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• The class materials of the modern 
control part are based on the Lecture 
note slides of the Modern Control 
course offered by Dr.-Ing. Erwin 
Sitompul, President University, 
Indonesia.

https://zitompul.wordpress.com/1-ee-
lectures/6-modern-control/

• Textbook used in this part is:

“Linear System Theory and Design”, Third Edition, 
Chi-Tsong Chen

https://zitompul.wordpress.com/1-ee-lectures/6-modern-control/
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Classical Control and Modern Control

Chapter 1 Introduction

Classical Control
•SISO 

(Single Input Single Output)
• Low order ODEs
•Time-invariant
• Fixed parameters
• Linear
• Time-response approach

•Continuous, analog
•Before 80s

Modern Control
•MIMO

(Multiple Input Multiple Output)
•High order ODEs, PDEs
•Time-invariant and time variant
•Changing parameters
• Linear and non-linear
• Time- and frequency response 

approach
•Tends to be discrete, digital
• 80s and after

 The difference between classical control and modern control 
originates from the different modeling approach used by each 
control.

 The modeling approach used by modern control enables it to have 
new features not available for classical control.
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Signal Classification

Chapter 1 Introduction

 Continuous signal

 Discrete signal
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Classification of Systems
 Systems are classified based on:

 The number of inputs and outputs: single-input single-output 
(SISO), multi-input multi-output (MIMO), MISO, SIMO.

 Existence of memory: if the current output depends on the 
current input only, then the system is said to be memoryless, 
otherwise it has memory  purely resistive circuit vs. RLC-
circuit.

 Causality: a system is called causal or non-anticipatory if the 
output depends only on the present and past inputs and 
independent of the future unfed inputs.

 Dimensionality: the dimension of system can be finite 
(lumped) or infinite (distributed).

 Linearity: superposition of inputs yields the superposition of 
outputs.

 Time-Invariance: the characteristics of a system with the 
change of time.

Chapter 1 Introduction
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Classification of Systems

Chapter 1 Introduction

 Finite-dimensional system (lumped-parameters, described by 
differential equations

 Linear and nonlinear systems

 Continuous- and discrete-time systems

 Time-invariant and time-varying systems

 Infinite-dimensional system (distributed-parameters, described by 
partial differential equations)

 Heat conduction

 Power transmission line

 Antenna

 Fiber optics
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Linear Systems

Chapter 1 Introduction

 A system is said to be linear in terms of the system input u(t) and 
the system output y(t) if it satisfies the following two properties of 
superposition and homogeneity.

 Superposition

1( )u t )(1 ty

2 ( )u t )(2 ty

1 2( ) ( )u t u t )()( 21 tyty 

1( )u t )(1 ty 1( )u t 1( )y t

 Homogeneity
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( )u t ( )y t

Example: Linear or Nonlinear

( ) ( ) ( 1)y t u t u t  

Check the linearity of the following system.

Let                , then1( ) ( )u t u t 1 1 1( ) ( ) ( 1)y t u t u t  

Let                 , then1( ) ( )u t u t 1 1 1( ) ( ) ( 1)y t u t u t   
2

1 1( ) ( 1)u t u t  

Thus                        The system is nonlinear( ( )) ( )f u t y t 

Chapter 1 Introduction
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( )u t ( )y t

Example: Linear or Nonlinear

( ) 2 ( ) ( ) ( ) 3 ( )y t y t y t u t u t     

Check the linearity of the following system (governed by ODE).

Let           1 1 1 1 1

2 2 2 2 2

( ) 2 ( ) ( ) ( ) 3 ( )

( ) 2 ( ) ( ) ( ) 3 ( )

y t y t y t u t u t

y t y t y t u t u t

     

     

Then 1 2 1 2[ ( ) ( )] 3[ ( ) ( )]u t u t u t u t     

Chapter 1 Introduction

1 1 2 2[ ( ) 3 ( )] [ ( ) 3 ( )]u t u t u t u t     

1 1 1 2 2 2[ ( ) 2 ( ) ( )] [ ( ) 2 ( ) ( )]y t y t y t y t y t y t         

1 2 1 2 1 2[ ( ) ( )] 2[ ( ) ( )] [ ( ) ( )]y t y t y t y t y t y t           

1 2 1 2( ) ( ) 3 ( ) 3 ( )u t u t u t u t       

 The system is linear
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Properties of Linear Systems

Chapter 1 Introduction

 For linear systems, if input is zero then output is zero. 

