CMOS Digital Integrated Circuits

Lec 7

CMOS Inverters: Dynamic Analysis and Design

1 CMOS Digital Integrated Circuits

CMOS Inverters – Dynamic Analysis and Design

Goals

- **Understand the detail dynamic analysis of the CMOS inverter.**
- **Understand one set of design form CMOS equations.**
- **Understand the basic CMOS design process using the CMOS static and CMOS design form dynamic equations.**

CMOS Dynamic Analysis Capacitance Model for CMOS

3 CMOS Digital Integrated Circuits

CMOS Dynamic Analysis Capacitance Model for CMOS

- The aggregate capacitance driven by the output node of a CMOS inverter is in detail working from left to right,
- $C_{load} = C_{input} + C_{int} + C_{g}$ in which

 $C_{input} = C_{gd,n} + C_{gd,p} + C_{db,n} + C_{db,p}$ (intrinsic component)

 C_{int} = interconnect capacitance

(extrinsic component)

 C_g = thin-oxide capacitance over the gate area

CMOS Dynamic Analysis Delay-Time Definitions

CMOS Dynamic Analysis Delay-Time Calculation (*First Order Estimates***)**

• The simplest approach of calculating the propagation delay is based on estimating the *average capacitance current* during charge down/up.

$$
\tau_{\text{PHL}} = \frac{C_{load}(V_{\text{OH}} - V_{50\%})}{I_{avg,HL}}
$$

$$
\tau_{\text{PLH}} = \frac{C_{load}(V_{50\%} - V_{OL})}{I_{avg, LH}}
$$

where

$$
I_{avg,HL} = \frac{1}{2} \Big[i_C (V_{in} = V_{OH}, V_{out} = V_{OH}) + i_C (V_{in} = V_{OH}, V_{out} = V_{50\%}) \Big]
$$

$$
I_{avg, LH} = \frac{1}{2} \Big[i_C (V_{in} = V_{OL}, V_{out} = V_{50\%}) + i_C (V_{in} = V_{OL}, V_{out} = V_{OL}) \Big]
$$

CMOS Dynamic Analysis Delay-Time Calculation (*More Accurate***)(1/4)**

• The propagation delay can be found more accurately by solving the state equation of the output node. The current flowing through *Cload* is a function *Vout* as

• *τ_{PHL}*: PMOS is off. The equivalent circuit during high-to-low output transition is

CMOS Dynamic Analysis Delay-Time Calculation (*2/4***)**

The nMOS operates in two regions, *saturation and linear*, during the interval of *τPHL*.

• *Saturation Region*

 $i_{D,n} = (k_n/2)(V_{in} - V_{T,n})^2 = (k_n/2)(V_{OH} - V_{T,n})^2$ » Plug $i_{D,n}$ into $C_{load} dV_{out}/dt = -i_{D,n}$, and integrate both sides, we get

 t_1 ['] - t_0 = 2C_{*load*} $V_{T,n}/[k_n(V_{OH}$ ⁻ $V_{T,n})^2]$

CMOS Dynamic Analysis Delay-Time Calculation (*3/4***)**

• *Linear Region*

$$
i_{D,n} = (k_n/2)[2(V_{in} - V_{T,n})V_{out} - V_{out}^2]
$$

= $(k_n/2)[2(V_{OH} - V_{T,n})V_{out} - V_{out}^2]$

» Plug $i_{D,n}$ into $C_{load} dV_{out}/dt = -i_{D,n}$, and integrate both sides, we have

$$
t_{I} - t_{I}^{'} = \frac{C_{load}}{\kappa_{n}(V_{DD} - V_{T,n})} \ln\left(\frac{4(V_{DD} - V_{T,n})}{V_{50\%}}\right)
$$

Finally, since $V_{OH} = V_{DD}$ and $V_{OL} = 0$, we have

CMOS Dynamic Analysis Delay-Time Calculation (*4/4***)**

• *τPLH***:** NMOS is off. The equivalent circuit during low-to-high output transition is *VDD*

$$
\tau_{PLH} = \frac{C_{load}}{\kappa_P(V_{DD} - |V_{T,p}|)} \left[\frac{2|V_{T,p}|}{V_{DD} - |V_{T,p}|} + \ln \left(\frac{4(V_{DD} - |V_{T,p}|)}{V_{DD}} - 1 \right) \right]
$$

CMOS Inverter Design

- Design for Performance
	- **Keep capacitance small**
	- **Increase transistor size**
		- » *Watch out for self-loading!*
	- **Increase** V_{DD} (????)

CMOS Inverter Design Delay as a Function of *V_{DD}*

• *V_{DD}* increases $\rightarrow \tau_{PHL}/\tau_{PLH}$ decreases. However, the power consumption also increases.

