Alexandria University
Faculty of Engineering
Electrical Engineering Department
Fall Mid-term Exam, November 2016

جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية امتحان نصف الفصل الدراسي الأول (نوفمبر ٢٠١٦)

Course Title and Code Number:

Digital Integrated Circuits (EE 431)

Fourth Year (Communications and Electronics)

Time Allowed: 90 Mins

اسم المقرر والرقم الكودي له: الدوائر المتكاملة الرقمية (EE 431) السنة الدراسية الرابعة (اتصالات و الكترونيات) الزمن: ٩٠ دقيقة

Answer the following questions:

(25 marks) (10 marks)

Question 1:

Derive and calculate the critical voltages (V_{OL} , V_{OH} , V_{IL} , V_{IH}) and find the noise margins of the following depletion-load inverter circuit:

$$V_{DD} = 5 \text{ V}$$
 $V_{T0,driver} = 1.0 \text{ V}$
 $V_{T0,load} = -3.0 \text{ V}$
 $(W/L)_{driver} = 2$, $(W/L)_{load} = 1/3$
 $k_{n,driver}' = k_{n,load}' = 25 \text{ }\mu\text{A}/\text{V}^2$
 $\gamma = 0.4 \text{ }\text{V}^{1/2}$
 $\phi_F = -0.3 \text{ V}$

Question 2:

(10 marks)

A CMOS technology has the following parameters:

$$\mu_n C_{ox} = 120 \,\mu\text{A/V}^2$$
 $\mu_p C_{ox} = 60 \,\mu\text{A/V}^2$
 $L = 0.6 \,\mu\text{m}$ for both nMOS and pMOS devices,

 $V_{T0,n} = 0.8 \text{ V}$ $V_{T0,p} = -1.0 \text{ V}$ $W_{min} = 1.2 \text{ } \mu\text{m}$

Design a CMOS inverter by determining the channel widths W_n , and W_p of the nMOS and pMOS transistors, to meet the following performance specifications (**Derive** all equations you need):

- $V_{th}=1.5V$ for $V_{DD}=3V$
- Propagation delay times $\tau_{PHL} \le 0.2$ ns and $\tau_{PLH} \le 0.15$ ns.
- A falling delay of 0.35 ns for an output transition from 2 V to 0.5 V.

Assume a combined output load capacitance of 300fF and ideal step input.

Question 3: (5 marks)

Consider a uniform polysilicon line with a length l of $1000~\mu m$ and a width W of $4~\mu m$. Assuming a sheet resistance value of $30~\Omega/square$, a parallel plate unit area capacitance of $0.066~fF/\mu m^2$, and a fringing field unit length capacitance of $0.046~fF/\mu m$. Calculate the propagation delay of the poly interconnect line using the following models:

- a) Lumped RC model.
- b) T model.
- c) Distributed RC ladder with N=5.
- d) Distributed RC ladder with $N=\infty$.

Good Luck

Examiner: Dr. Mohammed Morsy