CMOS Digital Integrated Circuits

Lec 3 MOS Transistor I

1

CMOS Digital Integrated Circuits

Goals

- Understand the basic MOSFET operation
- Learn the components of the threshold voltages
- Be able to handle body effect
- Be able to calculate drain currents for MOSFET
- Be able to extract basic MOSFET static parameters from I-V plots

MOS Transistor Basics Two Terminal Structure

Two terminal structure (p-substrate): The MOS capacitor

• Important derived parameters. With $V_G = V_B = 0$:

- ϕ_F Buck Fermi Potential (Substrate)
- ϕ_S Surface Potential (Substrate)

MOS Transistor Basics Two Terminal Structure (Continued)

• V_{FB} – Flat Band Voltage (applied external voltage to G-B to flatten bands of substrate – equal to built-in potential difference of MOS – equal to work function difference ϕ_{GB} between the substrate (channel) and gate.

Operation

- With $V_G < 0$, $V_B = 0$, Accumulation Holes accumulate at substrate-oxide interface due to attraction of negative bias
- With $V_G > 0$, but small, $V_B = 0$, Depletion Holes repelled from substrateoxide interface due to positive bias leaving negatively charged fixed acceptors ions behind. The result is a region below the interface that is depleted of mobile carriers.
- Depletion region thickness

$$\boldsymbol{\chi}_{d} = \sqrt{\frac{2\varepsilon_{S_{i}}|\boldsymbol{\phi}_{s}-\boldsymbol{\phi}_{F}|}{qN_{A}}}$$

MOS Transistor Basics Two Terminal Structure (Continued)

Depletion region charge density

$$Q = -q N_A x_d = -\sqrt{2q N_A \varepsilon_{S_i} |\phi_s - \phi_F|}$$

Note that this density is per unit of area.

With $V_G > 0$ and larger, $V_B = 0$, Inversion – A n-type inversion layer forms, a condition known as surface inversion. The surface is inverted when the density of electrons at the surface equals the density of holes in the bulk. This implies that ϕ_s has the same magnitude but opposite sign to ϕ_{F_1} . At the point depletion depth fixed and the maximum depletion region depth is at $\phi_s = -\phi_{F_1}$. This depth is:

$$\boldsymbol{\chi}_{dm} = \sqrt{\frac{2\varepsilon_{S_i} |2\phi_F|}{q N_A}}$$

MOS Transistor Basics Two Terminal Structure (Continued)

The corresponding **depletion charge density** (per unit area) **at surface inversion** is

$$Q_0 = -q N_A x_d = -\sqrt{2q N_A \varepsilon_{S_i}} \left| -2\phi_F \right|$$

The inversion phenomena is the mechanism that forms the n-channel. The depletion depth and the depletion region charge are critical in determining properties of MOSFET.

MOS Transistor Basics Four Terminal Structure

- **p-Substrate**
- The MOS n-channel transistor structure:

MOS Transistor Basics Four Terminal Structure (Continued)

Symbols: n-channel - p-substrate; p-channel – n-substrate

P-channel

- Enhancement mode: no conducting channel exists at $V_{GS} = 0$
- **Depletion mode:** a conducting channel exists at $V_{GS} = 0$

MOS Transistor Basics Four Terminal Structure (Continued)

Source and drain identification

Threshold Voltage Components

- **C**onsider the prior 3-D drawing: Set $V_S = 0$, $V_{DS} = 0$, and $V_{SB} = 0$.
 - Increase V_{GS} until the channel is inverted. Then a conducting channel is formed and the depletion region thickness (depth) is maximum as is the surface potential.
 - The value of V_{GS} needed to cause surface inversion (channel creation) is the *threshold voltage* V_{T0} . The 0 refers to $V_{SB}=0$.
 - $V_{GS} < V_{T0}$: no channel implies no current flow possible. With $V_{GS} > V_{T0}$, existence the channel implies possible current flow.

