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 Introduction

 Differential equations and Linearization of nonlinear 
mathematical models

 Transfer function and impulse response function

 Laplace transform review

 Block diagram and signal flow graph

Reference: 
Chapter 2: “Modern Control Systems”, Richard Dorf, 

Robert Bishop
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The materials of this presentation are based
on the Lecture note slides of the Control
System Engineering (Fall 2008) course
offered by Prof. Bin Jiang and Dr. Ruiyun QI,
Nanjing University of Aeronautics and
Astronautics (NUAA), China
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Introduction

Feb-15 4

How to analyze and design a control 
system

Controller Actuator Plant

Sensor

-

r

Expected 
value

e

Error

Disturbance

Controlled
variable

n
yu

• The first thing is to establish system model 
(mathematical model)
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 A mathematical model of a dynamic system is defined as a set 
of equations that represents the dynamics of the system 
accurately

 The dynamics of many systems may be described in terms of 
differential equations obtained from physical laws governing 
a particular system

 In obtaining a mathematical model, we must make a 
compromise between the simplicity of the model and the 
accuracy of the results of the analysis

 In general, in solving a new problem, it is desirable to build a 
simplified model so that we can get a general feeling for the 
solution

Introduction (2)

Feb-15 5
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System Model
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System Model is

A mathematical expression of dynamic relationship 
between input and output of a system. 

A mathematical model is the foundation to analyze and 
design automatic control systems

No mathematical model of a physical system is exact. 
We generally strive to develop a model that is adequate 
for the problem at hand but without making the model 
overly complex.
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Differential equation 

Transfer function

Frequency characteristic

System Model (2)

Feb-15 7

Laplace
transform

Fourier
transform

Transfer 
function

Differential 
equation

Frequency 
characteristics

Linear systemStudy
time-domain

response

study 
frequency-domain

response
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Modeling Methods

Feb-15 8

Analytic method

According to
A. Newton’s Law of Motion
B. Law of Kirchhoff 
C. System structure and parameters

the mathematical expression of system 
input and output can be derived.
Thus, we build the mathematical model 
( suitable for simple systems).
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System identification method
Building the system model based on the system 
input—output charecteristics

This method is usually applied when there are little 
information available for the system.

Modeling Methods(2)

Feb-15 9

Black box
Input Output

Black box: the system is totally unknown. 
Grey box:  the system is partially known.

Neural Networks, 
Fuzzy Systems
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Why Focus on Linear Time-Invariant (LTI) 
System?

What is linear system?

 A system is called linear if the principle of superposition
applies

Modeling Methods (3)

Feb-15EE 391 Control Systems and Their Components 10

system
1( )u t 1( )y t

2( )u t 2( )y t
1 1 2 2( ) ( )u t u t  1 1 2 2y y system

system

Is y(t)=u(t)+2 a linear  system？
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The overall response of a linear system can be 
obtained by
Decomposing the input into a sum of elementary 

signals 

Figuring out each response  to the respective 
elementary signal

Adding all these responses together

Thus, we can use typical elementary signal (e.g. unit 
step ,unit impulse, unit ramp) to analyze system for 
the sake of simplicity. 

Modeling Methods (4)

Feb-15EE 391 Control Systems and Their Components 11
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What is time-invariant 
system?
A system is called time-

invariant if the parameters 
are stationary with respect 
to time during system 
operation

Examples？

Modeling Methods (4)

Feb-15EE 391 Control Systems and Their Components 12
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2.2 Establishment of differential 
equation and linearization
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Differential equation

( ) ( 1) (1)

0 1 1

( ) (1)

0 1

( ) ( ) ( ) ( )  

                                        ( ) ( ) ( )

n n

n

m

m m

a c t a c t a c t c t

b r t b r t b r t







    

  

Linear ordinary differential equations

--- A wide range of systems in engineering are 
modeled mathematically by differential equations

--- In general, the differential equation of an n-th
order system is written

Time-domain model
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How to establish ODE of a control system

--- list differential equations according to the   
physical rules of each component;

--- obtain the differential equation sets by 
eliminating intermediate variables; 

--- get the overall input-output differential 
equation of control system.
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Examples-1   RLC circuit

R L

C
u(t) uc(t)i(t)

Input

u(t) system

Output

uc(t)

Defining the input and output according to which 
cause-effect relationship you are interested in.
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)(
)()(

)(
2

2

tu
dt

tud
LC

dt

tdu
RCtu C

CC 

According to Law of 
Kirchhoff in electricity                                     

( )
( ) ( ) ( ) (1)c

di t
u t Ri t L u t

dt
     

1
( ) ( ) (2)Cu t i t dt

C
   

( )
( ) Cdu t

i t C
dt



R L

C

u(t)
uc(t)i(t)
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It is re-written as in standard form

18

Generally，we set
•the output on the left side of the equation
•the input on the right side
•the input is arranged from the highest 
order to the lowest order

( ) ( ) ( ) ( )C C CLCu t RCu t u t u t  
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Examples-2  Mass-spring-friction system

We are interested in the  
relationship between 
external  force F(t) and 
mass displacement x(t)

Define: input—F(t); output---x(t)

( )
,

dx t
v

dt


2 ( )d x t
a

dt


Gravity is 
neglected.

F ma
1 2ma F F F  

F(t)2 ( )F fv t

1 ( )F kx t
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( ) ( ) ( ) ( )mx t f x t kx t F t  

By eliminating intermediate variables, we 
obtain the overall input-output differential 
equation of the mass-spring-friction system.

Recall the RLC circuit system

( ) ( ) ( ) ( )c c cLCu t RCu t u t u t  

These formulas are similar, that is, we can use 
the same mathematical model to describe a 
class of  systems that are physically absolutely 
different but share the same Motion Law.
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ODEs of Some Electrical and Mechanical systems

Feb-15 21
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Examples-3 nonlinear system

In reality, most systems are indeed nonlinear, e.g. then 
pendulum system, which is described by nonlinear 
differential equations. 

 L

Mg

2

2
sin ( ) 0

d
ML Mg t

dt


 

• It is difficult to analyze nonlinear systems, 
however, we can linearize the nonlinear 
system near its equilibrium point under 
certain conditions.

2

2
( ) 0  (when  is small

d
ML Mg t

dt


   ）
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Linearization of nonlinear differential equations

Several typical nonlinear characteristics in

control system.

23

input

output

0

Saturation (Amplifier)

input

output

0

Dead-zone (Motor)
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Methods of linearization

（1）Weak nonlinearity neglected

（2）Small perturbation/error method
Assumption: In the system control process, there are just

small changes around the equilibrium point in the input and
output of each component.

If the nonlinearity of the component is not within its 
linear working region, its effect on the system is weak 
and can be neglected.

This assumption is reasonable in many practical control 
system: in closed-loop control system, once the deviation 
occurs, the control mechanism will reduce or eliminate it. 
Consequently, all the components can work around the 
equilibrium point.
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The input and output only have small 
variance around the equilibrium point. 0( ), ( ) 0nx x x x    

0

0 0( )
x

dy
y y x x

dx
  

xky 
This is linearized model of 
the nonlinear component.

Example

0 x

y

饱和（放大器）

y0

x0

y=f(x)

A(x0,y0)

A(x0,y0) is equilibrium point. 
Expanding the nonlinear 
function y=f(x) into a Taylor 
series about A(x0,y0) yields

Saturation (Amplifier)
 2

02

2

00 )(
!2

1
)()(

00

xx
dx

yd
xx

dx

dy
yxfy

xx
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Note：this method is only suitable for systems 
with weak nonlinearity.