 A linear system is causal if and only if it satisfies the condition of 
initial rest:

0 0( ) 0 ( ) 0u t t t y t t t    for for  
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Time-Invariance

Chapter 1 Introduction

 A system is said to be time-invariant if a time delay or time 
advance of the input signal leads to an identical time shift in the 
output signal.

Time-invariant 

system

)(tx )(ty

)( 0ttx 

0t

)( 0tty 

0t

 A system is said to be time-invariant if its parameters do not 
change over time.
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dv
i C

dt
v Ri

di
v L

dt


   V s R I s   V sL I s     I s sC V s 

Chapter 1

( )u t





LR

C

( )i t

Laplace Transform Approach

RLC Circuit

Input variables: 
• Input voltage u(t)

Output variables: 
•Current i(t)

Resistor Inductor Capacitor

0

0

( ) 1
( ) ( ) ( )

t
di t

Ri t L i d v u t
dt C

    

0
0

1
( ) ( ( ) ) ( ) ( )

v
RI s L sI s i I s U s

Cs s
    

Introduction
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( )I s( )U s
( )G s

0
0

1
( ) ( ( ) ) ( ) ( )

v
RI s L sI s i I s U s

Cs s
    

Chapter 1

0
0

1
( ) ( )

v
I s U s LiLs R

sCs

 
    

 

0 0

2 2
( ) ( )

1 1

LCsi CvCs
I s U s

LCs RCs LCs RCs


 

   

Current due
to input

Current due to
initial condition

 For zero initial conditions (v0 = 0, i0 = 0),

( ) ( ) ( )I s G s U s

2
( )

1

Cs
G s

LCs RCs


 
where

Transfer function

Laplace Transform Approach

Introduction
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State Space Approach

Chapter 1 Introduction

 Laplace Transform method is not effective to model time-varying 
and non-linear systems.

 The state space approach to be studied in this course will be able 
to handle more general systems.

 The state space approach characterizes the properties of a system 
without solving for the exact output.

 Let us now consider the same RLC circuit and try to use state 
space to model it.
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State Space Equations as Linear System
 A system y(t) = f(x(t),u(t)) is said to be linear if it follows the 

following conditions:

 1 1
( ), ( ) ( )f t t t  x u y

 1 2 1 2 1 2
( ) ( ), ( ) ( ) ( ) ( )f t t t t t t   x x u u y y

 1 1 1
( ), ( ) ( )f t t tx u y

 2 2 2
( ), ( ) ( )f t t tx u y

 1 1 1
( ), ( ) ( )f t t tx u y ,

 1 2 1 2 1 2
( ) ( ), ( ) ( ) ( ) ( )f t t t t t t        x x u u y y

 If                            

then 

 If                            

and 

then 

 Then, it can also be implied that 

Chapter 1 Introduction
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Chapter 1 Introduction

( )u t





LR

C

( )i t

RLC Circuit

State Space Approach

State variables: 
• Voltage across C
•Current through L

C
C

dv
i C

dt


L
L

di
v L

dt


1C
C

dv
i

dt C
 

1L
L

di
v

dt L
 

1C
L

dv
i

dt C


1
( )L

R C

di
u v v

dt L
  

1
( )L

L C

di
u Ri v

dt L
  

• We now have two first-order ODEs
• Their variables are the state 

variables and the input
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1C
L

dv
i

dt C


1
( )L

L C

di
u Ri v

dt L
  

State Space Approach
 The two equations are called state 

equations, and can be rewritten in the 
form of:

0 1 0

1 1

CC

LL

vdv dt C
u

idi dt L R L L

      
       

       

Chapter 1 Introduction

 The output is described by an output 
equation:

 0 1
C

L

L

v
i

i

 
  

 
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 In a more compact form, the 
state space can be written as:

State Space Approach

Chapter 1 Introduction

 The state equations and output equation, combined together, form 
the state space description of the circuit.

u

y

 



x Ax B

C x

0 1

1

C

L R L

 
  

  
A

0

1 L

 
  
 

B

C

L

v

i

 
  
 

x

 0 1C

C

L

dv dt

di dt

 
  
 

x

0 1 0

1 1

CC

LL

vdv dt C
u

idi dt L R L L

      
       

       

 0 1
C

L

L

v
i

i

 
  

 
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 The main features of state space approach are:
 It describes the behaviors inside the system.
 Stability and performance can be analyzed without solving for 

any differential equations.
 Applicable to more general systems such as non-linear 

systems, time-varying system.
 Modern control theory are developed using state space 

approach.