Threshold Voltage Components

- 1) Φ_{GC} work function difference between gate and channel material which is the built-in voltage that must be offset by voltage applied to flatten the bands at the surface.
- 2) Apply voltage to achieve surface inversion $-2\phi_F$

3) Additional voltage must be applied to offset the depletion region charge due to the acceptor ions. At inversion, this charge with $V_{SB}=0$ is $Q_{B0}=Q_0$. For V_{SB} non-zero,

$$Q = -\sqrt{2q N_A \varepsilon_{S_i}} \left| -2\phi_F + V_{SB} \right|$$

The voltage required to offset the depletion region charge is defined by $-Q_B/C_{ox}$ where $C_{ox} = \varepsilon_{ox}/t_{ox}$ with t_{ox} , the oxide thickness, and C_{ox} , the gate oxide capacitance per unit area.

4) The final component is a fixed positive charge density that appears at the interface between the oxide and the substrate, Q_{ox} . The voltage to offset this charge is:

$$\frac{-Q_{ox}}{C_{ox}}$$

These components together give:

$$V_T = \Phi_{GC} - 2\phi_F - \frac{Q_B}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

For $V_{SB}=0$, V_{T0} has Q_B replaced by Q_{B0} . This gives a relationship between V_T and V_{T0} which is:

$$V_T = V_{T0} - \frac{Q_B - Q_{B0}}{C_{ox}}$$

Thus the actual threshold voltage V_T differs from V_{T0} by the term given. Going back to the definition of Q_B , this term is equal to:

$$+\gamma\left(\sqrt{\left|-2\phi_{F}+V_{SB}\right|}-\sqrt{\left|2\phi_{F}\right|}\right)$$

In which γ is the substrate-bias (or body effect) coefficient.

$$\gamma = \frac{\sqrt{2q N_A \mathcal{E}_{S_i}}}{C_{ox}}$$

• The final expression for V_{T0} and V_T are

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

and

$$V_{T} = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_{F} + V_{SB} \right|} - \sqrt{\left| 2\phi_{F} \right|} \right)$$

• The threshold voltage depends on the source-to-bulk voltage which is clearly separated out. The component is referred to as *body effect*. If the source to body voltage V_{SB} is non-zero, the corrective term must be applied to V_{T0} .

Those parameters in the V_T equation are signed. The following table gives their signs for nMOS and pMOS transistor.

Parameter	nMOS	pMOS
ϕ_{F}	_	+
<i>Q</i> _{<i>B</i>} , <i>Q</i> _{<i>B</i>0}	_	+
y	+	_
V _{SB}	+	_

• For real designs, the threshold voltage, due to variation in oxide thickness, impurity concentrations, etc., V_{T0} and γ should be measured from the actual process.

Threshold Voltage Adjustment by Ion Implant

Depletion mode nMOS

A channel implanted with donors can be present for $V_{GS} < 0$. For this nMOS $V_T < 0$. Its symbols are as follows:

MOSFET Modes of Operation Cutoff

Assume n-channel MOSFET and $V_{SB}=0$

Cutoff Mode: $0 \le V_{GS} < V_{T0}$

• The channel region is depleted and no current can flow

 $V_{GS} < V_{T0}$

MOSFET Modes of Operation Linear

Linear (Active, Triode) Mode: $V_{GS} \ge V_{T0}$, $\theta \le V_{DS} \le V_{D(SAT)}$

- Inversion has occurred; a channel has formed
- For $V_{DS} > 0$, a current proportional to V_{DS} flows from source to drain
- Behaves like a voltage-controlled resistance

 $V_{DS} < V_{GS} - V_{T0}$

MOSFET Modes of Operation Pinch-Off

Pinch-Off Point (Edge of Saturation) : $V_{GS} \ge V_{T0}$, $V_{DS} = V_{D(SAT)}$

- Channel just reaches the drain
- Channel is reduced to zero inversion charge at the drain
- Drifting of electrons through the depletion region between the channel and drain has begun

$$V_{DS} = V_{GS} - V_{T0}$$

MOSFET Modes of Operation Saturation

Saturation Mode: $V_{GS} \ge V_{T0}, V_{DS} \ge V_{D(SAT)}$

- Channel ends before reaching the drain
- Electrons drift, usually reaching the drift velocity limit, across the depletion region to the drain
- Drift due to high E-field produced by the potential V_{DS} - $V_{D(SAT)}$ between the drain and the end of the channel

