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Chapter 8 State Feedback and State Estimators

Homework 8
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Consider the following linear system given by:

(a) Using the transformation to the Observer Form, find the gain 
vector l of the closed-loop state estimator if the desired poles 
are –3 and –4 ± j2.

(b) Recall again the output feedback. In observer form, its effect on 
the characteristic equation of the system can be calculated much 
easier. By calculation, prove that the poles of the system cannot 
be assigned to any arbitrary location by only setting the value of 
output feedback j.
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Chapter 8 State Feedback and State Estimators

Solution of Homework 8

1a

( ) det( )a s s I A
3 213 33 13s s s   

2a

1 0 1

2 3 9

14 22 93

 
   
 
  

O

33 13 1

13 1 0

1 0 0

 
 
 
  

T

1

21 17 9

11 3 4

1 0 1



 
 
 
  

R

0a

0.0361 0.2048 0.4940

0.0843 0.1446 0.1807

0.0361 0.2048 1.4940

  
   
 
  

R

Checking the Observer Form:

0 0 13

ˆ 1 0 33

0 1 13

 
  
 
  

A

 ˆ 0 0 1c

46

ˆ 13

0

 
 
 
  

b
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Chapter 8 State Feedback and State Estimators

Solution of Homework 8

The desired characteristic 
equation of the state observer 
is:

( ) ( 3)( 4 2)( 4 2)a s s s j s j     
3 211 44 60s s s   

0a1a

1 0 0l̂ a a 

2 1 1l̂ a a 

60 13 47  

44 33 11  

47

ˆ 11

2

 
 
 
  

l

For the transformed system

1.5422

ˆ 2.7349

3.5422

 
  
 
  

l Rl

For the original system

2a

3 2 2l̂ a a  11 13 2   

(a) Find the gain vector l of the 
closed-loop state estimator if 
the desired poles are –3 and 
–4 ± j2.
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Chapter 8 State Feedback and State Estimators

Solution of Homework 8
(b) Prove that the poles of the system cannot be placed freely by 

only setting a single variable j of output feedback.

 

0 0 13 46

ˆ ˆ( )  ( )  ( )1 0 33 13

0 1 13 0

ˆ( )  ( )0 0 1

t t u t

y t t

   
    
   
      



x x

x

• Transformation Result, 
Observer Form

( ) ( ) ( ) ( )t j t r t  x A bc x b

( ) ( )y t t cx
• Output Feedback
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Chapter 8 State Feedback and State Estimators

Solution of Homework 8
( ) ( ) ( ) ( )t j t r t  x A bc x b

 

0 0 13 46

( ) ( ) ( )1 0 33 13 0 0 1

0 1 13 0

t j t r t

     
          
        

x x b

0 0 13 0 0 46

( ) ( )1 0 33 0 0 13

0 1 13 0 0 0

j t r t

     
          
        

x b

0 0 (13 46 )

( ) ( )1 0 (33 13 )

0 1 13

j

t r tj

  
   
 
  

x b

3 2( ) 13 (33 13 ) (13 46 )a s s s j s j      

• Only a0 and a1 can be adjusted, 
both dependent to each other

• The poles of the system cannot 
be placed in any wished position
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Chapter 8 State Feedback and State Estimators

Reference Input in State Feedback
 The state feedback has been proven to be able to place the poles 

of closed-loop system in arbitrary locations, and therefore can be 
used to design the transient response of a system.

 However, the steady-state response is still neglected until now, 
and the system will almost surely have a nonzero error to a step 
input.

( ) ( ) ( )u t r t t k x

Reference Value

 Now, two ways to incorporate the tracing of reference input while 
using state feedback will be introduced:

 Pre-scaling/ Pre-amplifying

 Integral Control
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Pre-Scaling

 Consider again the n-dimensional state-space equations:

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

 In steady-state condition, these equations reduce to:

ss ss( ) ( )y t t cx
ss ss( ) ( )t u t Ax b0

 If the desired value of the states and the required process input to 
reach them are xr(t) and ur(t), then the new feedback formula 
should be:

 rr( ) ( ) ( ) ( )u t u t t t  k x x

If x(t) → xr(t), then u(t) → ur(t)
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Pre-Scaling

 Let us now define:

ss ( ) ( )t r tx N

ss ( ) ( )u t Mr t

 The equations in steady-state condition can now be written as:

1 0 M

     
     

     

A b N

c

0
or

1

0 1M



     
     

     

N A b

c

0

 Now, comparing the values from the above equations and the 
desired values, we obtain:

ss ( ) ( )y t r t

ss r( ) ( )t tx x

ss r( ) ( )u t u t

• How? Why?
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Pre-Scaling
 After finding N and M, the required input to the system, u(t), that 

guarantees zero steady-state error to a step input can be 
calculated as:

 rr( ) ( ) ( ) ( )u t u t t t  k x x

 ( ) ( ) ( ) ( )u t Mr t t r t  k x N

  ( ) ( )M r t t  kN k x

E• New scalar gain for r(t) 

( )r t
Plant

k

( )y t

( )tx

( )u t
+
–

M kN

Pre-scaling 
gain
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Chapter 8 State Feedback and State Estimators

Example 1: Pre-Scaling

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
    

   



x x

x

For the desired eigenvalues of –1 and –2, it is already calculated 
that the required feedback gain is k = [4 1].

