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Interconnect Analysis

The Wire

Schematics Physical

transmitters receivers
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Interconnect Analysis

Wire Models

All-inclusive model Capacitance-only
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Interconnect Analysis

Impact of Interconnect Parasitics

Interconnect parasitics

• Reduce reliability

• Affect performance and power consumption

Classes of parasitics

• Capacitive

• Resistive

• Inductive
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Interconnect Analysis

Capacitance (1/8)

Capacitance of Wire Interconnect
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Interconnect Analysis

Capacitance (2/8)

The Parallel Plate Capacitance
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Interconnect Analysis

Capacitance (3/8)

Permittivity
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Interconnect Analysis

Capacitance (4/8)

Fringing Capacitance
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Interconnect Analysis

Capacitance (5/8)

Fringing versus Parallel Plate 

(from [Bakoglu89])
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Interconnect Analysis

Capacitance (6/8)

Interwire Capacitance

fringing
parallel
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Interconnect Analysis

Capacitance (7/8)

Impact of Interwire Capacitance

(from [Bakoglu89])
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Interconnect Analysis

Capacitance (8/8)

Wire Capacitances (0.25μm CMOS)
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Interconnect Analysis

Impact of Interconnect Capacitance

Influence of Interconnect Capacitance

• The wire delay is proportional to the capacitance charged.

• More capacitance means more dynamic power.

• Coupling capacitance

» Is an increasing source of noise.

» Makes delay estimation hard.

How to Reduce Interconnect Capacitance

• Use low k dielectric which reduces permittivity and hence the capacitance.

• Increase the spacing between the wires (Not always possible).

• Separate the two signals with a power or ground line (acting as shield).

• Use minimum wire width wherever possible. (Increase resistance!)

This slide is courtesy of Professor He.
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Interconnect Analysis

Resistance (1/3)

Wire Resistance
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Interconnect Analysis

Resistance (2/3)

Interconnect Resistance
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Interconnect Analysis

Resistance (3/3)

Sheet resistance
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Interconnect Analysis

Impact of Interconnect Resistance

Influence of Interconnect Resistance
• The wire delay is proportional to the wire resistance.

• IR Drop Along the Wire

» Proportional to the resistance  The noise margin is reduced.

» A significant problem in the power lines where current density is
high.

• Contact resistance makes them vulnerable to electromigration.

How to Reduce Interconnect Resistance
• Use materials with low resistivity (Cu).

• Reduce wire length (Not always possible).

• Increase width (Increase area and capacitance!).

• Increase height (Increase fringe capacitance!).

• Provide bigger contacts: Use less vias.

• Use metal instead of polysilicon even for short distance routing.

• Use silicide coating to reduce polysilicon resistance.

This slide is courtesy of Professor He.
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Interconnect Analysis

Dealing with Resistance

Selective technology scaling

• Scale w while holding t constant

Use better interconnect materials

• Lower resistivity materials like copper

» As processes shrink, wires get shorter (reducing C) but they get closer

together (increasing C) and narrower (increasing R).  So RC wire delay

increases and capacitive coupling gets worse.

» Copper has about 40% lower resistivity than aluminum, so copper wires

can be thinner (reducing C) without increasing R

• Use silicides (WSi2, TiSi2, PtSi2 and TaSi)

» Conductivity is 8-10 times better than poly alone

n+

SiO2

polysilicon

silicide

p
Use more interconnect layers

• reduces the average wire length l (but beware of extra contacts)

n+
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Interconnect Analysis

Analysis of Simple RC Circuit (1/2)
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This slide is courtesy of Professor He.
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Interconnect Analysis

Analysis of Simple RC Circuit (2/2)
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This slide is courtesy of Professor He.
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Interconnect Analysis

Step-response of RC wire
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Interconnect Analysis

Wire Delay Models (1/3)
• Ideal Wire

» Same voltage is present at every segment of the wire at every point in time
- at equal potential

» Only holds for very short wires, i.e., interconnects between very nearest
neighbor gates

• Lumped RC Model

» Total wire resistance is lumped into a single R and total capacitance into a
single C

» Good for short wires; pessimistic and inaccurate for long wires

Vout(t) = VDD(1-exp(-t/RC))

V50%(t) = VDD(1-exp(-PLH/RC))

τPLH ≈ 0.69RC

R

C

VoutVin
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Interconnect Analysis

Wire Delay Models (2/3)

This simplest model provides a very rough approximation of the 

actual transient behavior of the interconnect line.

• T-Model

» The above simple lumped RC model can be significantly

improved by the T-model as

R/2

C
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Interconnect Analysis

Wire Delay Models (3/3)
• Distributed RC Model

» The transient behavior of an interconnect line can be more

accurately represented using the RC ladder network. The

transient behavior of this model approaches that of a

distributed RC line for very large N
R/N

C/N

Vin

R/N

C/N

Vout

R/N R/N

C/N C/N

0.5

1.0

VOUT

DISTRIBUTED

LUMPED

1.0RC 2.0RC time

Step response of distributed and lumped RC networks.