12 CMOS Digital Integrated Circuits

CMOS Inverter Design Device Sizing (*1/5***)**

13 CMOS Digital Integrated Circuits

CMOS Inverter Design Device Sizing (*2/5***)**

NMOS/PMOS Ratio

14 CMOS Digital Integrated Circuits

CMOS Inverter Design Device Sizing (*3/5***)**

Self-Loading Effect

$$
C_{load} = C_{gd,n}(W_n) + C_{gd,p}(W_p) + C_{db,n}(W_n) + C_{db,p}(W_p) + C_{int} + C_g
$$

= $f(W_n, W_p)$

- Using the junction capacitance expressions in Chapter 3, we have $C_{db,n} = (W_n D_{drain} + x_i D_{drain}) C_{i0,n} K_{eq,n} + (W_n + 2D_{drain}) C_{jsw,n} K_{eq,n}$ $C_{dp,n} = (W_p D_{drain} + x_i D_{drain}) C_{i0,p} K_{ea,p} + (W_p + 2 D_{drain}) C_{isw,p} K_{ea,p}$
- Therefore, C_{load} can be rewritten as

 $C_{load} = \alpha_0 + \alpha_n W_n + \alpha_n W_n$

where

$$
\alpha_0 = D_{\text{drain}}(2C_{\text{jsw,n}}K_{eq,n} + 2C_{\text{jsw,p}}K_{eq,p} + x_jC_{j0,n}K_{eq,n} + x_jC_{j0,p}K_{eq,p}) + C_{int} + C_g
$$
\n
$$
\alpha_n = K_{eq,n}(C_{j0,n}D_{\text{drain}} + C_{\text{jsw,n}})
$$
\n
$$
\alpha_p = K_{eq,p}(C_{j0,p}D_{\text{drain}} + C_{\text{jsw,p}})
$$

CMOS Inverter Design Device Sizing (*4/5***)**

• Therefore, τ *PHL* and τ *PLH* are

$$
\tau_{\text{PHL}} = \left(\frac{\alpha_0 + \alpha_n W_n + \alpha_p W_p}{W_n}\right) \times \left(\frac{L_n}{\mu_n C_{ox} (V_{DD} - V_{T,n})}\right) \times \left[\frac{2V_{T,n}}{V_{DD} - V_{T,n}} + \ln\left(\frac{4(V_{DD} - V_{T,n})}{V_{DD}} - 1\right)\right]
$$

$$
\tau_{\text{PLL}} = \left(\frac{\alpha_0 + \alpha_n W_n + \alpha_p W_p}{W_p}\right) \times \left(\frac{L_p}{\mu_n C_{ox} (V_{DD} - |V_{T,p}|)}\right) \times \left[\frac{2|V_{T,p}|}{V_{DD} - |V_{T,p}|} + \ln\left(\frac{4(V_{DD} - |V_{T,p}|)}{V_{DD}} - 1\right)\right]
$$

• The ratio between the channel widths W_n and W_p is usually dictated by other design constraints such as noise margins and the logic inversion threshold. Let's this transistor *aspect ratio* be defined as $R \equiv W_p/W_n$. Then, the propagation delay can be represented as

$$
\tau_{\text{PHL}} = \Gamma_n \left(\frac{\alpha_0 + (\alpha_n + R\alpha_p)W_n}{W_n} \right)
$$

$$
\tau_{\text{PLH}} = \Gamma_p \left(\frac{\alpha_0 + (\frac{\alpha_n}{R} + \alpha_p)W_p}{W_p} \right)
$$

CMOS Inverter Design Device Sizing (*5/5***)**

• As we continue increase the values of *Wⁿ* and *Wp*, the propagation delay will asymptotically approach a limit value for lager W_n and W_p ,

$$
\tau_{\scriptscriptstyle PHL}^{\scriptscriptstyle\it limit}=\Gamma_n(\alpha_n+R\alpha_p)
$$

$$
\tau_{PLH}^{\text{limit}} = \Gamma_p(\frac{\alpha_n}{R} + \alpha_p)
$$

• The propagation delay times cannot be reduced beyond the above limits, and the limit is *independent* of the extrinsic capacitances.

Propagation delay increases since both PMOS and NMOS are on during the charge-up and chargedown events.

CMOS Inverter Design Impact of Channel Velocity Saturation

■ The drain current is *linearly dependent on* V_{GS}

$$
I_{sat} = \kappa W_n (V_{GS} - V_T)
$$

 Propagation delay only has a weak dependence on the supply voltage V_{DD}

$$
\tau_{\text{PHL}} \approx \frac{C_{\text{load}} V_{50\%}}{I_{\text{sat}}} = \frac{C_{\text{load}} (V_{\text{DD}}/2)}{\kappa W_n (V_{\text{DD}} - V_T)}
$$

CMOS Dynamic Analysis Dynamic Power Dissipation (*1/2***)**

• The dynamic power dissipation can be derived as follows.

$$
P_{dyn,avg} = V_{DD} I_{DD,avg}
$$

• With *I_{DD,avg}* taken over one clock period *T*. The capacitance current which equals the current from the power supply (assuming $I_{Dn} = 0$ during charging) is

$$
I_D = C_{load} \frac{dV_{out}}{dt}
$$

• Rearranging and integrating over one clock period *T*

$$
\int_0^T D dt = \int_0^{V_{DD}} C_{load} dV_{out}
$$

Gives

$$
I_{DD,avg} T = C_{load} V_{DD}
$$

CMOS Dynamic Analysis Dynamic Power Dissipation (*2/2***)**

• Solving for *IDD,avg* and substituting in *Pavg*:

$$
P_{avg} = \frac{1}{T} C_{load} V_{DD}^2 = C_{load} V_{DD}^2 f
$$

- It should be noted here the our simple *Cload* may underestimate the power dissipated.
- In terms of SPICE simulation, the authors' offer a circuit called power meter.