 $V_{DS} > V_{GS} - V_{T0}$

MOSFET I-V Characteristics Gradual Channel Approximation

Preliminaries

- Gradual channel approximation will reduce the analysis to a onedimensional current flow problem.
- Assumption
 - » V_{SB}=0
 - » V_{T0} is constant along the entire channel
 - » E_y dominates $E_x \Rightarrow$ Only need to consider the current-flow in the y-dimension
- **Cutoff Mode:** $\theta \leq V_{GS} < V_{T\theta}$
 - $I_{DS(cutoff)} = 0$

• Linear Mode: $V_{GS} \ge V_{T\theta}$, $\theta \le V_{DS} \le V_{D(SAT)} => V_{DS} - V_{GS} < V_{T\theta}$

- The channel reaches to the drain.
- $V_c(y)$: Channel voltage with respect to the source at position y
- Boundary Conditions: $V_c(y=0)=V_s=0$; $V_c(y=L)=V_{DS}$

- $Q_I(y)$: the mobile electron charge density in the surface inversion layer. $Q_I(y) = -C_{ox} \cdot [V_{GS} - V_C(y) - V_{T0}]$
- The differential resistance (dR) of the channels can represented in terms of the mobile electron charge $(Q_I(y))$ in the surface inversion layer, and the **electron surface mobility** μ_n (about $\frac{1}{2}$ of the bulk electron mobility)

22

The differential resistance (*dR*) of the channels can represented in terms of the mobile electron charge (*Q_I*(*y*)) in the surface inversion layer, and the electron surface mobility μ_n (about ½ of the bulk electron mobility)

² 23

• Integrating the Ohm's Law equality between the differential voltage in the channel and the differential resistance times the drain current,

24

CMOS Digital Integrated Circuits

• Finally, the drain current is

$$I_{D(lin)} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \Big[2(V_{GS} - V_{T0}) V_{DS} - V_{DS}^2 \Big]$$

• To simplify the equation, we define

$$\kappa = \kappa' \frac{W}{L} = \mu_n C_{ox} \frac{W}{L}$$

k': the *process transconductance parameterk*: the *device transconductance parameter*

Gradual Channel Approximation Pinch-Off, Saturation

Pinch-Off Point (Edge of Saturation) : $V_{GS} \ge V_{T0}$, $V_{DS} = V_{D(SAT)}$

- Channel just reaches the drain but is reduced to zero inversion charge at the drain
- Electrons drift through the depletion region between the channel and drain

Saturation Mode: $V_{GS} \ge V_{T0}$, $V_{DS} \ge V_{GS}$ - V_{T0}

- In pinch-off voltage from the channel end to the source is $V_{D(SAT)}=V_{GS}$
 - V_{T0} . Substituting this for V_{DS} in the equation for I_D gives:

$$I_{D(SAT)} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T0})^2$$

MOSFET I-V Characteristics I-V Plots, Channel Length Modulation

• Saturation equation yields curves independent of V_{DS} . Not sure! So we consider the effect of channel length modulation.

CMOS Digital Integrated Circuits

MOSFET I-V Characteristics Channel Length Modulation

Channel Length Modulation

• With pinch-off the channel at the point y such that $V_c(y)=V_{GS}-V_{T0}$, The effective channel length is equal to $L'=L-\Delta L$

 ΔL is the length of channel segment over which $Q_I = 0$.

• Place L' in the $I_{D(SAT)}$ equation:

MOSFET I-V Characteristics Channel Length Modulation

 ΔL increases with an increase in V_{DS} . We can use

$$\frac{1}{L'} = \frac{1}{L - \Delta L} = \frac{1}{L} \frac{1}{\frac{L - \Delta L}{L}} = \frac{1}{L} \frac{1}{1 - \frac{\Delta L}{L}} = \frac{1}{L} \frac{1}{1 - \lambda V_{DS}} = \frac{1}{L} (1 + \lambda V_{DS})$$

 λ : channel length modulation coefficient $I_{D(SAT)}$ can be rewritten as

$$I_{D(SAT)} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T0})^2 (1 + \lambda V_{DS})$$

• The above form produces a discontinuity of current at $V_{DS}=V_{GS}-V_{T0}$. We can include the term in $I_{D(lin)}$ with little error since λ is typically less than 0.1. We will usually ignore λ in manual calculations.

MOSFET I-V Characteristics Substrate Bias Effect

- So far, $V_{SB}=0$ and thus V_{T0} used in the equations.
- Clearly not always true must consider body effect
- Two MOSFETs in series:

 $V_{SB(M1)} = V_{DS(M2)} \neq 0$. Thus, V_{T0} in the *M1* equation is replaced by $V_T = V_{T(V_{SB})}$ as developed in the threshold voltage section.

