CMOS Digital Integrated Circuits

Lec 7

CMOS Inverters: Dynamic Analysis and Design

1

CMOS Digital Integrated Circuits

CMOS Inverters – Dynamic Analysis and Design

Goals

- Understand the detail dynamic analysis of the CMOS inverter.
- Understand one set of design form CMOS equations.
- Understand the basic CMOS design process using the CMOS static and CMOS design form dynamic equations.

CMOS Dynamic Analysis Capacitance Model for CMOS

CMOS Digital Integrated Circuits

CMOS Dynamic Analysis Capacitance Model for CMOS

- The aggregate capacitance driven by the output node of a CMOS inverter is in detail working from left to right,
- $C_{load} = C_{input} + C_{int} + C_g$ in which

 $C_{input} = C_{gd,n} + C_{gd,p} + C_{db,n} + C_{db,p}$ (intrinsic component)

C_{int} = interconnect capacitance

(extrinsic component)

 C_g = thin-oxide capacitance over the gate area

CMOS Dynamic Analysis Delay-Time Definitions

CMOS Dynamic Analysis Delay-Time Calculation (*First Order Estimates*)

• The simplest approach of calculating the propagation delay is based on estimating the *average capacitance current* during charge down/up.

$$\tau_{PHL} = \frac{C_{load} (V_{OH} - V_{50\%})}{I_{avg,HL}}$$
$$\tau_{PLH} = \frac{C_{load} (V_{50\%} - V_{OL})}{I_{avg,LH}}$$

where

$$I_{avg,HL} = \frac{1}{2} \Big[i_C (V_{in} = V_{OH}, V_{out} = V_{OH}) + i_C (V_{in} = V_{OH}, V_{out} = V_{50\%}) \Big]$$
$$I_{avg,LH} = \frac{1}{2} \Big[i_C (V_{in} = V_{OL}, V_{out} = V_{50\%}) + i_C (V_{in} = V_{OL}, V_{out} = V_{OL}) \Big]$$

CMOS Dynamic Analysis Delay-Time Calculation (*More Accurate*)(1/4)

• The propagation delay can be found more accurately by solving the state equation of the output node. The current flowing through C_{load} is a function V_{out} as

• τ_{PHL} : PMOS is off. The equivalent circuit during high-to-low output transition is

CMOS Dynamic Analysis Delay-Time Calculation (2/4)

The nMOS operates in two regions, *saturation and linear*, during the interval of τ_{PHL} .

• Saturation Region

 $i_{D,n} = (k_n/2)(V_{in} - V_{T,n})^2 = (k_n/2)(V_{OH} - V_{T,n})^2$ » Plug $i_{D,n}$ into $C_{load} dV_{out}/dt = -i_{D,n}$, and integrate both sides, we get

 $t_1' - t_0 = 2C_{load} V_{T,n} / [k_n (V_{OH} - V_{T,n})^2]$

CMOS Dynamic Analysis Delay-Time Calculation (3/4)

• Linear Region

$$i_{D,n} = (k_n/2) [2(V_{in} - V_{T,n}) V_{out} - V_{out}^2]$$

= $(k_n/2) [2(V_{OH} - V_{T,n}) V_{out} - V_{out}^2]$

» Plug $i_{D,n}$ into $C_{load} dV_{out}/dt = -i_{D,n}$, and integrate both sides, we have

$$\boldsymbol{t}_{I} - \boldsymbol{t}_{I}' = \frac{C_{load}}{\kappa_{n}(V_{DD} - V_{T,n})} \ln\left(\frac{4(V_{DD} - V_{T,n})}{V_{50\%}}\right)$$

• Finally, since $V_{OH} = V_{DD}$ and $V_{OL} = 0$, we have

CMOS Dynamic Analysis Delay-Time Calculation (4/4)

• τ_{PLH} : NMOS is off. The equivalent circuit during low-to-high output transition is V_{DD}

$$\tau_{PLH} = \frac{C_{load}}{\kappa_{p}(V_{DD} - |V_{T,p}|)} \left[\frac{2|V_{T,p}|}{V_{DD} - |V_{T,p}|} + \ln\left(\frac{4(V_{DD} - |V_{T,p}|)}{V_{DD}} - 1\right) \right]$$

CMOS Inverter Design

- Design for Performance
 - Keep capacitance small
 - Increase transistor size
 - » Watch out for self-loading!
 - Increase *V*_{DD} (????)

CMOS Inverter Design Delay as a Function of *VDD*

• V_{DD} increases $\rightarrow \tau_{PHL}/\tau_{PLH}$ decreases. However, the power consumption also increases.

