CMOS Digital Integrated Circuits

Chapter6: Interconnect Analysis

1 CMOS Digital Integrated Circuits

Interconnect Analysis The Wire

Schematics Physical

Interconnect Analysis Wire Models

All-inclusive model Capacitance-only

3 CMOS Digital Integrated Circuits

O

O

Interconnect Analysis Impact of Interconnect Parasitics

Interconnect parasitics $\overline{?}$

- Reduce reliability
- Affect performance and power consumption

Classes of parasitics \overline{R}

- Capacitive
- Resistive
- Inductive

Interconnect Analysis Capacitance (*1/8***)**

Capacitance of Wire Interconnect $\overline{?}$

Interconnect Analysis Capacitance (*2/8***)**

The Parallel Plate Capacitance $\overline{?}$

$$
C_{pp} = \frac{\mathcal{E}_{di}}{h}wl
$$

Interconnect Analysis Capacitance (*3/8***)**

Permittivity $\overline{?}$

Interconnect Analysis Capacitance (*4/8***)**

8 CMOS Digital Integrated Circuits

Interconnect Analysis Capacitance (*5/8***)**

(from [Bakoglu89])

Interconnect Analysis Capacitance (*6/8***)**

Interwire Capacitance $\overline{?}$

Interconnect Analysis Capacitance (*7/8***)**

Impact of Interwire Capacitance $\overline{?}$

11 CMOS Digital Integrated Circuits

Interconnect Analysis Capacitance (*8/8***)**

Wire Capacitances (0.25μm CMOS) $\overline{?}$

Interconnect Analysis Impact of Interconnect Capacitance

Influence of Interconnect Capacitance \overline{P}

- The wire delay is proportional to the capacitance charged.
- More capacitance means more dynamic power.
- **Coupling capacitance**
	- » Is an increasing source of noise.
	- » Makes delay estimation hard.

How to Reduce Interconnect Capacitance \overline{P}

- Use low *k* dielectric which reduces permittivity and hence the capacitance.
- Increase the spacing between the wires (*Not always possible*).
- Separate the two signals with a power or ground line (acting as shield).
- Use minimum wire width wherever possible. (*Increase resistance!*)

This slide is courtesy of Professor He.

Interconnect Analysis Resistance (*1/3***)**

Wire Resistance $\boxed{?}$

Interconnect Analysis Resistance (*2/3***)**

Interconnect Resistance $\boxed{?}$

15 CMOS Digital Integrated Circuits

Interconnect Analysis Resistance (*3/3***)**

Sheet resistance \overline{R}

Interconnect Analysis Impact of Interconnect Resistance

Influence of Interconnect Resistance \overline{R}

- The wire delay is proportional to the wire resistance.
- **IR Drop Along the Wire**
	- \rightarrow Proportional to the resistance \rightarrow The noise margin is reduced.
	- » A significant problem in the power lines where current density is high.
- Contact resistance makes them vulnerable to electromigration.

How to Reduce Interconnect Resistance \overline{R}

- Use materials with low resistivity (Cu).
- Reduce wire length (*Not always possible*).
- Increase width (*Increase area and capacitance!*).
- Increase height (*Increase fringe capacitance!*).
- Provide bigger contacts: Use less vias.
- Use metal instead of polysilicon even for short distance routing.
- Use silicide coating to reduce polysilicon resistance.

This slide is courtesy of Professor He.

Interconnect Analysis Dealing with Resistance

- Selective technology scaling $\overline{?}$
	- Scale *w* while holding *t* constant
- Use better interconnect materials \overline{R}
	- Lower resistivity materials like copper
		- » As processes shrink, wires get shorter (reducing *C*) but they get closer together (increasing *C*) and narrower (increasing *R*). So *RC* wire delay increases and capacitive coupling gets worse.
		- » Copper has about 40% lower resistivity than aluminum, so copper wires can be thinner (reducing *C*) without increasing *R*
	- Use silicides $(WSi₂, TiSi₂, PtSi₂$ and TaSi)
		- » Conductivity is *8-10* times better than poly alone

Use more interconnect layers and the set of th $\overline{?}$

• reduces the average wire length *l* (but beware of extra contacts)

Interconnect Analysis Analysis of Simple RC Circuit (*1/2***)**

This slide is courtesy of Professor He.