0

继电特性

0

饱和特性Relay Saturation

For systems with strong nonlinearity, we cannot 
use such linearization method.
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Linearize the nonlinear equation Z=XY in the region 5 
≤x ≤ 7, 10 ≤ y ≤12. Find the error if the linearized 
equation is used to calculate the value of z when x=5, 
y=10

Solution:

Choose  𝑥 ,  𝑦 as the average values of the given ranges

Then 

Example

Feb-15 27
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Expanding the nonlinear equation into a Taylor series 
about points 𝑥 =  𝑥 , 𝑦 =  𝑦 and neglecting the higher-
order terms

Where

Example (2)

Feb-15 28
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Hence the linearized equation is

or

When x=5, y=10,the value of z given by the linearized 
equation is

The exact value of z is z = xy =50

The error is thus 50-49=1 or 2%

Example (3)

Feb-15 29
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Exercise

 E1. Please build the differential equation of the 
following system.

30

OutputInput 1
R

2
R

C

( )ru t ( )cu t

1 1 2

1 2 1 2 1 2 1 2 2

2

1 1

1

( )c r
c r

c

r c

R i i dt
C

du du
i i i R R C R R u R R C R u

dt dt
u R i

u R i u




       
 


 


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2-3 Transfer function 
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Solving Differential Equations

Example

Solving linear differential equations with 
constant coefficients:

• To find the general solution (involving solving the 
characteristic equation)

• To find a particular solution of the complete
equation (involving constructing the family of a function)
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WHY need LAPLACE transform?

s-domain
algebra problems

Solutions of algebra 
problems

Time-domain
ODE problems

Solutions of time-
domain problems

Laplace

Transform
(LT)

Inverse 

LT

Difficult Easy
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Laplace Transform

 

0

( ) ( )

       ( ) st

F s f t

f t e dt






 

The Laplace transform of a function f(t) is 
defined as

where                 is a complex variables j  
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Examples 

0
( ) ( ) stF s f t e dt


 

Step signal: f(t)=A

0

stAe dt





0

stA
e

s



 
A

s


• Exponential signal f(t)= ate

( )F s 
0

at ste e dt


 


1

s a




( )

0

1 a s te
s a



  

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Laplace transform table

f(t) F(s) f(t) F(s)

δ(t) 1

1

t

ate

2 2

w

s w

2 2

s

s w

wte at sin

wte at cos

22)( was

w



22)( was

as



1

s a

1

s

2

1

s

sin wt

cos wt
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Properties of Laplace Transform

1 2 1 2[ ( ) ( )] [ ( )] [ ( )]af t bf t a f t b f t  

(1) Linearity

 
  

 

( )
( ) (0)

df t
sF s f

dt

(2) Differentiation

  
 

     
 

(1)1 2 ( 1)( )
( ) (0) (0) (0)

n
n n n n

n

d f t
s F s s f s f f

dt

where f(0) is the initial value of f(t).

Using 
Integration By 
Parts method 

to prove 
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(3) Integration

   
  0

( )
( )

t F s
f d

s

 


  
    

1 2

1 2 1

( )
( )

nt t t

n no o o

F s
f d dt dt dt

s

Using Integration 

By Parts method 

to prove ）

Properties of Laplace Transform (2)
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(5) Initial-value Theorem

39

（4）Final-value Theorem

)(lim)(lim
0

ssFtf
st 



)(lim)(lim
0

ssFtf
st 



The final-value theorem 
relates the steady-state 
behavior of f(t) to the 
behavior of sF(s) in the 
neighborhood of s=0

Properties of Laplace Transform (3)
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(6)Shifting Theorem：

a. shift in time (real domain)

[ ( )]f t  

[ ( )]ate f t 

b. shift in complex domain 

(7) Real convolution (Complex multiplication) 

Theorem

1 2 1 2

0

[ ( ) ( ) ] ( ) ( )

t

f t f d F s F s    

( )se F s 

( )F s a

Properties of Laplace Transform (4)
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Inverse Laplace transform

Definition：Inverse Laplace transform, 
denoted by                     is given by

where C is a real constant。

1[ ( )]F s

1 1
( ) [ ( )] ( ) ( 0)

