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 Goals
• Understand the basic MOSFET operation

• Learn the components of the threshold voltages

• Be able to handle body effect

• Be able to calculate drain currents for MOSFET

• Be able to extract basic MOSFET static parameters from I-V 

plots
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MOS Transistor Basics

Two Terminal Structure

Two terminal structure (p-substrate): The MOS capacitor

Important derived parameters. With VG = VB = 0:

• F – Buck Fermi Potential (Substrate)

• S – Surface Potential (Substrate)
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MOS Transistor Basics

Two Terminal Structure (Continued)

• VFB – Flat Band Voltage (applied external voltage to G-B to flatten bands

of substrate – equal to built-in potential difference of MOS – equal to work 

function difference GB between the substrate (channel) and gate.

Operation 

With VG<0, VB=0, Accumulation – Holes accumulate at substrate-oxide 

interface due to attraction of negative bias

With VG>0, but small, VB=0, Depletion – Holes repelled from substrate-

oxide interface due to positive bias leaving negatively charged fixed 

acceptors ions behind. The result is a region below the interface that is 

depleted of mobile carriers.
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MOS Transistor Basics

Two Terminal Structure (Continued)

Depletion region charge density 

Note that this density is per unit of area.

With VG>0 and larger, VB=0, Inversion – A n-type inversion layer forms, a 

condition known as surface inversion. The surface is inverted when the 

density of electrons at the surface equals the density of holes in  the bulk. 

This implies that s has the same magnitude but opposite sign to F. At the 

point depletion depth fixed and the maximum depletion region depth is at 

s = -F. This depth is:
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MOS Transistor Basics

Two Terminal Structure (Continued)

The corresponding depletion charge density (per unit area) at surface 

inversion is 

The inversion phenomena is the mechanism that forms the n-channel. The 

depletion depth and the depletion region charge are critical in determining 

properties of MOSFET. 
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MOS Transistor Basics

Four Terminal Structure

p-Substrate

The MOS n-channel transistor structure: 

L

G(ate)
D(rain)

n+

B(ody, Bulk or Substrate)

S(ource)

n+

p



CMOS Digital Integrated Circuits8

MOS Transistor Basics

Four Terminal Structure (Continued)

Symbols: n-channel - p-substrate; p-channel – n-substrate

N-channel (for P-channel, reverse arrow or add bubbles)

P-channel

Enhancement mode: no conducting channel exists at VGS = 0

Depletion mode: a conducting channel exists at VGS = 0
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MOS Transistor Basics

Four Terminal Structure (Continued)

 Source and drain identification 
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Threshold Voltage Components

 Consider the prior 3-D drawing: Set VS=0, VDS=0, and VSB=0.

• Increase VGS until the channel is inverted. Then a conducting channel is 

formed and the depletion region thickness (depth) is maximum as is the 

surface potential. 

• The value of VGS needed to cause surface inversion (channel creation) is 

the threshold voltage VT0. The 0 refers to VSB=0. 

• VGS< VT0: no channel implies no current flow possible. With VGS> VT0, 

existence the channel implies possible current flow.

Threshold Voltage Components

1) GC work function difference between gate and channel 

material which is the built-in voltage that must be offset by 

voltage applied to flatten the bands at the surface.

2) Apply voltage to achieve surface inversion -2F
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Threshold Voltage Components (Cont.)

3) Additional voltage must be applied to offset the depletion region 

charge due to the acceptor ions. At inversion, this charge with VSB=0

is QB0= Q0.

For VSB non-zero,

The voltage required to offset the depletion region charge is defined 

by –QB/Cox where Cox = εox/tox with tox, the oxide thickness, and Cox, 

the gate oxide capacitance per unit area.

4) The final component is a fixed positive charge density that appears at 

the interface between the oxide and the substrate, Qox. The voltage to 

offset this charge is:
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Threshold Voltage Components (Cont.)

 These components together give:

 For VSB=0, VT0 has QB replaced by QB0. This gives a relationship 
between VT and VT0 which is:

 Thus the actual threshold voltage VT differs from VT0 by the term 
given. Going back to the definition of QB, this term is equal to:

 In which γ is the substrate-bias (or body effect) coefficient.
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Threshold Voltage Components (Cont.)

 The final expression for VT0 and VT are

and

• The threshold voltage depends on the source-to-bulk voltage which 

is clearly separated out. The component is referred to as body 

effect. If the source to body voltage VSB is non-zero, the corrective 

term must be applied to VT0.
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Threshold Voltage Components (Cont.)

