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Chapter 1 Introduction

Classical Control and Modern Control

Classical Control Modern Control

e SISO e MIMO

(Single Input Single Output) (Multiple Input Multiple Output)
e Low order ODEs e High order ODEs, PDEs
e Time-invariant e Time-invariant and time variant
e Fixed parameters e Changing parameters
e Linear e Linear and non-linear
e Time-response approach e Time- and frequency response

approach

e Continuous, analog e Tends to be discrete, digital
e Before 80s e 80s and after

B The difference between classical control and modern control
originaltes from the different modeling approach used by each
control.

B The modeling approach used by modern control enables it to have
new features not available for classical control.
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Signhal Classification

m Continuous signal "}

M Discrete signal
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Classification of Systems

B Systems are classified based on:

B The number of inputs and outputs: single-input single-output
(SISO), multi-input multi-output (MIMO), MISO, SIMO.

B Existence of memory: if the current output depends on the
current input only, then the system is said to be memoryless,
otherwise it has memory = purely resistive circuit vs. RLC-
circuit.

B Causality: a system is called causal or non-anticipatory if the
output depends only on the present and past inputs and
independent of the future unfed inputs.

B Dimensionality: the dimension of system can be finite
(lumped) or infinite (distributed).

B Linearity: superposition of inputs yields the superposition of
outputs.

B Time-Invariance: the characteristics of a system with the
change of time.
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Classification of Systems

B Finite-dimensional system (lumped-parameters, described by
differential equations

B Linear and nonlinear systems
B Continuous- and discrete-time systems
B Time-invariant and time-varying systems

B Infinite-dimensional system (distributed-parameters, described by
partial differential equations)

B Heat conduction
B Power transmission line

B Antenna
B Fiber optics
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Linear Systems

B A system is said to be linear in terms of the system input u(t) and
the system output y(t) if it satisfies the following two properties of
superposition and homogeneity.

B Superposition

w0 —f o
0 — v

== w0+ 60— %®+ .0

B Homogeneity

w0 = oo => awo—{ oo
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Example: Linear or Nonlinear

Check the linearity of the following system.

u(t) —>| y(t)=u(t)-u(t-1) |—> y(t)

Let u(t)=u,(t), then vy, (t)=u,(t) -u,(t-1)

Let u(t) =au,(t), then Y, (t) =au,(t) au, (t-1)
= a®uy () -u, (t-1)

Thus f(au(t)) # ay(t) = The system is nonlinear
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Example: Linear or Nonlinear
Check the linearity of the following system (governed by ODE).

u(t) —»| y"(t) +2y'(t) + y(t) = u’(t) + 3u(t) |—> y(t)

Let Yr(0)+2y;(t) +y, (1) = ug (t) +3uy ()
Y, (1) +2Y; (1) + Y, (t) = Uz (1) +3u, (1)

Then [au,(t)+ Bu, (V)] +3au, (t) + Su, (1)]
= au, (t) + pu, (t) + a3u, (t) + S3u, (t)
= afu; (t) +3u, (1)] + Blu, (t) +3u, (t)]
= aly;(t)+ 2y, (1) + Y, (O] + BLy, (1) + 2y, () + y, (D)]
=[ay, () +BY, (O + Ay, () + BY, O +[ay,(O) + BY, (D]
- The system is linear
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Properties of Linear Systems

B For linear systems, if input is zero then output is zero.

m A linear system is causal if and only if it satisfies the condition of
initial rest:

u(t)=0 for t<t, > y(t)=0 for t <t
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Time-Invariance

B A system is said to be time-invariant if a time delay or time
advance of the input signal leads to an identical time shift in the
output signal.

O ()
[ ~— /\
: | Time-invariant | :
X(t—t ) o  Y(t=to)
t, | t

B A system is said to be time-invariant if its parameters do not
change over time.
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Laplace Transform Approach

RLC Circuit V(s)=R-I(s) V=sL-I(s) I(s)=sC-V(s)

Resistor Inductor Capacitor

Input variables:
e Input voltage u(t)

Output variables: _ ' L
o Current i(t) RI(t)+Ld|(t) +éjl(r)dr+vo =u(t)
0

dt
RI(S)+ L(sI () i, ) + — 1 () + 2 —U (s)
Cs S
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Laplace Transform Approach
Rl(s)+L(sl(s)—|0)+él(s)+? U (s)

(Ls+R+i)|(s)=U(s)+Li Yo
Cs S
Cs U LCsi, —Cyv,

1(S) =——; (S)+
LCs“ +RCs+1 LCs® + RCs +1
| _J |\ )
Y g
Current due Current due to
to input initial condition

m For zero initial conditions (v, = 0, i; = 0),

1 (s) =G(s)U(s)

U (s) 1(s)
Cs o— G(S) >0
where G(S) = >
LCs” + RCs +1 Transfer function
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State Space Approach

B Laplace Transform method is not effective to model time-varying
and non-linear systems.