2

C j

st

C j

f t F s F s e ds t
j

 



 

  
 

Note: The inverse Laplace transform operation
involving rational functions can be carried out using
Laplace transform table and partial-fraction expansion.
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Partial-Fraction Expansion method for finding 
Inverse Laplace Transform

1

0 1 1

1

1 1

( )
( ) ( )

( )









   
  

   

m m

m m

n n

n n

b s b s b s bN s
F s m n

D s s a s a s a

1 2               ( ) ( ) ... ( )nf t f t f t   

If F(s) is broken up into components

1 2( ) ( ) ( ) ( )nF s F s F s F s   

If the inverse Laplace transforms of components 
are readily available, then

       1 1 1 1

1 2( ) ( ) ( ) ( )nF s F s F s F s      
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Poles and zeros

Poles
A complex number s0 is said to be a pole of a 
complex variable function F(s) if F(s0)=∞.

43

Examples:

( 1)( 2)

( 3)( 4)

s s
s s
 

 

zeros: 1, -2 poles: -3, -4;

2

1

2 2

s

s s



 
poles: -1+j, -1-j; zeros: -1

 Zeros

• A complex number s0 is said to be a zero of 
a complex variable function F(s) if F(s0)=0
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Case 1: F(s)  has simple real poles
1

0 1 1

1

1 1

( )
( )

( )









   
 

   

m m

m m

n n

n n

b s b s b s bN s
F s

D s s a s a s a

where ( 1,2, , ) are  eigenvalues of ( ) 0, and

( )
( )

( )


 

 
  
 

i

i

i i

s p

p i n D s

N s
c s p

D s

( )f t  1 2

1 2 ... np tp t p t

nc e c e c e
   

Parameters pk give shape and numbers ck give magnitudes.

1 2

1 2

   
  

n

n

cc c

s p s p s p

Partial-Fraction Expansion 

Inverse LT
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2 31 1 1
( )

6 15 10

     t t tf t e e e

1 1 1 1 1 1
( )

6 1 15 2 10 3
       

  
F s

s s s

45

1
( )

( 1)( 2)( 3)
F s

s s s


  

Example 1
31 2

1 2 3

cc c

s s s
  

  

2

2 ( 2
1 1

( 1)( 2)( 3) 5
)

1


 
   

  



s

c
s s s

s

3

3

1 1

( 1)( 2) 0
3)

( )
(

3 1


 
   

  



s

c
s s

s
s

1

1

1 1

( 1)( 2)
1)

( 3) 6
(



 
    

   


 s

c
s s

s
s

Partial-Fraction Expansion 
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Case 2: F(s) has simple complex-conjugate poles

Example 2

2

5
( )

4 5


 

 

s
Y s

s s 2

5

( 2) 1

s

s




  2

2 3

( 2) 1

s

s

 


 

2 2

2

( 2) 1

3

( 2) 1



 





 s

s

s

Laplace transform

Partial-Fraction Expansion 

Inverse Laplace transform

Applying initial conditions

2 2cos 3 si( ) n   tte ety t t
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1

1

11 1

( ) ( )



       
    

n l l l

n l i i

l l

i

c b bc b

s p s p s p s p s p

47

Case 3: F(s) has multiple-order poles

1 2

( ) ( )
( )

( ) ( )( ) ) )( (


   


l

in r

N s N s
F s

D s s s sp pp p s

1

1 ( ) ( ,) ( ) ( ), ,




 
          

 
 l l

i i
s p

s pi

l l

d
s p s p

d
F s

s
b F s b

1

1

1( ) ( )
,

( ) (

1 1
( ) ( )

! ( 1)! )





 

      
       

      



i

m l
l l

i i

s p s

l m

p

N s N s
b b

D s D

d d
s p s p

m d ds ss l

1
The coefficients , ,  of simple poles can be calculated as Case 1;n lc c



The coefficients corresponding to the multi-order poles are determined as

Simple poles Multi-order poles
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Example 3

