC and fix any problems you might find. If your schematic and
layout do not match, consider simulating the layout to help track down any bugs.

II. Controller Verilog

The MIPS Controller is responsible for decoding the instruction and generating mux
select and register enable signals for the datapath. In our multicycle MIPS design, it is
implemented as a finite state machine, as shown in Figure 3.1 The Verilog code
describing this FSM is the statelogic and outputlogic modules in the RTL mips.sv.

Look through the Verilog and identify the major portions. The next state logic describes
the state transitions of the FSM. The output logic determines which outputs will be
asserted in each state. Note that the Verilog also contains the AND/OR gates required to
compute PCChange, the write enable to the program counter.

1 This FSM is identical to that of the multicycle processors in Patterson & Hennessy Computer
Organization and Design and in Harris and Harris Digital Design and Computer Architecture, save that LW
and SW have been replaced by LB and SB and instruction fetch now requires four cycles to load instructions
through a byte-wide interface.

 3

PCWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LB') or (Op = 'SB ') (Op = R-type)

(O
p = 'BE

Q')

(O
p

=
'J'

)

(Op = 'SB')

(O
p

=
'L

B
')

7

0

4

121195

1086

Reset

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite

1

ALUSrcA = 0
IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite

2

ALUSrcA = 0
IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite

3

PCSrc = 00 PCSrc = 00 PCSrc = 00 PCSrc = 00

PCSrc = 01
PCSrc = 10Branch = 1

Figure 3: Controller FSM

III. Controller Synthesis

You will use a simple programmable logic array (PLA) generator to create a layout and
schematic for the random logic of the controller. The PLA generator, written by Justin
Gries and Danny LaValle at Harvey Mudd College, produces a PLA from a Verilog case
statement. This is a primitive PLA generator, but will nevertheless save considerable
manual effort.

Look in the lab directory for PLAGenerator.jar, parameters.txt, and controller_pla.v, and
copy them to your own directory. The input to the PLA generator is a single casez
statement, supporting a limited subset of the Verilog language. The inputs must be a
single bus and the outputs must be another single bus. Therefore, controller_pla.v
integrates the two case statements and uses two busses for the input and output of the
case statement: in and out. assign statements are used to group the inputs and

 4

outputs into single busses. Pay attention to the order of bits within the bus. Recall that
don’t cares are indicated with a “?” in a casez statement.

The last two lines of the controller_pla.v case statement are missing for the final states
of BEQ and J (states 11 and 12 in Figure 2). Using the RTL as a guide, complete
controller_pla.v by adding these missing lines. Once you are satisfied the modified case
statement is complete, simulate the case statement with the RTL to verify before
generating your PLA. To do this, follow these steps:

• comment out the instantiation of controller and uncomment the instantiation of
controller_plabased in the mips module

 controller_plabased is similar to controller, but uses a single big PLA
 in place of the separate outputlogic and statelogic modules. It includes
 the assign statements to pack and unpack in and out
• add the two new states to the case statement in controller_plabased

Start the PLA Generator by double-clicking on PLAGenerator.jar. It will prompt your
for a parameters file; select parameters.txt. It contains generation parameters, such as the
generated cell name and metal widths. You can leave these parameters as-is. It will
prompt for a case.v file, select your controller_pla.v. It may take a few minutes to
generate the controller_pla.jelib library. Copy the controller_pla{sch} and
controller_pla{lay} cells from this library into your mips8 library.

The PLA generator produces DRC errors in certain versions of Electric. It adds extra
pins that may cause DRC errors. Click on Edit • Cleanup Cell • Cleanup Pins in the
layout and schematic cells to remove them. It also leaves notches in the p-select around
the weak pMOS tranisistors at the left side and the top right side. Drop a huge blob of
pure layer node p-select over these areas to eliminate the notches.

Generate an icon by opening the controller_pla schematic and clicking on View • Make
Icon View.

IV. Controller Assembly and Simulation

Add the PLA and ALUDec icons to controller{sch} and wire them up. Open
controller{lay} and place the PLA and ALUDec modules. You should be able to use
auto-stitch to connect the PLA to existing wires, which are already labeled. Be sure
power and ground are hooked up. Pins at the bottom of the controller cell should not be
moved because they are pitch matched to the pins of the datapath. The state registers and
the random logic in the controller for the pcen signal are already included. Verify your
controller with DRC, NCC, and ERC.

Write a Verilog deck for your controller{lay} and substitute it for the controller in the
RTL, then simulate to verify your design. When you do this, check the order of the
signals in the controller module written by Electric, and make sure you instantiate the

 5

controller from mips using the correct order. If vdd and gnd appear in the port list, be
sure to delete them.

V. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for the future.
2. A printout of the aludec schematics and layout.
3. Your completed controller_pla.v.
4. A printout of the controller schematics and layout.
5. Does your controller layout simulate with the RTL?
6. What are the DRC, ERC, and NCC status of each block you designed: alucontrol,

controller_pla, and controller?