Those parameters in the VT equation are signed. The 

following table gives their signs for nMOS and pMOS 

transistor.

 For real designs, the threshold voltage, due to variation in 

oxide thickness, impurity concentrations, etc., VT0 and γ

should be measured from the actual process.

Parameter nMOS pMOS

F  

QB, QB0  

γ  

VSB  
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Threshold Voltage

Adjustment by Ion Implant 

 Depletion mode nMOS

A channel implanted with donors can be present for VGS<0. 

For this nMOS VT<0. Its symbols are as follows:
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MOSFET Modes of Operation

Cutoff

 Assume n-channel MOSFET and VSB=0

Cutoff Mode: 0≤VGS<VT0

• The channel region is depleted and no current can flow

gate

drainsource

IDS=0
VGS < VT0
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MOSFET Modes of Operation

Linear

Linear (Active, Triode) Mode: VGS≥VT0, 0≤VDS≤VD(SAT)

• Inversion has occurred; a channel has formed

• For VDS>0, a current proportional to VDS flows from source to 

drain

• Behaves like a voltage-controlled resistance

gate

drainsource
current

IDS

VDS < VGS – VT0
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MOSFET Modes of Operation

Pinch-Off

Pinch-Off Point (Edge of Saturation) : VGS≥VT0, VDS=VD(SAT)

• Channel just reaches the drain

• Channel is reduced to zero inversion charge at the drain

• Drifting of electrons through the depletion region between the channel 

and drain has begun

gate

drainsource
current

IDS

VDS = VGS – VT0
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MOSFET Modes of Operation

Saturation

Saturation Mode: VGS≥VT0, VDS≥VD(SAT)

• Channel ends before reaching the drain

• Electrons drift, usually reaching the drift velocity limit, across the 

depletion region to the drain

• Drift due to high E-field produced by the potential VDS-VD(SAT)

between the drain and the end of the channel 

gate

drainsource

IDS

VDS > VGS – VT0
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MOSFET I-V Characteristics

Gradual Channel Approximation

 Preliminaries

• Gradual channel approximation will reduce the analysis to a one-

dimensional current flow problem.

• Assumption

» VSB=0

» VT0 is constant along the entire channel 

» Ey dominates Ex  Only need to consider the current-flow in 

the y-dimension

 Cutoff Mode: 0≤VGS<VT0

• IDS(cutoff) =0
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Gradual Channel Approximation

Linear Mode

 Linear Mode: VGS≥VT0, 0≤VDS≤VD(SAT) => VDS – VGS <VT0

• The channel reaches to the drain.

• Vc(y): Channel voltage with respect to the source at position y

• Boundary Conditions: Vc(y=0)=Vs=0; Vc(y=L)=VDS

Drain
n+

Source
n+

Substrate (p-Si)

(p+) (p+)

Oxide

x
Channel

Depletion region

VB=0

VS=0
VGS>VT0

VDS<VDSAT

y=0
y

y=L
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Gradual Channel Approximation

Linear Mode (Cont.)

• QI (y): the mobile electron charge density in the surface inversion layer.

QI (y)=-Cox·[VGS-VC(y)-VT0]

• The differential resistance (dR) of the channels can represented in terms 

of the mobile electron charge (QI (y)) in the surface inversion layer, and 

the electron surface mobility μn (about ½ of the bulk electron mobility)

dy

Source end

Drain end

xl

Channel
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Gradual Channel Approximation

Linear Mode (Cont.)

• The differential resistance (dR) of the channels can represented in 

terms of the mobile electron charge (QI (y)) in the surface 

inversion layer, and the electron surface mobility μn (about ½ of 

the bulk electron mobility)
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Gradual Channel Approximation

Linear Mode (Cont.)

• Integrating the Ohm’s Law equality between the differential voltage 

in the channel and the differential resistance times the drain current,
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Gradual Channel Approximation

Linear Mode (Cont.)

• Finally, the drain current is

• To simplify the equation, we define

κ’: the process transconductance parameter

κ: the device transconductance parameter
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Gradual Channel Approximation

Pinch-Off, Saturation

Pinch-Off Point (Edge of Saturation) : VGS≥VT0, VDS=VD(SAT)

• Channel just reaches the drain but is reduced to zero inversion charge 

at the drain

• Electrons drift through the depletion region between the channel and 

drain

Saturation Mode: VGS≥VT0, VDS≥VGS - VT0

• In pinch-off voltage from the channel end to the source is VD(SAT)=VGS 

- VT0. Substituting this for VDS in the equation for ID gives:
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MOSFET I-V Characteristics

I-V Plots, Channel Length Modulation

• Saturation equation yields curves independent of VDS. Not sure! So 
we consider the effect of channel length modulation.