A potential step is applied at VIN, and the resulting VOUT

is plotted.  The time delays between commonly used

reference points in the output potential is also tabulated.
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Interconnect Analysis

Computation of Elmore Delay (1/5) 
• Consider a general RC tree network

» No resistor loop

» All of the capacitances are connected between a node and ground

» One input node

• The Elmore Delay

» First order time constant (first moment of the impulse response) at 
node is a sum of RC components

» All the upstream resistances are taken into account

» Thus each node contributes to the delay

» Amount of contribution is the product of the capacitance at the 
node and the amount of resistance from source to the node.
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Interconnect Analysis

Computation of Elmore Delay (2/5)

• Elmore analyzed the distributed model of the general RC tree 

network and came up with the figures for delay

Rij=ΣRk where Rk [path(s→i)path(s→j)]
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Interconnect Analysis

Computation of Elmore Delay (3/5)

RC Chain

C1 C2 Ci-1 Ci CN

R1 R2 Ri-1 Ri
RN

Vin
VN

1 2 i-1 i N

Elmore delay equation     DN =  Cj RNj

N
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Interconnect Analysis

Computation of Elmore Delay (4/5)

D1=C1R1 D2=C1R1 + C2(R1+R2)

Di=C1R1+ C2(R1+R2)+…+Ci(R1+R2+…+Ri)

Elmore delay equation     DN =  Cj RNj =  Cj  Ri

N j

C1 C2 Ci-1 Ci CN

R1 R2 Ri-1 Ri
RN

Vin
VN

1 2 i-1 i N
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Interconnect Analysis

Computation of Elmore Delay (5/5)

Assume: Wire modeled by N equal-length segments

For large values of N:

DN = RC/2

where R and C are the total lumped resistance and capacitance of the 

wire
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Interconnect Analysis

Comments on Elmore Delay Model

Advantages
• Simple closed-form expression

» Useful for interconnect optimization

• Upper bound of 50% delay [Gupta et al., DAC’95, TCAD’97]

» Actual delay asymptotically approaches Elmore delay as input 
signal rise time increases

• High fidelity [Boese et al., ICCD’93],[Cong-He, TODAES’96]

» Good solutions under Elmore delay are good solutions under 
actual (SPICE) delay

Disadvantages
• Low accuracy, especially poor for slope computation

• Inherently cannot handle inductance effect

» Elmore delay is first moment of impulse response

» Need higher order moments
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Super Buffer Design
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Supper Buffer

Given a large capacitance load Cload

• How many stages are needed to minimize the delay?

• How to size the inverters?

Supper Buffer

Cload

1 2 N1

Cg Cd Cg 2CgCd 2Cd NCg NCd Cload

Equiv INV

N: number of inverter stages

: optimal stage scale factor
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Supper Buffer (Cont.)

where

• Cg: the input capacitance of the first stage inverter.

• Cd: the drain capacitance of the first stage inverter.

• Each inverter is scaled up by a factor of  per stage.

• Cload = N+1Cg

• All inverters have identical delay of 0(Cd+Cg)/(Cd+Cg) which 0 is 

per gate delay for Equiv INV in ring oscillator circuit with load 

capacitance = Cg+Cd



CMOS Digital Integrated Circuits4

Supper Buffer Design

• Consider N stages, each inverter has same delay 0(Cd+Cg)/(Cd+Cg).

Therefore,
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Supper Buffer Design (Cont.)

• Goal: Choose  and N to minimize total.

» By Cload = N+1Cg, we have

» Plug the above equation into total, we get

» To minimize total: 
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Supper Buffer Design (Con.)

» For the special case Cd=0  ln(opt)=0  opt = e. However, in 

reality the drain parasitics cannot be ignored.

• Example: For Cd=0.5 fF, Cg=1 fF, determine opt and N for Cload = 50

pF.

opt (ln opt -1) = 0.5  opt = 3.18

The Super Buffer Design which minimizes total for Cload = 50 pF is 

N=7 Equiv INV stages, and opt = 3.18
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CMOS Ring Oscillator Circuit
• Oscillation period T is equal to

T=PHL1+PLH1+PHL2+PLH2+PHL3+PLL3

=2p+2p+2p

=3·2p=6p

• For arbitrary odd number (n) of cascade-connected invertes, we

have

f=1/T=1/(2·n·p)

• Also, we can write

p=1/(2·n·f)

V1

Cload,1 Cload,2 Cload,3

V2 V3

1 2 3
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Voltage Waveforms of Ring Oscillator
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