The McGraw-Hill Companies

CMOS Digital Integrated Circuits

Chapter 1 Introduction

S.M. Kang and Y. Leblebici

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Some History

Shockley, Bardeen, Brattain – Bell Labs		M.
Single-transistor integrated circuit Jack Kilby – Texas Instruments	1958	
Invention of CMOS logic gates Wanlass & Sah – Fairchild Semiconductor	1963	
First microprocessor (Intel 4004) 2,300 MOS transistors, 740 kHz clock frequency	1970	
Very Large Scale Integration	1978	

Chips with more than ~20,000 devices

Invention of the transistor (BJT)

1947

More Recently

Ultra Large Scale Integration

System on Chip (SoC)

20 ~ 30 million transistors in 2002

The chip complexity has increased by a factor of 1000 since its first introduction, but the term **VLSI** remained virtually universal to denote digital integrated systems with high complexity.

Some Leading-Edge Examples

Intel Pentium 4 0.13µ process 55 million transistors 2.4GHz clock 145mm²

Evolution of Minimum Feature Size

Moore's Law

© CMOS Digital Integrated Circuits – 3rd Edition

Evolution of Memory Capacity

Shrinking Device Dimensions

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	1 Billion 3 Billion		16 Billion
DRAM CAPACITY	2 Gbits 10 Gbits 25 Gbits		70 Gbits	200 Gbits	
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Increasing Function Density

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Increasing Clock Frequency

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MINIMUM SUPPLY VOLTAGE MAXIMUM POWER DISSIPATION	1.5 V 130 W	1.2 V 160 W	0.9 V 170 W	0.6 V 175 W	0.6 V 180 W

Decreasing Supply Voltage

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V 1.2 V 0.9 V		0.6 V	0.6 V	
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

5-layer cross-section of chip

Typical Chip Cross Section

System-on-Chip

Integrating all or most of the components of a hybrid system on a single substrate (silicon or MCM), rather than building a conventional printed circuit board.

- 1. More compact system realization
- 2. Higher speed / performance
 - Better reliability
 - Less expensive !

New Direction: System-on-Chip (SoC)

Top-down vs. bottom-up design

- Top-down design adds functional detail.
 - Create lower levels of abstraction from upper levels.
- Bottom-up design creates abstractions from low-level behavior.
- Good design needs both top-down and bottom-up efforts.

- System Specification
- A high level representation of the system
- Considered factors
 - » Performance
 - » Functionality

- » Physical dimensions (die size)
- Result Specs size, speed, power, and functionality

- Architectural Design
 - RISC (Reduced Instruction Set Computer) versus CISC (Complex Instruction Set Computer)
 - Number of ALUs, Floating Point Units
 - Number and structure of pipelines
 - Cache size
 - Prediction on die size, power, and speed based on existing design
 - Early estimation are very important here

Behavioral or Functional Design

- Only behavior and timing without implementation issue
- Specify behavior based on Input + output + timing
- Fast emulation and debugging for the system


```
always @(posedge clk);
begin
if (enable_ == 1'b0)
data = 0;
else
data = data + 1;
end
```

HDL-Based Design

1980's

Hardware Description Languages (HDL) were conceived to facilitate the information exchange between design groups.

1990's

The increasing computation power led to the introduction of logic synthesizers that can translate the description in HDL into a synthesized gate-level net-list of the design.

2000's

Modern synthesis algorithms can optimize a digital design and explore different alternatives to identify the design that best meets the requirements.

Logic Design

- Control flow, word widths, register allocation, arithmetic operations, and logic operations
- RTL (Register Transfer Level) HDL (Hardware
- Description Language)
- » Verilog most popular
- » VHDL Europe and Eastern
- » Literal + Timing Information

$$\begin{array}{c} X = (AB*CD) + \\ (A+D) \\ Y = (A(B+C) + \\ AC+D) \end{array}$$

Logic Design

- More actual simulation and testing

 High Level Synthesis: Produce a RTL description from a behavioral description of the design

Circuit Design

- Boolean Expression → Circuit Elements (Cells, Macros, Gates, Transistors) + Interconnection
- Each component has specific timing and power Info.
- Circuit Simulation : Verify the correctness and timing
- Terms Netlist, Schematic
- Logic Synthesis Tool s : RTL → Netlist

Physical Design

- Netlist → Layout (Geometry Representation)
 - » Design rules of applied fabrication process
- Layout Synthesis Tools
 - » Automatic conversion (Fully/Partially)
 - » Area and performance penalty
- Crucial Challenges Area/Delay

Fabrication

- Layout → Photo-lithographic mask
 » One mask for each layer
- Wafer : Silicon crystal are grown & sliced
- Deposition, and diffusion of various materials on

the wafer : each step uses one mask

- Term : Tape Out, 8 inch/20cm, 12 inch/30cm

Packaging, Testing, and Debugging

- For PCB (Printed Circuit Board) : DIP (Dual In-line Package), PGA (Pin Grid Array), BGA (Ball Grid Array), and QFP (Quad Flat Package)
- For MCM (Multi-Chip Modules): no packaged
- Testing
 - » Before Package Probe line testing
 - » After Package Tester machine applies test patterns.