Now, it is desired that the output y(t) should follow 
r(t) = 1.5(t). Calculate the gain E for the reference value r(t) 

Referring again to the state-space equation that has been used 
before, 
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Chapter 8 State Feedback and State Estimators

Example 1: Pre-Scaling

1
2 1 1 0

1 1 2 0

1 1 0 1
M



   
           
 

      

N

1

0 1M



     
     

     

N A b

c

0

0.25

1.25

0.75

 
 
 
  

0.25
,

1.25

 
   

 
N 0.75M  

 E M  kN  
0.25

0.75 4 1
1.25

   
    

  
0.5 
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Chapter 8 State Feedback and State Estimators

Example 1: Pre-Scaling

Step Response Without 
Reference Gain E

Step Response With 
Reference Gain E

• The previous steady-state value of the system is 
y(∞) = –3, see left scope.

• The reference gain (E = –0.5) invert y(∞) to the 
desired value of r(t) = 1.5(t), see right scope.
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Integral Control
 The integral control is included by augmenting the state vector 

x(t) with the desired dynamics, such that the states of the system 
is increased, but still with the same form of:

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

b 

A

c+
+

( )y t
( )tx( )tx

Plant

( )u t

( )y t( )u t


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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Integral Control

 The feedback is set to contain the integral of the error, e = r–y, 
as well as the state of the system, x(t).

 We add the existing state with an extra integral state xint, given by 
the following equation:

int ( ) ( ) ( )x t r t t cx ( )e t

int

0

( ) ( )x t e t dt



 

This implies that

 The integral control is included by augmenting the state vector 
x(t) with the desired dynamics, such that the states of the system 
is increased, but still with the same form of:

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Integral Control
 The augmented state-space equations become

int int0 0 1x x
u r

         
           

         0 0

c

x A x b

int int( ) ( ) ( )u t t k x t  k x

with the feedback law –to incorporate the feedback k gain and 
integrator gain kint– is chosen as:

  int

int

x
k

 
   

 
k

x

( )r t
Plant

k

( )y t

( )tx

( )u t
–

+
–

1
s int

k –

  int
0

x
y

 
  

 
c

x
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Chapter 8 State Feedback and State Estimators

Tracing of Reference Input: Integral Control

 The characteristic equation of the augmented system is now given 
as

int

0
( ) deta s s

k

   
   

   

c
I

b A bk

 Substituting u(t) to the augmented state-space equations,

 int int

int

0 0 1x x
k r

           
            

          0 0

c
k

x A b x

int int

int

0 1x x
r

k

      
               0

c

b A bkx x

with the possibility to place the poles by means of k and kint.

  int
0

x
y

 
  

 
c

x
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Chapter 8 State Feedback and State Estimators

Example 2: Integral Control

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
    

   



x x

x

with the desired eigenvalues of –1 and –2, and r(t) = 1.5(t). 

The integrator increases the order of the system by one to become 
a third-order system. The third eigenvalues is assumed to be–3.

The augmented state-space equations is given by:

The scheme should now be implemented on the state-space 
equations that has been used before, 

int int

int 1 2

int 1 2

0 1 1
1

2 1

2 1 2 1 2

x x
k k k r

k k k

  
      

          
          

0x x

int int

int

0 1x x
r

k

      
               0

c

b A bkx x
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Chapter 8 State Feedback and State Estimators

Example 2: Integral Control

int 1 2

int 1 2

1 1

( ) det (2 ) (1 )

2 1 2 (1 2 )

s

a s k s k k

k k s k

  
  

      
      

int 1 2

int 1 2

0 1 1

( ) det 2 1

2 1 2 1 2

a s s k k k

k k k

    
  

      
       

I

3 2

1 2 1 2 int int( 2 3) ( 5 3 3) 4s k k s k k k s k        

( 1)( 2)( 3)s s s   

1 2 int10, 0.5, 1.5k k k    

3 26 11 6s s s   
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Chapter 8 State Feedback and State Estimators

Example 2: Integral Control
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Chapter 8 State Feedback and State Estimators

Example 2: Integral Control

Third pole at s = –3

1 2 int10, 0.5, 1.5k k k   

Third pole at s = –0.5

1 2 int5, 0.75, 0.25k k k  

• What conclusion 
can be taken?
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Chapter 8 State Feedback and State Estimators

Homework 9
Refer to the last example.

(a) Calculate the transfer function G(s) of the system.

(b) Calculate the steady-state value of the system to a unit step 
input, using the Final Value Theorem of Laplace Transform.

(c) Determine the gain K so that the steady-state response of 
KG(s) has zero error to a unit step input.

(d) Find out the relation between the transfer function gain K and 
the reference gain E.
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Homework 9A

(a) Pre-scaling method, by calculating the gain E.

(b) Integral control method, by calculating the gain [kint k]. 
Hint: Assume the additional pole to be –1 and do not move the 
original poles of the system.

(c) Implement the original system, the system at (a) and the 
system at (b) in one Matlab Simulink file and compare the 
outputs.
Hint: For the matrix calculations, you may use Matlab. Write 
down or print the result on your homework papers. 

 

1 2 0 1

( ) 1 3 4  ( ) 2  ( )

1 1 9 1

( ) 1 0 1  ( )

t t u t

y t t

   
   

  
   
        



x x

x

It is desired that the following linear system has zero steady state 
error to a unit step input. Find the solution by using:


