CMOS Digital Integrated Circuits

Lec 13 Semiconductor Memories

1 CMOS Digital Integrated Circuits

Semiconductor Memory Types

Semiconductor Memory Types (Cont.)

Design Issues \overline{R}

- **Area Efficiency of Memory Array:** # of stored data bits per unit area
- **Memory Access Time:** the time required to store and/or retrieve a particular data bit.
- **Static and Dynamic Power Consumption**
- **RAM: the stored data is volatile** \overline{R}
	- *DRAM*
		- » A capacitor to store data, and a transistor to access the capacitor
		- » **Need refresh operation**
		- \rightarrow **Low cost**, and **high density** \Rightarrow it is used for main memory
	- *SRAM*
		- » Consists of a latch
		- » **Don't need the refresh operation**
		- \rightarrow **High speed** and **low power consumption** \Rightarrow it is mainly used for cache memory and memory in hand-held devices

Semiconductor Memory Types (Cont.)

ROM: 1, nonvolatile memories \overline{P}

- **2, only can access data, cannot to modify data**
- **3, lower cost:** used for permanent memory in printers, fax, and game machines, and ID cards
- *Mask ROM***:** data are written **during** chip fabrication by a **photo mask**
- *PROM***:** data are written electrically **after** the chip is fabricated.
	- » *Fuse ROM***:** data **cannot** be erased and modified.
	- » *EPROM and EEPROM***:** data **can be rewritten**, but the number of subsequent re-write operations is limited to *10⁴ -10⁵* .
		- *EPROM* **uses ultraviolet rays** which can penetrate through the crystal glass on package to erase whole data simultaneously.
		- *EEPROM* **uses high electrical voltage** to erase data in 8 bit units.
- *Flash Memory***:** similar to EEPROM
- *FRAM***:** utilizes the **hysteresis** characteristics of a capacitor to overcome the slow written operation of EEPROMs.

Random-Access Memory Array Organization

Nonvolatile Memory 4Bit 4Bit NOR-based ROM Array

- One word line "*Ri*" is activated by raising its voltage to V_{DD}
- Logic "1" is stored: Absent transistor Logic "0" is stored: Present transistor
- To reduce static power consumption, the pMOS can be driven by a periodic pre-charge signal.

Layout of Contact-Mask Programmable NOR ROM

- **"0" bit:** drain is connected to metal line via a metal-to-diffusion contact **"1" bit:** omission the connect between drain and metal line.
- **To save silicon area:** the transistors on every two adjacent rows share a common ground line, also are routed in n-type diffusion

• In reality, the metal lines are **laid out directly on top** of diffusion columns to reduce the horizontal dimension.

Implant-Mask Programmable NOR ROM Array

• *V_{T0}* is implanted to activate 1 bit: Let $V_{T0} > V_{DD} \Rightarrow$ permanently turn off transistor \Rightarrow disconnect the contact

• Each diffusion-to-metal contact is **shared by two adjacent transistors** \Rightarrow need smaller area than contact-mask ROM layout

4Bit 4Bit NAND-based ROM Array

- All word lines are kept at logic "1" level, except the selected line pulled down by "0" level.
- Logic "0" is stored: Absent transistor Logic "1" is stored: Present transistor

Layout of Implant-Mask Programmable 4Bit 4Bit NAND ROM

- No contact in the array \Rightarrow **More compact than NOR ROM array**
- Series-connected nMOS transistors exist in each column
	- **The access time is slower than NOR ROM**

Design of Row and Column Decoders

• Row and Column Decoders: To select **a particular memory location** in the array.

13 CMOS Digital Integrated Circuits

Implementation of Row Decoder and ROM

• Can be implemented as *two adjacent* NOR planes

Implementation of Row Decoder and ROM (Cont.)

