

Alexandria University Faculty of Engineering

Electrical Engineering Department

EE431: Digital Integrated Circuits
Sheet 1: MOS Inverter Static Characteristics

1) Design a resistive-load inverter with $R=1~k\Omega$, such that $V_{OL}=0.6~V$. The enhancement-type nMOS driver transistor has the following parameters:

 $V_{DD} = 5V$, $V_{T0} = 1V$, $\gamma = 0.2V^{1/2}$, $\lambda = 0$, $\mu_n C_{ox} = 22\mu A/V^2$

- a. Determine the required aspect ratio
- b. Determine V_{IL} and V_{IH}
- c. Determine noise margins NM_L and NM_{H.}
- 2) Draw the layout of the resistive-load inverter designed in Problem 1 using a polysilicon resistor with sheet resistivity of 25 Ω /square and the minimum feature size of 2 μ m. It should be noted that L stands for the effective channel length which is related to the mask channel length as L = $L_M + \delta$ 2 L_D . where we assume 8 (process error) = 0 and $L_D = 0.25$ μ m. To save chip area, use minimum sizes for Wand L. Also, the circuit area can be reduced by using the folded layout (snake pattern) of the resistor.
- 3) Draw cross-sections of the following device along the lines A-A` and B-B`.

4) Consider the following nMOS inverter circuit which consists of two enhancement-type nMOS transistors, with the parameters:

- 5)
- a. Calculate V_{OH} and V_{OL} values. Note that the substrate-bias effect of the load device must be taken into consideration.
- b. Interpret the results in terms of noise margins and static (DC) power dissipation.
- c. Calculate the steady-state current which is drawn from the DC power supply when the input is a logic "1", i.e., when $V_{\rm in} = V_{\rm OH}$
- 6) Design of a depletion-load nMOS inverter:

$$\begin{array}{ll} V_{DD}\!\!=\!\!5V, & V_{T0}\!=\!0.8V~(E\text{-type}),~V_{T0}\!=\!-2.8V~(D\text{-type})\\ \gamma\!=\!0.38V^{1/2}\,, & \mu_n C_{ox}\!=\!30\mu A/V^2, & |2\Phi_F|\!=\!0.6V \end{array}$$

- a. Determine the (WIL) ratios of both transistors such that:
 - i. the static (DC) power dissipation for $V_{in} = V_{OH}$ is 250 μW , and
 - ii. $V_{OL} = 0.3V$
- b. Calculate V_{IL} and V_{IH} values, and determine the noise margins.
- c. Plot the VTC of the inverter circuit.
- 7) Consider CMOS inverter with the following parameters:

NMOS:
$$V_{T0,n} = 0.6 \text{ V}$$
 $\mu_n C_{ox} = 60 \ \mu\text{A/V}^2$ $(W/L)_n = 8$ PMOS: $V_{T0,p} = 0.7 \text{ V}$ $\mu_p C_{ox} = 25 \ \mu\text{A/V}^2$ $(W/L)_p = 12$ Calculate the noise margins and the switching threshold (V_{th}) of this circuit. The power supply is $V_{DD} = 3.3 \text{ V}$.

8) Design of a CMOS inverter circuit:

Use the same device parameters as in problem 6.

The power supply $V_{DD} = 3.3$ V. The channel length of both transistors is $L_n = L_p = 0.8 \ \mu m$.

- a) Determine the (W_n / W_p) ratio so that the switching (inversion) threshold voltage of the circuit is $V_{th} = 1.4 \text{ V}$.
- b) The CMOS fabrication process used to manufacture this inverter allows a variation of the $V_{T0,n}$ value by $\pm 15\%$ around its normal value, and a variation of the $V_{T0,p}$ value by $\pm 20\%$ around its normal value. Assuming that all other parameters (such as μ_n , μ_p , C_{ox} , W_n , W_p) always retain their nominal values, find the upper and lower limits of the switching threshold voltage (V_{th}) of this circuit.
- 9) Consider the CMOS inverter designed in problem 7, with the following circuit configuration

- a) Calculate the output voltage level V_{out} .
- b) Determine if the process-related variation of $V_{T0,n}$ of M3 has any influence upon the voltage V_{out} .
- c) Calculate the total current being drawn from the power supply source, and determine its variation due to process-related threshold voltage variations.
- 10) Consider a CMOS inverter, with the following device parameters:

NMOS:
$$V_{T0,n} = 0.6 \text{ V}$$
 $\mu_n C_{ox} = 60 \mu A/V^2$
PMOS: $V_{T0,p} = -0.8 \text{ V}$ $\mu_p C_{ox} = 20 \mu A/V^2$
Also consider: $V_{DD} = 3$ $\lambda = 0$

- a) Determine the (W/L) ratios of the NMOS and the PMOS transistor such that the switching threshold is $V_{th} = 1.5 \text{ V}$.
- b) Plot the VTC of the CMOS inverter using SPICE.
- c) Determine the VTC of the inverter for $\lambda = 0.05$ and $\lambda = 0.1 \text{ V}^{-1}$.
- d) Discuss how the noise margins are influenced by non-zero λ value. Note that transistors with very short channel lengths tend to have

larger λ values than long-channel transistors.

11) Consider the CMOS inverter designed in problem 9 above, with $\lambda = 0.1 \text{ V}^{-1}$. Now consider a cascade connection of four identical inverters, as shown.

- a) If the input voltage is $V_{in} = 1.55 \text{ V}$, find V_{out1} , V_{out2} , V_{out3} and V_{out4} . (note that this requires solving KCL equations for each subsequent stage, using the non-zero λ value).
- b) How many stages are necessary to restore a true logic output level?
- c) Verify your result with SPICE simulation.