Structured Design Principles

- **Hierarchy:** "Divide and conquer" technique involves dividing a module into submodules and then repeating this operation on the sub-modules until the complexity of the smaller parts becomes manageable.
- **Regularity:** The hierarchical decomposition of a large system should result in not only **simple**, but also **similar** blocks, as much as possible. Regularity usually reduces the number of different modules that need to be designed and verified, at all levels of abstraction.
- **Modularity:** The various functional blocks which make up the larger system must have well-defined functions and interfaces.
- Locality: Internal details remain at the local level. The concept of locality also ensures that connections are mostly between neighboring modules, avoiding long-distance connections as much as possible.

Hierarchy of a 4-bit Carry Ripple Adder

Regularity

2-input MUX

VLSI Design Styles

Full Custom Design

Following the partitioning, the transistor level design of the building block is generated and simulated.

The example shows a 1-bit full-adder schematic and its SPICE simulation results.

© CMOS Digital Integrated Circuits – 3rd Edition

Full Custom Design

The main objective of full custom design is to ensure fine-grained regularity and modularity.

Full Custom Design

A carefully crafted full custom block can be placed both along the X and Y axis to form an interconnected two-dimensional array.

Example: Data-path cells

© CMOS Digital Integrated Circuits – 3rd Edition

Full Custom SRAM Cell Design

Mapping the Design into Layout

Manual full-custom design can be very challenging and time consuming, especially if the low level regularity is not well defined !

VLSI Design Styles

VLSI Design Styles

Mask Gate Array

Mask Gate Array

VLSI Design Styles

Field Programmable Gate Array

Field Programmable Gate Array

Internal structure of a CLB

Field Programmable Gate Array

1.2 Objective and Organization of the Book

Figure 1.4. The ordering of topics covered in a typical digital integrated circuits course.

Figure 1.5. Classification of CMOS digital circuit types.

CVSL: Cascade Voltage Switch Logic NORA: NO RAce circuits TSPC: True-Single Phase Clock

1.3 A Circuit Design Example

Figure 1.6 The flow of circuit design procedures.

One-bit Full-Adder Circuit Design:

Using 0.8um twin-well CMOS technology with specification:

- 1) Propagation delay times of sum and carry-out signals <1.2ns (worst)
- 2) Transition delay times of sum- and carry-out signals < 1.2ns (worst)
- Circuit area < 1500 μm²
- 4) Dynamic power dissipation (@ V_{DD} = 5V and f_{max} = 20MHz) < 1mW

	A	в	С	sum_out	carry_out
Full- sum_out	0	0	0	0	0
Adder carry_out	0	0	1	1	0
• L	0	1	0	1	0
Sum out = AABAC	0	1	1	0	1
$= ABC+ABC+\overline{ABC}+\overline{ABC}$	1	0	0	1	0
	1	0	1	0	1
Carry_out = AB + AC + BC	1	1	0	0	1
Sum_out = ABC + (A+B+C)carry_out	1	1	1	1	1 28

Figure 1.7 Gate-level schematic of the one-bit full-adder circuit.

Figure 1.8 Transistor-level schematic of the one-bit full-adder circuit.

Figure 1.9 Alternate transistor-level schematic of the one-bit full-adder circuit (note that the nMOS and pMOS networks are completely symmetric).

SPICE simulation

Minimum Size Full Adder, Extracted

Figure 1.11 Simulated input and output waveforms of the full-adder circuit.

Figure 1.12 Simulated output waveforms of the full adder circuit with minimum transistor dimensions, showing the signal propagation delay during one of the worst-case transitions.

Figure 1.13 Modified layout of the full-adder circuit, with optimized transistor dimensions.

Figure 1.14 Simulated output waveforms of the full-adder circuit with optimized transistor dimensions, showing the signal propagation delay during the same worst-case transition. **Power dissipation = 460** μ W

36

Figure 1.15 Block diagram of a carry ripple adder chain consisting of full adders.

Figure 1.16 Mask layout of the 4-bit carry ripple adder array.

37

Figure 1.17 Simulated input and output waveforms of the 8-bit carry ripple adder circuit, showing a maximum signal propagation delay of about 7 ns.