Interconnect Analysis Analysis of Simple RC Circuit (*2/2***)** $(t)=0$ (t) $+V(t) =$ *dt* zero-input response: $RC\frac{d\nu(t)}{dt}$ **(natural response)** t/RC $v_N(t) = Ke$ \overline{dt} \overline{C} *dv(t) v(t)* $=-\frac{1}{\sqrt{2}} \Rightarrow v_N(t) = Ke^{-t}$ 1 $dv(t)$ 1

step-input response:

$$
RC\frac{dv(t)}{dt} + v(t) = v_0u(t)
$$

$$
v_F(t) = v_0u(t) \implies v(t) = Ke^{-t/RC} + v_0u(t)
$$

match initial state:
$$
v(0) = 0 \implies K + v_0 u(t) = 0
$$

\noutput response for step-input: $v(t) = v_0 (1 - e^{-t/RC}) u(t)$

\n
$$
\begin{array}{|l|l|}\n\hline\nv_0 u(t) & \hline\nv_0 (1 - e^{-t/RC}) u(t) & \hline\nv
$$

This slide is courtesy of Professor He.

Interconnect Analysis Step-response of RC wire

25 CMOS Digital Integrated Circuits

Interconnect Analysis Wire Delay Models (*1/3***)**

• **Ideal Wire**

- » Same voltage is present at every segment of the wire at every point in time - at equal potential
- » Only holds for *very short* wires, i.e., interconnects between *very* nearest neighbor gates
- **Lumped RC Model**
	- » Total wire resistance is lumped into a single R and total capacitance into a single C
	- » Good for short wires; pessimistic and inaccurate for long wires

$\tau_{PIH} \approx 0.69$ *RC*

Interconnect Analysis Wire Delay Models (*2/3***)**

This simplest model provides a very rough approximation of the actual transient behavior of the interconnect line.

- **T-Model**
	- » The above simple lumped *RC* model can be significantly improved by the *T-model* as

$$
V_{in} \circ \mathcal{N} \land \mathcal{N} \rightarrow \mathcal{N} \land \mathcal{N} \rightarrow \mathcal{N} \land \mathcal{N} \rightarrow \mathcal{N} \land \mathcal{N}
$$

Interconnect Analysis Wire Delay Models (*3/3***)**

- **Distributed RC Model**
	- » The transient behavior of an interconnect line can be more accurately represented using the *RC ladder network.* The transient behavior of this model approaches that of a *distributed RC line* for very large *N*

Interconnect Analysis Computation of Elmore Delay (*1/5***)**

- Consider a general *RC tree network*
	- » No resistor loop
	- » All of the capacitances are connected between a node and ground
	- » One input node

• **The Elmore Delay**

- » First order time constant (first moment of the impulse response) at node is a sum of **RC** components
- » All the upstream resistances are taken into account
- » Thus each node contributes to the delay
- » Amount of contribution is the product of the capacitance at the node and the amount of resistance from source to the node.

Interconnect Analysis Computation of Elmore Delay (*2/5***)**

• Elmore analyzed the distributed model of the general *RC tree network* and came up with the figures for delay

$$
{\pmb\tau}_{D_i}=\sum_{j=1}^N{\pmb C}_j\,{\pmb R}_{ij}
$$

 $R_{ii} = \sum R_k$ *where* $R_k \in [path(s \rightarrow i) \cap path(s \rightarrow j)]$

Interconnect Analysis Computation of Elmore Delay (*3/5***)**

RC Chain \overline{R}

Elmore delay equation $\tau_{DN} = \sum C_j R_{Nj}$

N

Interconnect Analysis Computation of Elmore Delay (*4/5***)**

 $\tau_{Di} = C_1 R_1 + C_2 (R_1 + R_2) + ... + C_i (R_1 + R_2 + ... + R_i)$

Elmore delay equation

$$
\tau_{DN} = \sum C_j R_{Nj} = \sum_{i=1}^{N} C_j \sum_{j=1}^{j} R_j
$$

Interconnect Analysis Computation of Elmore Delay (*5/5***)**

Assume: Wire modeled by *N* equal-length segments \overline{R}

For large values of *N*: \overline{R}

 $\tau_{DN} = RC/2$

where *R* and *C* are the total lumped resistance and capacitance of the wire

Interconnect Analysis Comments on Elmore Delay Model

Advantages $\overline{2}$

- Simple closed-form expression
	- » Useful for interconnect optimization
- Upper bound of 50% delay [Gupta et al., DAC'95, TCAD'97]
	- » Actual delay asymptotically approaches Elmore delay as input signal rise time increases
- High fidelity [Boese et al., ICCD'93], [Cong-He, TODAES'96]
	- » Good solutions under Elmore delay are good solutions under actual (SPICE) delay

Disadvantages ?