CMOS Inverter Design Device Sizing (1/5)

CMOS Digital Integrated Circuits

CMOS Inverter Design Device Sizing (2/5)

NMOS/PMOS Ratio

CMOS Digital Integrated Circuits

CMOS Inverter Design Device Sizing (3/5)

Self-Loading Effect

$$C_{load} = \frac{C_{gd,n}(W_n) + C_{gd,p}(W_p) + C_{db,n}(W_n) + C_{db,p}(W_p) + C_{int} + C_g}{= f(W_n, W_p)}$$

- Using the junction capacitance expressions in Chapter 3, we have $C_{db,n} = (W_n D_{drain} + x_j D_{drain}) C_{j0,n} K_{eq,n} + (W_n + 2D_{drain}) C_{jsw,n} K_{eq,n}$ $C_{dp,n} = (W_p D_{drain} + x_j D_{drain}) C_{j0,p} K_{eq,p} + (W_p + 2D_{drain}) C_{jsw,p} K_{eq,p}$
- Therefore, C_{load} can be rewritten as

$$C_{load} = \alpha_0 + \alpha_n W_n + \alpha_p W_p$$

where

$$\alpha_0 = D_{drain}(2C_{jsw,n}K_{eq,n} + 2C_{jsw,p}K_{eq,p} + x_jC_{j0,n}K_{eq,n} + x_jC_{j0,p}K_{eq,p}) + C_{int} + C_g$$

$$\alpha_n = K_{eq,n}(C_{j0,n}D_{drain} + C_{jsw,n})$$

$$\alpha_p = K_{eq,p}(C_{j0,p}D_{drain} + C_{jsw,p})$$

CMOS Inverter Design Device Sizing (4/5)

• Therefore, τ_{PHL} and τ_{PLH} are

$$\tau_{PHL} = \left(\frac{\alpha_0 + \alpha_n W_n + \alpha_p W_p}{W_n}\right) \times \left(\frac{L_n}{\mu_n C_{ox} (V_{DD} - V_{T,n})}\right) \times \left[\frac{2V_{T,n}}{V_{DD} - V_{T,n}} + \ln\left(\frac{4(V_{DD} - V_{T,n})}{V_{DD}} - 1\right)\right]$$

$$\tau_{PLH} = \left(\frac{\alpha_0 + \alpha_n W_n + \alpha_p W_p}{W_p}\right) \times \left(\frac{L_p}{\mu_n C_{ox} (V_{DD} - |V_{T,p}|)}\right) \times \left[\frac{2|V_{T,p}|}{V_{DD} - |V_{T,p}|} + \ln\left(\frac{4(V_{DD} - |V_{T,p}|)}{V_{DD}} - 1\right)\right]$$

• The ratio between the channel widths W_n and W_p is usually dictated by other design constraints such as noise margins and the logic inversion threshold. Let's this transistor *aspect ratio* be defined as $R \equiv W_p/W_n$. Then, the propagation delay can be represented as

$$\tau_{PHL} = \Gamma_n \left(\frac{\alpha_0 + (\alpha_n + R\alpha_p)W_n}{W_n} \right)$$
$$\tau_{PLH} = \Gamma_p \left(\frac{\alpha_0 + (\frac{\alpha_n}{R} + \alpha_p)W_p}{W_p} \right)$$

CMOS Inverter Design Device Sizing (5/5)

• As we continue increase the values of W_n and W_p , the propagation delay will asymptotically approach a limit value for lager W_n and W_p ,

$$\mathcal{T}_{PHL}^{limit} = \Gamma_n(\alpha_n + R\alpha_p)$$

$$\mathcal{T}_{PLH}^{limit} = \Gamma_p \left(\frac{\alpha_n}{R} + \alpha_p\right)$$

• The propagation delay times cannot be reduced beyond the above limits, and the limit is *independent* of the extrinsic capacitances.

Propagation delay increases since both PMOS and NMOS are on during the charge-up and chargedown events.

CMOS Inverter Design Impact of Channel Velocity Saturation

• The drain current is *linearly dependent on* V_{GS}

$$I_{sat} = \kappa W_n \left(V_{GS} - V_T \right)$$

Propagation delay only has a weak dependence on the supply voltage V_{DD}

$$\tau_{PHL} \approx \frac{C_{load}V_{50\%}}{I_{sat}} = \frac{C_{load}\left(V_{DD}/2\right)}{\kappa W_n\left(V_{DD}-V_T\right)}$$

CMOS Dynamic Analysis Dynamic Power Dissipation (1/2)

• The dynamic power dissipation can be derived as follows.

$$P_{dyn,avg} = V_{DD} I_{DD,avg}$$

• With $I_{DD,avg}$ taken over one clock period T. The capacitance current which equals the current from the power supply (assuming $I_{Dn} = 0$ during charging) is

$$I_D = C_{load} \frac{dV_{out}}{dt}$$

• Rearranging and integrating over one clock period *T*

$$\int_0^T I_D dt = \int_0^{V_{DD}} C_{load} \, dV_{out}$$

• Gives

$$I_{DD,avg} T = C_{load} V_{DD}$$

CMOS Dynamic Analysis Dynamic Power Dissipation (2/2)

• Solving for *I_{DD,avg}* and substituting in *P_{avg}*:

$$P_{avg} = \frac{1}{T} C_{load} V_{DD}^2 = C_{load} V_{DD}^2 f$$

- It should be noted here the our simple C_{load} may underestimate the power dissipated.
- In terms of SPICE simulation, the authors' offer a circuit called power meter.