3

1
( )

( 1)



Y s

s s

31 2 1

3 2
( )

( 1) ( 1) 1
   

  

bc b b
Y s

s s s s

Laplace transform:
3 2 2( ) (0) ( 3 ( ) 3 (0) 3 (0

3 ( )

)

3

0

1

) (0

0

)

( ) ( )

 





 





s Y s s y sy

sY s y Y s

sy Y s sy y

s

Applying initial conditions:

Partial-Fraction Expansion 

s= -1 is a 3-

order pole



ECE Department- Faculty of Engineering - Alexandria University 2015

49

1 3

0

1
1

( 1)


 


s

c s
s s

3 2

2 13 1
1

1 1
[ ( 1) ] [ ( )] ( ) 1

( 1)



 


 
       

 
s s

s

d d
b s s

ds s s ds s

3

3 13

1
[ ( 1) ] 1

( 1)
sb s

s s
   


3

1

1

1
(2 ) 1

2! s

b s



  

Determining coefficients:

3 2

1 1 1 1
( )

( 1) ( 1) 1
    

  
Y s

s s s s

Inverse Laplace transform:

21
( ) 1

2

     t t ty t t e te e
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Transfer function

( ) ( 1) ( ) ( 1) (1)

1 0 1 0( ) ( ) ( )  ( ) ( ) ( ) ( )n n m m

n m my t a y t a y t b u t b u t bu t b u t 

        

LTI 
system

Input
u(t)

Output
y(t)

Consider a linear system described by differential equation

 
 

1

1 1 0

 

1 0

 

1

1

( )
( )

( )

...( )

( ) ...

zero initial conditio

m m

m m

n n

n

n

output y t
TF G s

input u t

b s b s b s bY s

U s s a s a s a









 

   
 

   

Assume all initial conditions are zero, we get the transfer 
function(TF) of the system as 
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Example 1.  Find the transfer function of the RLC

1) Writing the differential equation of the system according to 
physical law:

R L

C
u(t) uc(t)i(t)Input Output

2) Assuming all initial conditions are zero and applying Laplace 
transform

3) Calculating the transfer function            as ( )G s

2

( ) 1
( )

( ) 1

cU s
G s

U s LCs RCs
 

 

( ) ( ) ( ) ( )C C CLCu t RCu t u t u t  

2 ( ) ( ) ( ) ( )c c cLCs U s RCsU s U s U s  

Solution:
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Transfer function of typical components

Component ODE TF

( )v t ( )i t

R ( ) ( )v t Ri t
( )

( )
( )

V s
G s R

I s
 

( )v t
( )i t

L

( )
( )

di t
v t L

dt


( )
( )

( )

V s
G s sL

I s
 

( )v t ( )i t

C 0

1
( ) ( )

t

v t i d
C

  
( ) 1

( )
( )

V s
G s

I s sC
 
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Properties of transfer function

The transfer function is defined only for a 
linear time-invariant system, not for nonlinear 
system.

All initial conditions of the system are set to 
zero.

The transfer function is independent of the 
input of the system.

The transfer function  G(s) is the Laplace 
transform of the unit impulse response g(t).

53
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How poles and zeros relate to system 
response
• Why we strive to obtain TF models?

• Why control engineers prefer to use TF model?

• How to use TF model to analyze and design control 
systems?

