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CMOS Inverters – Dynamic Analysis and Design

 Goals
• Understand the detail dynamic analysis of the CMOS inverter.

• Understand one set of design form CMOS equations.

• Understand the basic CMOS design process using the CMOS 

static and CMOS design form dynamic equations.
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CMOS Dynamic Analysis

Capacitance Model for CMOS
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CMOS Dynamic Analysis

Capacitance Model for CMOS

• The aggregate capacitance driven by the output node of a CMOS 

inverter is in detail working from left to right,

• Cload = Cinput + Cint + Cg

in which

Cinput = Cgd,n + Cgd,p + Cdb,n + Cdb,p (intrinsic component)

Cint = interconnect capacitance

Cg = thin-oxide capacitance over the gate area
(extrinsic component)
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CMOS Dynamic Analysis

Delay-Time Definitions
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CMOS Dynamic Analysis

Delay-Time Calculation (First Order Estimates)

• The simplest approach of calculating the propagation delay is 

based on estimating the average capacitance current during charge 

down/up.
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CMOS Dynamic Analysis

Delay-Time Calculation (More Accurate)(1/4)
• The propagation delay can be found more accurately by solving the state 

equation of the output node. The current flowing through Cload is a function Vout

as

• τPHL: PMOS is off. The equivalent circuit during high-to-low output transition is 
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CMOS Dynamic Analysis

Delay-Time Calculation (2/4)

The nMOS operates in two regions, saturation and linear, during the 

interval of τPHL.

• Saturation Region

iD,n=(kn/2)(Vin-VT,n)2=(kn/2)(VOH-VT,n)2

» Plug iD,n into Cload dVout/dt=-iD,n, and integrate both sides, we get

t1
’-t0 = 2CloadVT,n/[kn(VOH-VT,n)2]
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CMOS Dynamic Analysis

Delay-Time Calculation (3/4)
• Linear Region

iD,n= (kn/2)[2(Vin-VT,n)Vout-Vout
2]

= (kn/2)[2(VOH-VT,n)Vout-Vout
2]

» Plug iD,n into Cload dVout/dt=-iD,n, and integrate both sides, we have

• Finally, since VOH=VDD and VOL=0, we have
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CMOS Dynamic Analysis

Delay-Time Calculation (4/4)
• τPLH: NMOS is off. The equivalent circuit during low-to-high output 

transition is

With the similar way (t0→t1
’→t1∕0→|VT,p|→V50%∕linear →saturation), we 

can have
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CMOS Inverter Design

 Design for Performance

• Keep capacitance small

• Increase transistor size

» Watch out for self-loading!

• Increase VDD (????)
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CMOS Inverter Design

Delay as a Function of VDD

• VDD increases → τPHL/τPLH decreases. However, the power 

consumption also increases.
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CMOS Inverter Design

Device Sizing (1/5)
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CMOS Inverter Design

Device Sizing (2/5)

 NMOS/PMOS Ratio

R = Wp / Wn
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CMOS Inverter Design

Device Sizing (3/5)

Self-Loading Effect

Cload = Cgd,n(Wn) + Cgd,p(Wp) + Cdb,n(Wn) + Cdb,p(Wp) + Cint +Cg

= f(Wn,Wp)

• Using the junction capacitance expressions in Chapter 3, we have 

Cdb,n = (WnDdrain+xjDdrain)Cj0,nKeq,n+(Wn+2Ddrain)Cjsw,nKeq,n

Cdp,n = (WpDdrain+xjDdrain)Cj0,pKeq,p+(Wp+2Ddrain)Cjsw,pKeq,p

• Therefore, Cload can be rewritten as

Cload = α0+ αnWn+ αpWp

where

0 = Ddrain(2Cjsw,nKeq,n+2Cjsw,pKeq,p+xjCj0,nKeq,n+xjCj0,pKeq,p)+Cint+Cg

n = Keq,n(Cj0,nDdrain+Cjsw,n)

p = Keq,p(Cj0,pDdrain+Cjsw,p)
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CMOS Inverter Design

Device Sizing (4/5)
• Therefore, τPHL and τPLH are

• The ratio between the channel widths Wn and Wp is usually 

dictated by other design constraints such as noise margins and the 

logic inversion threshold. Let’s this transistor aspect ratio be 

defined as R ≡ Wp/Wn. Then, the propagation delay can be 

represented as 
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CMOS Inverter Design

Device Sizing (5/5)

• As we continue increase the values of Wn and Wp, the 

propagation delay will asymptotically approach a limit value for 

lager Wn and Wp,

• The propagation delay times cannot be reduced beyond the above 

limits, and the limit is independent of the extrinsic capacitances.
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CMOS Inverter Design

Impact of Rise Time on Delay
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CMOS Inverter Design

Impact of Channel Velocity Saturation

 The drain current is linearly dependent on VGS

Isat = κWn (VGS-VT)

 Propagation delay only has a weak dependence on the 

supply voltage VDD

 

 
50%

/ 2load DD

n

load
PH

D T

L

sat D

C V

W V

C V

I V
 






CMOS Digital Integrated Circuits20

CMOS Dynamic Analysis

Dynamic Power Dissipation (1/2)

• The dynamic power dissipation can be derived as follows.

Pdyn,avg = VDD IDD,avg

• With IDD,avg taken over one clock period T. The capacitance current 

which equals the current from the power supply (assuming IDn = 0

during charging) is

• Rearranging and integrating over one clock period T

• Gives
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CMOS Dynamic Analysis

Dynamic Power Dissipation (2/2)

• Solving for IDD,avg and substituting in Pavg:

• It should be noted here the our simple Cload may underestimate the 

power dissipated.

• In terms of SPICE simulation, the authors’ offer a circuit called 

power meter.
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