• Can also be implemented as *two adjacent* NAND planes

44 NAND ROM Array

Column Decoder (1) NOR Address Decoder and Pass Transistors

- **Column Decoder:** To select one out of 2^M bits lines of the ROM array, and to route the data of the selected bit line to the data output
- **NOR-based column address decoder and pass transistors:**
	- » Only one nMOS pass transistor is turned on at a time
	- \rightarrow # of transistors required: $2^M(M+1)$ (2^M pass transistors, $M2^M$ decoder)

Column Decoder (2) Binary Tree Decoder

• **Binary Tree Decoder: A binary selection tree with consecutive stages**

- » The pass transistor network is used to select one out of every two bit lines at each stages. The NOR address decoder is not needed.
- \rightarrow **Advantage:** *Reduce the transistor count* (2^{M+1} - $2+2M$)
- \rightarrow **Disadvantage:** Large number of series connected nMOS pass transistors \Rightarrow *long data access time*

An Example of NOR ROM Array

- Consider the design of a 32-kbit **NOR ROM** array and the design issues related to *access time analysis*
	- \rightarrow # of total bits: 15 (2¹⁵=32,768)
	- \rightarrow 7 row address bits (2⁷ = 128 rows)
	- \rightarrow 8 column address bits (2⁸ = 256 columns)
	- » Layout: implant-mask
	- $W = 2 \mu m, L = 1.5 \mu m$
	- $\mu_{n}C_{ox} = 20 \mu A/V^{2}$
	- $\chi \text{C}_{ox} = 3.47 \text{ }\mu\text{F/cm}^2$
	- $\rightarrow R_{sheet-poly} = 20 \Omega/square$

• *Rrow*, and *Crow* **/** unit memory cell

- \rightarrow $C_{row} = C_{ox} \cdot W \cdot L = 10.4$ fF/bit
- $\rightarrow R_{row}$ = (# of squares) $\times R_{sheet-poly}$ = 3 \times 20 = 60 Ω

An Example of NOR ROM Array (Cont.)

The poly word line can be modeled as a RC transmission line with up to 256 transistors

• The row access time t_{row} : delay associated with selecting and activating 1 of 128 word lines in ROM array. It can be approximated as

An Example of NOR ROM Array (Cont.)

- A **more accurate** RC delay value: *Elmore time constant* for RC ladder circuits $t_{row} = \sum R_{jk} C_k = 20.52$ ns **k=1 256**
- The column access time *t*_{column}: worst case delay τ _{*PHL*} associated with discharging the precharged bit line when a row is activated.

An Example of NOR ROM Array (Cont.)

- $C_{column} = 128 \times (C_{gd, driver} + C_{db, driver}) \approx 1.5pF$ where $C_{gd, driver} + C_{db, driver} = 0.0118$ pF/word line
- Since only one word line is activated at a time, the above circuit can be reduced to an inverter circuit

 R_I $\left[\frac{(2/1.5)}{2} \right]$ $\left[\frac{L}{C_{column}}\right]$ **(4/1.5) VDD** $\left(\! \begin{matrix} 0 & -V_{T0,n} \end{matrix} \! \right)$ $\left(V_{OH} - V_{T0,n}\right) - 1\Big] = 18ns$ V $_{OH}$ $+$ V V $_{OH}$ $-V$ V $_{OH}$ $-V$ *V* k_n *V* $_{OH}$ – *V C t O H O L O H T ⁿ OH* $V T 0.n$ *T ⁿ n V OH V T* 0.*n load* $\sigma_{column} = \tau_{PHL} = \frac{C_{load}}{\sqrt{C_{load}}}$ $\frac{2V_{T0,n}}{2V_{T0,n}} + \ln \left(\frac{4(V_{OH} - V_{T0,n})}{2(V_{OH} - V_{T0,n})} - 1 \right)$ $= 18$ 0, 0, 0, \rfloor^{-} \lceil $\overline{}$ $\overline{}$ $\sqrt{2}$ $\overline{}$ \int $\bigg)$ $\overline{}$ \setminus $\left(\frac{4(V_{OH}-V_{T0,n})}{V_{OH}+V_{OL}}\right)$ $+ \ln \frac{4(V \cdot OH)}{4(V \cdot OH}$ \mathbf{v}_{T0} , Il V α u \mathbf{v} $=$ T phi . $=$ $t_{access} = t_{row} + t_{column} = 20.52 + 18 = 38.52$ ns *Remark:* τ_{PLH} is not considered because the bit line is precharged high before each row access operation

Static Random Access Memory (SRAM)

• **SRAM:** The stored data can be retained indefinitely, without any need for a periodic refresh operation.

• **Complementary Column** arrangement is to achieve a more reliable SRAM operation

Resistive-Load SRAM Cell

Full CMOS and Depletion-Load SRAM Cell

SRAM Operation Principles

- *RS=0***:** The word line is not selected. *M³* and *M⁴* are OFF
- One data-bit is held: The latch preserves one of its two stable states.
- \triangleright *If RS=0 for all rows: C_C* and $C_{\overline{C}}$ are charged up to near V_{DD} by pulling up of *MP1* and *MP2* (both in saturation)

$$
V_{\bar{c}} = V_c = V_{\text{DD}} - (V_{\text{To}} + \gamma \sqrt{|2\phi_{\text{F}}| + V_c} - \sqrt{|2\phi_{\text{F}}|})
$$

 \triangleright Ex: $V_C = V_C = 3.5$ V for $V_{DD} = 5$ V, $V_{T0} = 1$ V, $|2\phi_F| = 0.6$ V, $= 0.4$ V $^{1/2}$

Pull-up transistor (one per column)

- *RS=1***:** The word line is now selected. *M³* and *M⁴* are ON **Four Operations**
- **1.** Write "1" Operation ($V_I = V_{OL}$, $V_2 = V_{OH}$ at $t=0$):

 $V_{\tau} \Rightarrow V_{OL}$ by the *data-write circuitry*. Therefore, $V_2 \Rightarrow V_{OL}$, then *M*₁ turns *off* $V_1 \Rightarrow V_{OH}$ and M_2 turns on pulling down $V_2 \Rightarrow V_{OL}$.

2. Read "1" Operation ($V_I = V_{OH}$, $V_2 = V_{OL}$ at $t=0$):

V_C retains pre-charge level, while $V\overline{c} \Rightarrow V_{OL}$ by M_2 **ON**. *Data-read circuitry* detects small voltage difference $V_c - V_{\overline{C}} > 0$, and amplifies it as a "*1*" data output.

3. Write "0" Operation $(V_I=V_{OH}, V_2=V_{OL}$ at $t=0$ "): $V_C \Rightarrow V_{OL}$ by the *data-write circuitry*. Since $V_1 \Rightarrow V_{OL}$, M_2 turns off, therefore $V_2 \Rightarrow V_{OH}$.

4. Read "0" Operation ($V_I = V_{OL}$, $V_2 = V_{OH}$ at $t=0$):

V^{*C*} retains pre-charge level, while $V_c \Rightarrow V_{OL}$ by $M_1 ON$.

Data-read circuitry detects small voltage difference $V_C - V_C < 0$, and amplifies it as a "*0*" data output.

Pull-up transistor (one per column)

31 CMOS Digital Integrated Circuits

Static or "Standby" Power Consumption

• Assume: 1 bit is stored in the cell $\Rightarrow M_1$ OFF, M_2 ON $\Rightarrow V_1=V_{OH}$, *V2*=*VOL*. *I.E. One load resistor is always conducting non-zero current.*

$$
\mathbf{P}_{\text{standby}} = (V_{DD} - V_{OL})^2 / R
$$

with $R = 100 \text{M}\Omega$ (undoped poly), $P_{\text{standby}} \approx 0.25 \mu W$ per cell for $V_{DD} = 5V$

- **Advantages** \overline{R}
	- Very **low standby power** consumption
	- **Large noise margins** than *R*-load **SRAMS**
	- **Operate at lower supply voltages** than *R*-load **SRAMS**
- **Disadvantages** \overline{P}
	- **Larger die area:** To accommodate the n-well for pMOS transistors and polysilicon contacts. The area has been reduced by using multilayer polysilicon and multi-layer metal processes
	- **CMOS more complex process**

6T-SRAM — Layout

Source: Digital Integrated Circuits 2nd

34 CMOS Digital Integrated Circuits

CMOS SRAM Cell Design strategy

- Two basic requirements which dictate *W/L* ratios $\sqrt{2}$
	- 1. Data-read operation should **not destroy data** in the cell
	- **2. Allow modification** of stored data during data-write operation Pull-up transistor (one per column)

- **Read "0" operation**
	- » at *t=0-* **:** *V1*=*0V*, *V2*=*VDD*; *M3*, *M⁴* OFF; *M2*, *M⁵* OFF; *M1*, *M6* Linear
	- \rightarrow at *t*=0: $\overline{RS} = V_{DD}$, M_3 Saturation, M_4 Linear; M_2 , M_5 OFF; M_1 , M_6 Linear
		- Slow discharge of large C_C : Require $V_I < V_{T,2} \implies$ Limits M_3 W/L wrt *M¹ W/L*

