"Linear System Theory and Design", Chapter 1 Modern Control

http://zitompul.wordpress.com

• **The class materials of the modern control part are based on the Lecture note slides of the Modern Control course offered by Dr.-Ing. Erwin Sitompul, President University, Indonesia.**

[https://zitompul.wordpress.com/1-ee](https://zitompul.wordpress.com/1-ee-lectures/6-modern-control/)lectures/6-modern-control/

• Textbook used in this part is:

"Linear System Theory and Design", Third Edition, Chi-Tsong Chen

Classical Control and Modern Control

Classical Control

- SISO
	- (Single Input Single Output)
- Low order ODEs
- Time-invariant
- Fixed parameters
- Linear
- Time-response approach
- Continuous, analog

• Before 80s

Modern Control

- MIMO
	- (Multiple Input Multiple Output)
- High order ODEs, PDEs
- Time-invariant and time variant
- Changing parameters
- Linear and non-linear
- Time- and frequency response approach
- Tends to be discrete, digital
- 80s and after
- The difference between classical control and modern control originates from the different modeling approach used by each control.
- The modeling approach used by modern control enables it to have new features not available for classical control.

Signal Classification

Continuous signal

Discrete signal

Classification of Systems

Systems are classified based on:

- The number of inputs and outputs: single-input single-output (SISO), multi-input multi-output (MIMO), MISO, SIMO.
- *Existence of memory*: if the current output depends on the current input only, then the system is said to be memoryless, otherwise it has memory \rightarrow purely resistive circuit vs. RLCcircuit.
- *Causality*: a system is called causal or non-anticipatory if the output depends only on the present and past inputs and independent of the future unfed inputs.
- *Dimensionality*: the dimension of system can be finite (lumped) or infinite (distributed).
- *Linearity*: superposition of inputs yields the superposition of outputs.
- *Time-Invariance*: the characteristics of a system with the change of time.

Classification of Systems

- Finite-dimensional system (lumped-parameters, described by differential equations
	- **Linear and nonlinear systems**
	- Continuous- and discrete-time systems
	- **Time-invariant and time-varying systems**

- Infinite-dimensional system (distributed-parameters, described by partial differential equations)
	- **Heat conduction**
	- **Power transmission line**
	- Antenna
	- **Fiber optics**

Linear Systems

 A system is said to be linear in terms of the system input *u*(t) and the system output $y(t)$ if it satisfies the following two properties of superposition and homogeneity.

Superposition

$$
u_1(t) \longrightarrow y_1(t)
$$

\n
$$
u_1(t) + u_2(t) \longrightarrow y_1(t) + y_2(t)
$$

\n
$$
u_2(t) \longrightarrow y_2(t)
$$

Homogeneity

$$
u_1(t) \longrightarrow y_1(t) \longrightarrow \alpha u_1(t) \longrightarrow \alpha u_1(t)
$$

Example: Linear or Nonlinear

Check the linearity of the following system.

$$
u(t) \longrightarrow y(t) = u(t) \cdot u(t-1) \longrightarrow y(t)
$$

Let
$$
u(t) = u_1(t)
$$
, then $y_1(t) = u_1(t) \cdot u_1(t-1)$

Let
$$
u(t) = \alpha u_1(t)
$$
, then $y_1(t) = \alpha u_1(t) \cdot \alpha u_1(t-1)$
= $\alpha^2 u_1(t) \cdot u_1(t-1)$

Thus $f(\alpha u(t)) \neq \alpha y(t)$ \rightarrow The system is **nonlinear**

Example: Linear or Nonlinear

Check the linearity of the following system (governed by ODE).

$$
u(t) \longrightarrow y''(t) + 2y'(t) + y(t) = u'(t) + 3u(t) \longrightarrow y(t)
$$

Let
$$
y_1''(t) + 2y_1'(t) + y_1(t) = u_1'(t) + 3u_1(t)
$$

\n $y_2''(t) + 2y_2'(t) + y_2(t) = u_2'(t) + 3u_2(t)$

Then
$$
[\alpha u_1(t) + \beta u_2(t)]' + 3[\alpha u_1(t) + \beta u_2(t)]
$$

\n
$$
= \alpha u_1'(t) + \beta u_2'(t) + \alpha 3u_1(t) + \beta 3u_2(t)
$$

\n
$$
= \alpha [u_1'(t) + 3u_1(t)] + \beta [u_2'(t) + 3u_2(t)]
$$

\n
$$
= \alpha [y_1''(t) + 2y_1'(t) + y_1(t)] + \beta [y_2''(t) + 2y_2'(t) + y_2(t)]
$$

\n
$$
= [\alpha y_1(t) + \beta y_2(t)]'' + 2[\alpha y_1(t) + \beta y_2(t)]' + [\alpha y_1(t) + \beta y_2(t)]
$$

 \rightarrow The system is **linear**

Properties of Linear Systems

For linear systems, if input is zero then output is zero.