• we start from the relationship between the 
locations of zeros and poles of TF and the output 
responses of a system
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Position of poles 

and zeros

-a

j

i0

( )
A

X s
s a




Transfer function

( ) atx t Ae

Time-domain impulse 

response

0
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1 1

2 2
( )

( )

A s B
X s

s a b




 

Transfer function

( ) sin( )atx t Ae bt  

Time-domain 

impulse response

Position of poles and 

zeros

-a

j

i

b

0

0
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1 1

2 2
( )

A s B
X s

s b






Transfer function

( ) sin( )x t A bt  

Time-domain 

impulse response

Position of poles and 

zeros
j

i

b

0

0
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Position of poles 

and zeros

-a

j

i0

( )
A

X s
s a




Transfer function

( ) atx t Ae

Time-domain impulse 

response
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1 1

2 2
( )

( )

A s B
X s

s a b




 

Transfer function：

( ) sin( )atx t Ae bt  

Time-domain 

dynamic response

Position of poles and 

zeros

-a

j

i

b

0

0
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Summary of pole position & system dynamics
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Note: stability of linear single-input, single-output 
systems is completely governed by the roots of the 
characteristic equation.

Characteristic equation

1

1 1 0 0n n

ns a s a s a

    

-obtained by setting the denominator polynomial of the 
transfer function to zero 
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2-4 Block diagram and Signal-flow graph (SFG)
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 In a block diagram all system variables are linked to 
each other through functional blocks

The transfer functions of the components are usually 
entered in the corresponding blocks

Blocks are connected by arrows to indicate the 
direction of the flow of signals

Block Diagrams

Feb-15 64

Element of a block diagramNote: The dimension of the 
output signal from the block is 
the dimension of the input 
signal multiplied by the 
dimension of the transfer 
function in the block
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The advantage of the block diagram representation 
is the simplicity of forming the overall block diagram 
for the entire system by connecting the blocks of the 
components according to the signal flow

A block diagram contains information concerning 
dynamic behavior, but it does not include any 
information on the physical construction of the 
system

A number of different block diagrams can be drawn 
for a system

Block Diagrams(2)

Feb-15 65
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The transfer function relationship 

Block Diagram Representation

Feb-15 66

( ) ( ) ( )Y s G s U s

can be graphically denoted through a block diagram. 

G(s)
U(s) Y(s)
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1. Connection in series

Equivalent Transform of Block Diagram

Feb-15 67

G(s)
U(s) Y(s)

( ) ?G s 

X(s)
G1(s) G2(s)

U(s) Y(s)

1 2

( )
( ) ( ) ( )

( )

Y s
G s G s G s

U s
  
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2. Connection in parallel

G(s)
U(s) Y(s)

1 2

( )
( ) ( ) ( )

( )

Y s
G s G s G s

U s
  

U(s)

G2(s)

G1(s)
Y1(s)

Y2(s)



Y(S)

( ) ?G s 

Feb-15 68
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3. Negative feedback

M(s)
R(s) Y(s)

( ) ( ) ( )

( ) ( ) ( ) ( )

Y s U s G s

U s R s Y s H s




 

the for( w) again of 
( )

1

rd path

( ) ( ) 1 gai the loopn of 

G s
M s

G s H s
 

 

 ( ) ( ) ( ) ( ) ( )Y s R s Y s H s G s 

Y(s)
G(s)

H(s)

U(s)R(s)
_

Transfer function of a negative feedback system:

Feb-15 69
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 Any number of cascaded blocks can be replaced by a single 
block, the transfer function of which is simply the product of 
the individual transfer functions

 Blocks can be connected in series only if the output of one 
block is not affected by the next following block  (no 
feedback)

 A complicated block diagram involving many feedback loops 
can be simplified by a step-by-step rearrangement

 Simplification of the block diagram by rearrangements 
considerably reduces the labor needed for subsequent 
mathematical analysis

Block Diagram Reduction

Feb-15 72
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Block Diagram Transformations

Feb-15 73
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 Simplify this

diagram

Solution:

 By moving the summing point of the negative feedback loop 
containing H2 outside the positive feedback loop containing 
H1, we obtain 

Example

Feb-15 74
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 Eliminating the positive feedback loop

 The elimination of the loop containing H2/G1 gives

 Finally, eliminating the feedback loop results in

Example (2)

Feb-15 75
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 Notice that the numerator of the closed-loop transfer 
function C(s)/R(s) is the product of the transfer functions of 
the feed-forward path. 