- **Design Constraint:** $V_{1,max} < V_{T,2} = V_{T,n}$ to keep M_2 OFF
	- \rightarrow *M*₃ *saturation*, *M*₁ *linear* \Rightarrow

 $k_{n,3}(V_{DD} \cdot V_I \cdot V_{T,n})^2/2 = k_{n,1}(2(V_{DD} \cdot V_{T,n})V_I \cdot V_I^2)/2$

» Therefore,

$$
\frac{k_{n,3}}{k_{n,1}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_1} < \frac{2\left(V_{DD} - 1.5V_{T,n}\right)V_{T,n}}{\left(V_{DD} - 2V_{T,n}\right)^2}
$$

Symmetry:

Same for
$$
k_{n,4}/k_{n,2}
$$

(**M**₁ **OFF** for Read "1")

CMOS SRAM Cell Design Strategy (Cont.)

• **Write "0" operation with "1" stored in cell:**

• *V^C* is set "0" *by data-write circuit*

 $("1" stored)$

- \triangleright at $t=0$: $V_1=V_{DD}, V_2=0V; M_3, M_4$ OFF; M_2, M_5 Linear; M_1, M_6 OFF
- \triangleright at $t=0$: $V_C=0$ V, $V_C=V_{DD}$; M_3 , M_4 saturation; M_2 , M_5 Linear; M_1 , M_6 **OFF**
	- » **Write "0"** \Rightarrow *V₁***:** *V_{DD}* \rightarrow *O***(** \lt *V***_{2T,n}) and** *V₂:0* \rightarrow *<i>V_{DD}(M₂* \rightarrow *OFF)*

CMOS SRAM Cell Design Strategy (Cont.)

• **Design constraint:** $V_{I,max} < V_{T,2} = V_{T,n}$ to keep M_2 OFF

» When $V_I = V_{T,n}$: M_3 Linear and M_5 saturation \Rightarrow

$$
k_{p,5}(0-V_{DD}-V_{T,p})^2/2=k_{n,3}(2(V_{DD}-V_{T,n})V_{T,n}-V_{T,n}^2)/2
$$

 \rightarrow $V_I < V_{T,n}$, i.e. $M_2(M_I)$ forced OFF

SRAM Read Circuit

 V_C – **VDD R R** *M¹ M² Vo1 Vo2* $-V_C^-$ *V^X* Source coupled differential amplifier $\left(V_{\textit{c}}\hspace{-0.04cm}-\hspace{-0.04cm}V_{\textit{X}}\hspace{-0.04cm}-\hspace{-0.04cm}V_{\textit{T1,n}}\right)$ $\left({V}_{\bar{c}}-{{V}}_{{\scriptscriptstyle{X}}}-{{V}}_{{\scriptscriptstyle{T2,n}}}\right)$ $\left(V_{\scriptscriptstyle{o1}} - V_{\scriptscriptstyle{o2}}\right)$ $\left({V}_c\!-\!{V}_{\overline c}\right)$ $k_{\scriptscriptstyle n}$ I $\partial {V}_{\it GS}$ *I g m g R* V_c – V $V{\scriptstyle_{ol}}$ $-V$ *A* $V_{\bar{c}}-V_{\bar{x}}-V$ *k I k* I_{D1} = $\frac{1}{2} (V_c - V_x - V_{T1,n})$ *ⁿ D* $\frac{D}{\rho} = \sqrt{2}$ *m C C o o sense C X T ⁿ n D* 2 *n* P 1, P 1, P 2 **V** C **V** X **V** T₁ 1 V $o2$ 2, 2 2 2 $1 = -V_c - V_x$ \widehat{O} ═ $\frac{\partial (V_c - V_{\overline{c}})}{\partial (V_c - V_{\overline{c}})} = \partial (V_{\scriptscriptstyle{\alpha1}} -$ Ξ $=$ $V_{\bar{c}}$ $V_{\bar{v}}$ $-$ Increase $R \rightarrow$ Use active load Use cascade

Sense Amp Operation

Source: Digital Integrated Circuits 2nd

Fast Sense Amplifier

- $V_c < V_c$: $M_l \implies$ *OFF*, V_o decreases, $V_{ON} \implies$ High
- $V_c > V_c^-$: $M_2 \implies$ *OFF*, V_o remains high, $V_{ON} =$ Low $A_{sense} = -g_{m2}(r_{o2}/|r_{o5})$