■ A linear system is causal if and only if it satisfies the condition of initial rest:

 $u(t) = 0$ for $t \le t_0 \rightarrow y(t) = 0$ for $t \le t_0$

Time-Invariance

A system is said to be time-invariant if a time delay or time advance of the input signal leads to an identical time shift in the output signal.

A system is said to be time-invariant if its parameters do not change over time.

Laplace Transform Approach

RLC **Circuit**

Input variables: • Input voltage *u*(*t*) Output variables: • Current *i*(*t*)

$$
Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + v_0 = u(t)
$$

$$
RI(s) + L(sI(s) - i_0) + \frac{1}{Cs}I(s) + \frac{v_0}{s} = U(s)
$$

Laplace Transform Approach

For zero initial conditions ($v_0 = 0$, $i_0 = 0$),

$$
I(s) = G(s)U(s)
$$

where $G(s) = \frac{Cs}{LCs^2 + RCs + 1}$

Transfer function

State Space Approach

- Laplace Transform method is not effective to model time-varying and non-linear systems.
- The state space approach to be studied in this course will be able to handle more general systems.
- The state space approach characterizes the properties of a system without solving for the exact output.
- Let us now consider the same RLC circuit and try to use state space to model it.

State Space Equations as Linear System

A system $\underline{\mathbf{y}}(t) = f(\underline{\mathbf{x}}(t), \underline{\mathbf{u}}(t))$ is said to be linear if it follows the following conditions:

If
$$
f(\underline{x}_1(t), \underline{u}_1(t)) = \underline{y}_1(t)
$$
,
then $f(\alpha \underline{x}(t), \alpha \underline{u}_1(t)) = \alpha \underline{y}_1(t)$

If
$$
f(\underline{x}_1(t), \underline{u}_1(t)) = \underline{y}_1(t)
$$

and $f(\underline{x}_2(t), \underline{u}_2(t)) = \underline{y}_2(t)$
then $f(\underline{x}_1(t) + \underline{x}_2(t), \underline{u}_1(t) + \underline{u}_2(t)) = \underline{y}_1(t) + \underline{y}_2(t)$

 $f\left(\alpha\underline{\mathbf{x}}_1(t) + \beta\underline{\mathbf{x}}_2(t), \alpha\underline{\mathbf{u}}_1(t) + \beta\underline{\mathbf{u}}_2(t)\right) = \alpha\underline{\mathbf{y}}_1(t) + \beta\underline{\mathbf{y}}_2(t)$ Then, it can also be implied that

State Space Approach

RLC **Circuit**

L $v_L = L \frac{di}{dt}$ *dt* $=$ $\frac{1}{L}$ 1 *L di v dt L*

- State variables: • Voltage across *C*
- Current through *L*

1 $L = \frac{L}{I} (u - Ri_{L} - v_{C})$ *di* $u - Ri$ _{*r*} v *dt L* $= -u - \kappa l_{\tau} -$

- **We now have two first-order ODEs**
- **Their variables are the state variables and the input**

0 $1/C$ $||v_c||$ 0

 $1/L$ $-R/L$ || i , | | 1

State Space Approach

u

The two equations are called state equations, and can be rewritten in the form of:

$$
\frac{dv_c}{dt} = \frac{1}{C}i_L
$$

$$
\frac{di_L}{dt} = \frac{1}{L}(u - Ri_L - v_C)
$$

 The output is described by an **output equation**:

 L/\mathbf{u} | \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u}

 $di, |dt| = |I/L - R/L||i, + 1/L$

 $\begin{bmatrix} c' \\ di_L/dt \end{bmatrix} = \begin{bmatrix} -1/L & -R/L \end{bmatrix} \begin{bmatrix} c \\ i_L \end{bmatrix} + \begin{bmatrix} 1/L \end{bmatrix}$

 $\lceil d v_c/dt \rceil$ $\lceil 0 \rceil$ $1/C$ $\lceil v_c \rceil$ $\lceil 0 \rceil$

C C

 dv_c/dt | 0 $1/C$ || v

 $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} ^{c}C \\ . \end{bmatrix}$ *L v i i* $\lceil v_{C} \rceil$ $=\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \ i & 1 \end{bmatrix}$

L

State Space Approach

■ The state equations and output equation, combined together, form the **state space** description of the circuit.