MOSFET I-V Characteristics Substrate Bias Effect (Cont.)

The general form of I_D can be written as

 $I_D = f(V_{GS}, V_{DS}, V_{SB})$

which due to the body effect term is non-linear and more difficult to handle in manual calculations

MOSFET I-V Characteristics Summary of Analytical Equations

• The voltage directions and relationships for the three modes of pMOS are in contrast to those of nMOS.

nMOS			
Mode	I _D	Voltage Range	
Cut-off	0	$V_{GS} < V_T$	
Linear	$(\mu_n C_{ox}/2)(W/L)[2(V_{GS}-V_T)V_{DS}-V_{DS}^2]$	$V_{GS} \ge V_T$, $V_{DS} < V_{GS} - V_T$	
Saturation	$(\mu_n C_{ox}/2)(W/L)(V_{GS}-V_T)^2(1+\lambda V_{DS})$	$V_{GS} \ge V_T, V_{DS} \ge V_{GS} - V_T$	
pMOS			
Cut-off	0	$V_{GS} > V_T$	
Linear	$(\mu_n C_{ox}/2)(W/L)[2(V_{GS}-V_T)V_{DS}-V_{DS}^2]$	$V_{GS} \leq V_T, V_{DS} > V_{GS} - V_T$	
Saturation	$(\mu_n C_{ox}/2) (W/L) (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$V_{GS} \leq V_T, V_{DS} \leq V_{GS} - V_T$	

CMOS Digital Integrated Circuits

More Parameter Extraction

- Need numerical values for parameters in V_T and I_D equations
- Parameters can be derived from the measured *I-V* characteristics for a given MOSFET process.
- To illustrate, seeking Level 1 Spice model parameters V_{T0} , $\mu_n(\kappa_n)$, γ , and λ
- To obtain V_{T0} , $\mu_n(\kappa_n)$, and γ , we plot $(I_D)^{1/2} vs V_{DS} = V_{GS}$ with V_{SB} set to zero and one positive value. MOSFET is in saturation mode (ignoring channel length modulation):

$$\sqrt{I_D} = \sqrt{\frac{\kappa_n}{2}} (V_{GS} - V_{T0})$$

- Note that this (ideally!) gives a linear relationship that will allow us to determine κ_n and V_{TO} .
 - » The slope of the lines is $\sqrt{\frac{\kappa_n}{2}}$
 - » The intercept of the $V_{SB} = 0$ line with the V_{GS} axis is V_{T0}

More Parameter Extraction (Cont.)

Using the intercept of the line for V_{SB} nonzero, the *body effect* ٠ *coefficient* y can be found

$$\gamma = \frac{V_T (V_{SB}) - V_{T0}}{\sqrt{|2\phi_F| + V_{SB}} - \sqrt{|2\phi_F|}}$$

 ϕ_F can be obtained from the substrate acceptor density N_A and other known physical constants

More Parameter Extraction (Cont.)

• The *I*-*V* curve for $V_{GS} = V_{T0} + 1$ can be used to obtain λ .

 $I_D(sat) = \kappa_n/2. \quad (V_{GS}-V_{T0})^2. \quad (1+\lambda V_{DS}) = \kappa_n/2. \quad (1+\lambda V_{DS})$ Therefore

$$\lambda = 2S/\kappa_n$$

35

where S is the slope of this curve in the saturation region.

More Parameter Extraction (Cont.)

- The Level 1 model is valid only for long devices and is obsolete for most of today's technologies for detail simulation.
- Parameter extraction for more advanced models such as Level 3 or 4 is usually performed by an automatic parameter extraction system that optimizes the combined parameter values for a best non-linear fit to the I-V curves.
- Due to this optimization, derivation of Level 1 model by simply deleting selected parameters from a Level 3 model is invalided. Instead, use the Level 3 model to produce I-V curves and linear curve fitting to extract Level 1 parameters.

Summary

- Basic MOSFET operation
- Components of the threshold voltage
- Threshold voltage and body effect
- Drain currents
- MOSFET static parameter extraction from I-V plots
- All of the above for both nMOS and pMOS.