B The state space approach to be studied in this course will be able
to handle more general systems.

B The state space approach characterizes the properties of a system
without solving for the exact output.

B Let us now consider the same RLC circuit and try to use state
space to model it.
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State Space Equations as Linear System

m A system y(t) = f(x(t),u(t)) is said to be linear if it follows the
following conditions:

i F(x(),u®)=y, O,
then f (a)_((t), agl(t)) = aXl(t)

f (X (0),u,(t) =y, ()
and F(%,0.0,0)=y. 0
(X

then f (x, (t) + X, (), U, () +u,(t)) = y,(©) + y_(t)

B Then, it can also be implied that

f(@x,()+ 8%, 1), au,(t)+Bu,(t))=ay, (t)+BY, (1)
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State Space Approach

RLC Circuit

1
State variables: L
e \/oltage across C di 1
e Current through L I _

L
1

e We now have two first-order ODEs
e Their variables are the state
variables and the input
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State Space Approach

B The two equations are called state
equations, and can be rewritten in the
form of:

dv/dt| | O 1/C || v 0
{diL/dtH—J/L —R/JLLHJ/J“

B The output is described by an output
equation:

N
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State Space Approach

B The state equations and output equation, combined together, form
the state space description of the circuit.

eral Lo
el

B In a more compact form, the - -
state space can be written as: 5 _ 0 1/C } Vc}
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State Space Approach

B The state of a system at ¢, is the information at ¢, that, together
with the input u for t; < t P oo, uniquely determlnes the behavior
of the system for t = to

B The number of state variables = the number of initial conditions
needed to solve the problem.

m As we will learn in the future, there are infinite numbers of state
space that can represent a system.

B The main features of state space approach are:
B [t describes the behaviors inside the system.

B Stability and performance can be analyzed without solving for
any differential equations.

B Applicable to more general systems such as non-linear
systems, time-varying system.

B Modern control theory are developed using state space
approach.




Modern Control

Chapter 2
Mathematical Descriptions of Systems
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State Space Equations

B The state equations of a system can generally be written as:

_Xl(t)_ _all aln__xl(t)_ _b11 blr__ul(t)_
O] | a, @], | b | u,®
_)’(n (t)_ _anl cee e ann_ _Xn (’[)_ _bnl cee e bnr_ _ur (t)_

X, (t), X, (t),---,x_(t) are the state variables
u,(t),u,(t),---,u_(t) are the system inputs

o State eguations are built of n linearly-coupled
first-order ordinary differential equations
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State Space Equations

W By defining: _xl(t)_ _ul(t)_
x(t) = Xz;(t) - ut)= uzz(t) ’
| X, (1) ] U, (1)

we can write | X(t) = AX(t)+ Bu(t) State Equations
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State Space Equations

B The outputs of the state space are the linear combinations of the
state variables and the inputs:

I yl(t)_ C, - - G _Xl(t)_ d11 dlr _ul(t)_
Y, (t) _ C,o X, (t) + d22 U, (t)
_ym(t)_ _le Cmn__xn(t)_ _dml dmr_ _ur(t)_

Yy, (1), Y, (t),---, ¥ (t) are the system outputs
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State Space Equations

W By defining: - y (t)_
1

y(t) = Y2:(t)

Y (D)

we can write X(’[) =CX(t) + Du(t) Output Equations

D
uC(Dt)LL ix(t) j x(t) g Xg)

[ws]
(@

>
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Example: Mechanical System

= dy(t) _ dzv(t)
CY(t
k ;_yp u) —ky(®) -b="==m=—
b m —— u(t) State variables:
fffxﬂ%ﬁﬁﬁffffﬁfffffff %0 =y = %(t) =X (t)
frictionless X, (t) = Y() = % (t) = d Y(t)

Input variables:
* Applied force u(f) State equations:

Output variables: : .
e Displacement y(t) % () =%, (1)

) =~ %)~ >0 +u()
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Example: Mechanical System

B The state space equations can now be constructed as below:
>.<1(t) |0 1] () 0 0
X, )| |—-k/m =b/m|| x(t)| |1/m

) =[1 o]{

X,(t)
X, (1)
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Homework 1: Electrical System

B Derive the state space representation of the following electric
circuit:

R C,
+ —VW\N— € +

Wy Gz L 3w

/1

Input variables:
e Input voltage u(t)

Output variables:
e Inductor voltage v/, (t)
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Homework 1A: Electrical System

B Derive the state space representation of the following electric

circuit:

_|_

i

C, C,

¢ (

AN A +
R L}vL(t)

Input variables:
e Input voltage u(t)

Output variables:
e Inductor voltage v/, (t)