$$
\begin{bmatrix} dv_C/dt \\ di_L/dt \end{bmatrix} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \begin{bmatrix} v_C \\ i_L \end{bmatrix} + \begin{bmatrix} 0 \\ 1/L \end{bmatrix} u
$$

$$
i_L = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} v_C \\ i_L \end{bmatrix}
$$

In a more compact form, the state space can be written as:

$$
\frac{\dot{x} = Ax + Bu}{y = Cx}
$$

$$
\mathbf{A} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \mathbf{x} = \begin{bmatrix} v_c \\ i_L \end{bmatrix}
$$

$$
\mathbf{B} = \begin{bmatrix} 0 \\ 1/L \end{bmatrix} \mathbf{x} = \begin{bmatrix} dv_c/dt \\ di_L/dt \end{bmatrix}
$$

$$
\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}
$$

State Space Approach

- **The state of a system at** t_0 **is the information at** t_0 **that, together** with the input *u* for $t_0 \le t \le \infty$, uniquely determines the behavior of the system for $t \geq t_0$.
- The number of state variables $=$ the number of initial conditions needed to solve the problem.
- As we will learn in the future, there are infinite numbers of state space that can represent a system.
- **The main features of state space approach are:**
	- It describes the behaviors inside the system.
	- Stability and performance can be analyzed without solving for any differential equations.
	- **Applicable to more general systems such as non-linear** systems, time-varying system.
	- Modern control theory are developed using state space approach.

Modern Control

Chapter 2 Mathematical Descriptions of Systems

■ The state equations of a system can generally be written as:

$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & \cdots & b_{1r} \\ \vdots & b_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ b_{n1} & \cdots & \cdots & b_{nr} \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_r(t) \end{bmatrix}
$$

 $x_1(t), x_2(t), \cdots, x_n(t)$ are the state variables

 $u_{1}(t), u_{2}(t), \cdots, u_{r}(t)$ are the system inputs

• **State equations are built of** *n* **linearly-coupled first-order ordinary differential equations**

1 2 (t) $\left(t\right)$ $(t)=$ $\begin{bmatrix} 2 & 1 \end{bmatrix}$, $_n(t)$ *x t* $x_1(t)$ *t x t* $\lceil x_{i}(t) \rceil$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $=\left|\begin{array}{c} x_2(t) \end{array}\right|$ $\begin{array}{|c|c|c|c|c|}\n\hline\n& \bullet & \bullet & \bullet \end{array}$ $\left\lfloor x_n(t) \right\rfloor$ *x* By defining: we can write $\vec{x}(t) = \underline{A}x(t) + \underline{B}u(t)$ State Equations 1 2 $\left(t\right)$ $\left(t\right)$ $(t)=$ $\begin{bmatrix} 2 & 1 \end{bmatrix}$, $_n(t)$ *u t* u_{α} (t *t u t* $\lceil u_1(t) \rceil$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $=\left| \begin{array}{c} u_2(t) \\ u_2(t) \end{array} \right|$ $\begin{array}{|c|c|c|c|c|}\n\hline\n& \bullet & \bullet & \bullet \end{array}$ $\begin{bmatrix} u_n(t) \end{bmatrix}$ *u*

■ The outputs of the state space are the linear combinations of the state variables and the inputs:

$$
\begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_m(t) \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & \cdots & c_{1n} \\ \vdots & c_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ c_{m1} & \cdots & \cdots & c_{mn} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} d_{11} & \cdots & \cdots & d_{1r} \\ \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ d_{m1} & \cdots & \cdots & d_{mr} \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_r(t) \end{bmatrix}
$$

 $y_1(t), y_2(t), \cdots, y_m(t)$ are the system outputs

By defining:

$$
\underline{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_m(t) \end{bmatrix},
$$

we can write

$$
\underline{y}(t) = \underline{C}\underline{x}(t) + \underline{D}\underline{u}(t)
$$

Output Equations

Example: Mechanical System

$$
u(t) - ky(t) - b\frac{dy(t)}{dt} = m\frac{d^2y(t)}{dt^2}
$$

 $m \downarrow u(t)$ State variables:

Input variables: • Applied force *u*(*t*)

Output variables:

• Displacement *y*(*t*)

State equations:

$$
\dot{x}_1(t) = x_2(t) \n\dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{b}{m}x_2(t) + \frac{1}{m}u(t)
$$

Example: Mechanical System

The state space equations can now be constructed as below:

$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
$$

Homework 1: Electrical System

■ Derive the state space representation of the following electric circuit:

Input variables: • Input voltage *u*(*t*) Output variables: • Inductor voltage $v_L(t)$

Homework 1A: Electrical System

■ Derive the state space representation of the following electric circuit:

Input variables: • Input voltage *u*(*t*) Output variables: • Inductor voltage $v_L(t)$