- Low accuracy, especially poor for slope computation
- Inherently cannot handle inductance effect
	- » Elmore delay is first moment of impulse response
	- » Need higher order moments

CMOS Digital Integrated Circuits

Super Buffer Design

1 CMOS Digital Integrated Circuits

Supper Buffer

- Given a large capacitance load *Cload* $\overline{?}$
	- How many stages are needed to minimize the delay?
	- How to size the inverters?

N: number of inverter stages

a: optimal stage scale factor

Supper Buffer (Cont.)

where

- C_g : the input capacitance of the first stage inverter.
- *C_d*: the drain capacitance of the first stage inverter.
- Each inverter is scaled up by a factor of α per stage.
- $C_{load} = \alpha^{N+1}C_g$
- All inverters have identical delay of $\tau_0(C_d + \alpha C_g)/(C_d + C_g)$ which τ_0 is per gate delay for Equiv INV in ring oscillator circuit with load capacitance = $C_g + C_d$

Supper Buffer Design

• Consider *N* stages, each inverter has same delay $\tau_0(C_d + \alpha C_g)/(C_d + C_g)$. Therefore,

$$
\tau_{\text{total}} = (N+1)\tau_0 \left(\frac{C_d + \alpha C_g}{C_d + C_g} \right)
$$

Supper Buffer Design (Cont.)

- *Goal:* Choose α and N to minimize τ_{total} .
	- \rightarrow By $C_{load} = \alpha^{N+1}C_g$, we have $(N+1)$ $\ln \alpha$ ln $(1) = \frac{(C_g)}{2}$ I I \setminus I I \setminus $\bigg($ $+11 =$ *C C* $(N+1) = \frac{N+1}{S}$ *load*
	- \rightarrow Plug the above equation into τ_{total} , we get

$$
\tau_{total} = \frac{\ln\left(\frac{C_{load}}{C_g}\right)}{\ln \alpha} \tau_0 \left(\frac{C_d + \alpha C_g}{C_d + C_g}\right)
$$

 \rightarrow To minimize τ_{total} :

$$
\frac{\partial \tau_{total}}{\partial \alpha} = \tau_0 \ln \left(\frac{C_{load}}{C_s} \right) \left[-\frac{\frac{1}{\alpha}}{\left(\ln \alpha \right)^2} \left(\frac{C_d + \alpha C_s}{C_d + C_s} \right) + \frac{1}{\ln \alpha} \left(\frac{C_s}{C_d + C_s} \right) \right] = 0
$$

$$
\alpha_{opt} \left(\ln \alpha_{opt} - 1 \right) = \frac{C_d}{C_g}
$$

Supper Buffer Design (Con.)

- » For the special case $C_d=0 \Rightarrow \ln(\alpha_{opt})=0 \Rightarrow \alpha_{opt}=e$. However, in reality the drain parasitics cannot be ignored.
- Example: For $C_d=0.5$ fF, $C_g=1$ fF, determine α_{opt} and N for $C_{load}=50$ pF.

 α_{opt} (ln α_{opt} -1) = 0.5 $\Rightarrow \alpha_{opt}$ = 3.18

$$
N + 1 = \frac{\ln(C_{load} / C_s)}{\ln \alpha_{opt}}
$$

\n
$$
N = [\ln(C_{load} / C_s) / \ln \alpha_{opt}] - 1
$$

\n
$$
= [\ln(50 \times 10^{-12} / 1 \times 10^{-14}) / \ln 3.18] - 1
$$

\n= 6.36

The Super Buffer Design which minimizes τ_{total} for $C_{load} = 50$ pF is *N*=7 Equiv INV stages, and α_{opt} = 3.18

CMOS Ring Oscillator Circuit

• Oscillation period **T** is equal to

$$
T = \tau_{PHLI} + \tau_{PLH1} + \tau_{PHL2} + \tau_{PLH2} + \tau_{PHL3} + \tau_{PLL3}
$$

= 2 \tau_p + 2 \tau_p + 2 \tau_p
= 3 \cdot 2 \tau_p = 6 \tau_p

• For arbitrary odd number (*n*) of cascade-connected invertes, we have

$$
f=1/T=1/(2\cdot n\cdot \tau_p)
$$

• Also, we can write

$$
\tau_p = 1/(2 \cdot n \cdot f)
$$

Voltage Waveforms of Ring Oscillator