Two-Stage differential Current-Mirror Amplifier Sense Circuit

Typical Dynamic Response for One and Two Stage Sense Amplifier Circuits

44 CMOS Digital Integrated Circuits

Cross-Coupled nMOS Sense Amplifier

- **Assume:** *M³* **OFF***, VC* and *V^C* are initially precharged to *VDD*
- **Access:** *V^C* drops slightly less than *V^C*
- $M_3 \implies \text{ON}$ and $V_C < V_C : M_I \text{ ON}$ first, pulling V_C lower

M² turns **OFF**, *C^C* discharge via *M¹* and *M³* **Enhances differential voltage** *VC - V^C* **Does not generate output logic level**

Dynamic Read-Write Memory (DRAM) Circuits

- **SRAM:** 4~6 transistors per bit
	- 4~5 lines connecting as charge on capacitor
- **DRAM:** Data bit is stored as charge on capacitor

Reduced die area

Require periodic refresh

Four-Transistor DRAM Cell

DRAM Circuits (Cont.)

Three-Transistor DRAM Cell

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL} **-** V_{Tn}

3T-DRAM — Layout

Source: Digital Integrated Circuits 2nd

One-Transistor DRAM Cell

One-Transistor DRAM Cell

- **Industry standard** for high density dram arrays
- **Smallest** component count and silicon area per bit
- Separate or "**explicit**" capacitor (dual poly) per cell

- The binary information is stored as the charge in *C¹*
- *Storage transistor M²* is on or off depending on the charge in *C¹*
- **Pass transistors** *M¹* **and** *M3***:** access switches
- Two separate bit lines for "data read" and "data write"

- The operation is based on a **two-phase non-overlapping clock scheme**
	- \rightarrow The precharge events are driven by ϕ_1 , and the "read" and "write" operations are driven by ϕ_2 .
	- » Every "read" and "write" operation is preceded by a precharge cycle, which is initiated with *PC* going **high**.

- **Read "1" OP**: $\overline{DATA} = 0$, $WS = 0$; $RS = 1$
	- $\rightarrow M_2, M_3$ *ON* $\Rightarrow C_3, C_1$ discharges through M_2 and M_3 , and the falling column voltage is interpreted bt the "data read" circuitry as a stored logic "1".

• **Write "0" OP**: $\overline{DATA} = 1$, $WS = 1$; $RS = 0$ $\rightarrow M_2$, $M_3 ON \Rightarrow C_2$ and C_1 discharge to 0 through M_1 and *data_in nMOS*.

- **Read "0" OP**: $\overline{DATA} = 1$, $WS = 0$; $RS = 1$
	- $\rightarrow C_3$ does not discharge due to M_2 OFF, and the logic-high level on the *Data_out* column is interpreted by the data read circuitry as a stored "0" bit.

Operation of One-Transistor DRAM Cell

- **Write "1" OP:** $BL = 1$, $WL = 1$ (M_1 ON) $\Rightarrow C_1$ charges to "1"
- **Write "0" OP:** $BL = 0$, $WL = 1$ (M_1 ON) $\Rightarrow C_1$ discharges to "0"
- **Read OP:** destroys stored charge on $C_1 \Rightarrow$ destructive refresh is needed after every data read operation

Appendix

Derivation of
$$
\frac{k_{n,3}}{k_{n,1}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_1} < \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{\left(V_{DD} - 2V_{T,n}\right)^2}
$$

 $k_{n,3}(V_{DD} \cdot V_I \cdot V_{T,n})^2/2 = k_{n,1}(2(V_{DD} \cdot V_{T,n})V_I \cdot V_I^2)/2$

Therefore, $\overline{?}$

$$
\frac{k_{n,3}}{k_{n,1}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_1} = -1 + \frac{\left(V_{DD} - V_{T,n}\right)^2}{\left(V_{DD} - V_{T,n}\right)^2} < -1 + \frac{\left(V_{DD} - V_{T,n}\right)^2}{\left(V_{DD} - 2V_{T,n}\right)^2} = \frac{2\left(V_{DD} - 1.5V_{T,n}\right)}{\left(V_{DD} - 2V_{T,n}\right)^2}
$$