 The denominator of C(s)/R(s) is equal to

The positive feedback loop yields a negative term in the denominator

Example (3)

Feb-15 76
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Signal Flow Graph

Feb-15 77
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SFG was introduced by S.J. Mason for the cause-and-
effect representation of linear systems.

Signal Flow Graph (SFG) 

Feb-15 78

1. Each signal is represented by a node.

2. Each transfer function is represented by a branch.

G(s)
U(s) Y(s)

G(s)

H(s)

U(s)R(s)
_

Y(s)

G(s)

U(s) Y(s)

G(s)
U(s) Y(s)R(s)

-H(s)

1
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Note: A signal flow graph and a block diagram contain 
exactly the same information (there is no advantage 
to one over the other; there is only personal 
preference)

Block Diagram and Signal-Flow Graph

Feb-15 79

( )rU s
1( )I s

2 ( )I s

( )cU s
1( )U s

－ 1

1

R 1

1

sC

－

2

1

R
－ 2

1

sC

( )rU s 1( )I s 1( )U s 2 ( )I s

( )cU s
1

1

R 1

1

sC
2

1

R 2

1

sC

-1 -1

-1

1 1 1
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Mason’s Rule

Feb-15 80

1

( ) 1
( )

( )

N

k k

k

Y s
M s M

U s 

  



k
M Path gain of the kth forward path





1 (all individual loop gains)

(gain products of all possible three loo ps that do not touch)

(gain products of all possible two loops  that do not touch)




kValue of ∆ for that part of the block diagram 

that does not touch the kth forward path



N Total number of forward paths between  output 
Y(s) and input U(s)
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Example 1 Find the transfer function for the following block diagram

Solution:

Forward path     Path gain and the determinates are

1 1

1
1 ( )(1)M b

s

 
  

 

2 2

1 1
1 ( )(1)M b

s s

  
   

  

3 3

1 1 1
1 ( )(1)M b

s s s

   
    

   

31 2

2 3
1 0

aa a

s s s

 
       

 

1

2

3

1 0

1 0

1 0

  

  

  

1236

12346

123456

b1

1/s

a3

b2

b3

a2

a1

1/s 1/s+

_
_

_

+

+ + Y(s)

U(s)
① ② ③ ④ ⑤

⑥

Feb-15 89
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Example 1

b1

1/s

a3

b2

b3

a2

a1

1/s 1/s+

_
_

_

+

+ + Y(s)

U(s)
① ② ③ ④ ⑤

⑥

Find the transfer function for the following block diagram

Solution:

1

2

1 2 3

3 2

1 2 3

( )
( )

( )

N
k k

k

MY s
M s

U s

b s b s b

s a s a s a




 



 


  



Applying Mason’s rule, we find the transfer function to be

Feb-15 90
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Example 2 Find the transfer function for the following SFG

Solution:
Forward path     Path gain

and the determinates are

1 1 2 3           123456      M H H H

2 4              1256     M H

      Loop path     Path gain

1 1 5                 232      l H H

2 2 6                 343      l H H

3 3 7                 454      l H H

4 4 7 6 5             25432      l H H H H

 1 2 3 4 1 31 ( )l l l l l l      

1

2 2 6

1 0

1 H H

  

  

( )U s ( )Y s

5H

1 1H

4H

6H

7H

2H

3H 1
① ② ③ ④ ⑤ ⑥

Feb-15 91
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1

1 2 3 4 4 2 6

1 5 2 6 3 7 4 7 6 5 1 5 3

( )
( )

( )

1

N
k k

k

MY s
M s

U s

H H H H H H H

H H H H H H H H H H H H H H




 



 


    



Solution:

Applying Mason’s rule, we find the transfer function to be

Example 2 Find the transfer function for the following SFG

( )U s ( )Y s

5H

1 1H

4H

6H

7H

2H

3H 1
① ② ③ ④ ⑤ ⑥

Feb-15 92