Quadratic
Relationship
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VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT
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MOSFET I-V Characteristics

Channel Length Modulation

Channel Length Modulation

• With pinch-off the channel at the point y such that Vc(y)=VGS - VT0, The 

effective channel length is equal to L’ = L – ΔL

ΔL is the length of channel segment over which QI=0. 

• Place L’ in the ID(SAT) equation:
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MOSFET I-V Characteristics

Channel Length Modulation

ΔL increases with an increase in VDS. We can use

λ: channel length modulation coefficient

ID(SAT) can be rewritten as 

• The above form produces a discontinuity of current at VDS=VGS-VT0. 

We can include the term in ID(lin) with little error since λ is typically 

less than 0.1. We will usually ignore λ in manual calculations.
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MOSFET I-V Characteristics

Substrate Bias Effect

• So far, VSB=0 and thus VT0 used in the equations.

• Clearly not always true – must consider body effect

• Two MOSFETs in series:

VSB(M1) = VDS(M2) ≠ 0. Thus, VT0 in the M1 equation is replaced by 

VT = VT(VSB) as developed in the threshold voltage section.
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MOSFET I-V Characteristics

Substrate Bias Effect (Cont.)

The general form of ID can be written as

ID = f (VGS,VDS,VSB)

which due to the body effect term is non-linear and more difficult to 

handle in manual calculations
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MOSFET I-V Characteristics

Summary of Analytical Equations
• The voltage directions and relationships for the three modes of 

pMOS are in contrast to those of nMOS.

nMOS

Mode ID Voltage Range

Cut-off 0 VGS<VT

Linear (μnCox/2)(W/L)[2(VGS-VT)VDS-VDS
2] VGSVT，VDS< VGS -VT

Saturation (μnCox/2)(W/L)(VGS-VT)2(1+λVDS) VGS  VT，VDS  VGS -VT

pMOS

Cut-off 0 VGS>VT

Linear (μnCox/2)(W/L)[2(VGS-VT)VDS-VDS
2] VGS VT，VDS> VGS -VT

Saturation (μnCox/2)(W/L)(VGS-VT)2(1+λVDS) VGS  VT，VDS VGS -VT
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More Parameter Extraction

• Need numerical values for parameters in VT and ID equations

• Parameters can be derived from the measured I-V characteristics 

for a given MOSFET process.

• To illustrate, seeking Level 1 Spice model parameters VT0, μn(κn), 

γ, and λ

• To obtain VT0, μn(κn), and γ, we plot (ID)1/2 vs VDS = VGS with VSB

set to zero and one positive value. MOSFET is in saturation mode 

(ignoring channel length modulation):

• Note that this (ideally!) gives a linear relationship that will allow 

us to determine κn and VTO. 

» The slope of the lines is           

» The intercept of the VSB = 0 line with the VGS axis is VT0
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More Parameter Extraction (Cont.)

• Using the intercept of the line for VSB nonzero, the body effect 

coefficient γ can be found

F can be obtained from the substrate acceptor density NA and 

other known physical constants 
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More Parameter Extraction (Cont.)

• The I-V curve for VGS = VT0+1 can be used to obtain λ.

ID(sat) = κn/2．(VGS-VT0)
2．(1+ λ VDS)= κn/2．(1+ λ VDS)

Therefore

λ =2S/κn

where S is the slope of this curve in the saturation region.

ID VDS

VGS

VDS2VDS1

VDS

ID1

VGS = VT0 + 1
ID2

ID
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More Parameter Extraction (Cont.)

• The Level 1 model is valid only for long devices and is obsolete 

for most of today’s technologies for detail simulation. 

• Parameter extraction for more advanced models such as Level 3 or 

4 is usually performed by an automatic parameter extraction 

system that optimizes the combined parameter values for a best 

non-linear fit to the I-V curves. 

• Due to this optimization, derivation of Level 1 model by simply 

deleting selected parameters from a Level 3 model is invalided. 

Instead, use the Level 3 model to produce I-V curves and linear 

curve fitting to extract Level 1 parameters.
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Summary

 Basic MOSFET operation

 Components of the threshold voltage

 Threshold voltage and body effect

 Drain currents

 MOSFET static parameter extraction from I-V plots

 All of the above for both nMOS and pMOS.