State Space Approach

Chapter 1 Introduction

 The state of a system at t0 is the information at t0 that, together 
with the input u for t0 ≤ t < ∞, uniquely determines the behavior 
of the system for t ≥ t0.

 The number of state variables = the number of initial conditions 
needed to solve the problem.

 As we will learn in the future, there are infinite numbers of state 
space that can represent a system.
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Chapter 2
Mathematical Descriptions of Systems

Modern Control
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Chapter 2 Mathematical Descriptions of Systems

State Space Equations
 The state equations of a system can generally be written as:

1 11 1 1 11 1 1

2 22 2 22 2

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n r

n n nn n n nr r

x t a a x t b b u t

x t a x t b u t

x t a a x t b b u t

         
         
          
         
         

        

1 2( ), ( ), , ( )nx t x t x t

1 2( ), ( ), , ( )ru t u t u t

are the state variables

are the system inputs

• State equations are built of n linearly-coupled 
first-order ordinary differential equations
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Chapter 2 Mathematical Descriptions of Systems

State Space Equations

1

2

( )

( )
( ) ,

( )n

x t

x t
t

x t

 
 
 
 
 
 

x

 By defining:

( ) ( ) ( )t t t x Ax Bu

1

2

( )

( )
( ) ,

( )n

u t

u t
t

u t

 
 
 
 
 
 

u

we can write State Equations
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Chapter 2 Mathematical Descriptions of Systems

State Space Equations
 The outputs of the state space are the linear combinations of the 

state variables and the inputs:

1 11 1 1 11 1 1

2 22 2 22 2

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n r

m m mn n m mr r

y t c c x t d d u t

y t c x t d u t

y t c c x t d d u t

         
         
          
         
         

        

1 2( ), ( ), , ( )my t y t y t are the system outputs
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1

2

( )

( )
( ) ,

( )m

y t

y t
t

y t

 
 
 
 
 
 

y

 By defining:

( ) ( ) ( )t t t y C x Duwe can write Output Equations

Chapter 2 Mathematical Descriptions of Systems

State Space Equations

D

B C+
+

+
+

( )tx( )tx ( )ty( )tu

A
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Chapter 2 Mathematical Descriptions of Systems

Example: Mechanical System

( )u t

k

b

( )y t

m

0y 

frictionless

2

2

( ) ( )
( ) ( )

dy t d y t
u t ky t b m

dt dt
  

Input variables: 
• Applied force u(t)

Output variables: 
•Displacement y(t)

State variables:

1( ) ( )x t y t

2

( )
( )

dy t
x t

dt


1 2( ) ( )x t x t 
2

2 2

( )
( )

d y t
x t

dt
 

State equations:

1 2( ) ( )x t x t

2 1 2

1
( ) ( ) ( ) ( )

k b
x t x t x t u t

m m m
   
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Chapter 2 Mathematical Descriptions of Systems

Example: Mechanical System
 The state space equations can now be constructed as below:

1 1

2 2

( ) ( )0 1 0
( )

( ) ( ) 1

x t x t
u t

x t x tk m b m m

      
       

       

  1

2

( )
( ) 1 0

( )

x t
y t

x t

 
  

 
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Chapter 2 Mathematical Descriptions of Systems

Homework 1: Electrical System
 Derive the state space representation of the following electric 

circuit:

( )u t





L

R
2

C

1
C ( )Lv t





Input variables: 
• Input voltage u(t)

Output variables: 
• Inductor voltage vL(t)
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Chapter 2 Mathematical Descriptions of Systems

Homework 1A: Electrical System
 Derive the state space representation of the following electric 

circuit:

( )u t





LR

2
C1

C

( )Lv t





Input variables: 
• Input voltage u(t)

Output variables: 
• Inductor voltage vL(t)


