"Linear System Theory and Design", Chapter 5,6 Stability, Observability, and Controllability

http://zitompul.wordpress.com

Homework 3: Transfer Function to State Space

 \blacksquare Find the state-space realizations of the following transfer function in *Frobenius Form*, *Observer Form*, and *Canonical Form*.

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 8s^2 + 19s + 12}
$$

 \blacksquare Hint: Learn the following functions in Matlab and use the to solve this problem: **roots**, **residue**, **conv**.

Homework 3: Transfer Function to State Space

 \blacksquare Find the state-space realizations of the following transfer function in *Frobenius Form*, *Observer Form*, and *Canonical Form*.

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 8s^2 + 19s + 12} = \frac{b_1s + b_0}{s^3 + a_2s^2 + a_1s + a_0}
$$

$$
\begin{aligned}\n\blacksquare \quad \text{Frobenius Form} \\
\begin{bmatrix}\n\dot{x}_1(t) \\
\dot{x}_2(t)\n\end{bmatrix} &= \begin{bmatrix}\n0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & -19 & -8\n\end{bmatrix} \begin{bmatrix}\nx_1(t) \\
x_2(t)\n\end{bmatrix} + \begin{bmatrix}\n0 \\
0 \\
1\n\end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix}\n2 & 1 & 0\n\end{bmatrix} \begin{bmatrix}\nx_1(t) \\
x_2(t)\n\end{bmatrix} + 0u(t) \\
x_3(t)\n\end{aligned}
$$

Homework 3: Transfer Function to State Space

 \blacksquare Find the state-space realizations of the following transfer function in *Frobenius Form*, *Observer Form*, and *Canonical Form*.

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 8s^2 + 19s + 12} = \frac{b_1s + b_0}{s^3 + a_2s^2 + a_1s + a_0}
$$

Observer Form

$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & -12 \\ 1 & 0 & -19 \\ 0 & 1 & -8 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + 0u(t)
$$

Homework 3: Transfer Function to State Space

 \blacksquare Find the state-space realizations of the following transfer function in *Frobenius Form*, *Observer Form*, and *Canonical Form*.

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 8s^2 + 19s + 12} = \frac{b_1s + b_0}{s^3 + a_2s^2 + a_1s + a_0}
$$

Using Matlab function, $[R, P, K]$ = residue(NUM, DEN),

$$
\frac{s+2}{s^3 + 8s^2 + 19s + 12} = \frac{-2/3}{s+4} + \frac{1/2}{s+3} + \frac{1/6}{s+1}
$$

$$
= \frac{r_1}{s - \lambda_1} + \frac{r_2}{s - \lambda_2} + \frac{r_3}{s - \lambda_3}
$$

Homework 3: Transfer Function to State Space

■ **Canonical Form**
\n
$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t)
$$
\n
$$
y(t) = \begin{bmatrix} -2/3 & 1/2 & 1/6 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + 0u(t)
$$

Homework 3: Transfer Function to State Space

Canonical Form

The state space equations in case all poles are distinct:

$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} r_1 & r_2 & \cdots & r_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + r_0 u(t)
$$

Canonical Form, Distinct Poles

- **The resulting matrix** *A* **is a diagonal matrix.**
- **The ODEs are decoupled, each of them can be solved independently.**

Chapter 5 Stability

Math Preliminaries

■ Let *M* be an *m* × *n* matrix, then:

$$
\underline{M} \underline{x} = \underline{0}, \text{ for } \underline{x} \neq \underline{0} \implies \text{rank}(M) < n
$$

 $y^T M = 0$, for $y^T \neq 0 \implies \text{rank}(M) < m$

■ If *M* is *n*×*n* matrix, then:

M is nonsingular \Leftrightarrow $\text{rank}(M) = n$

For a nonsingular matrix M,

$$
\underline{M}\underline{x} = \underline{0} \iff \underline{x} = \underline{0}
$$

$$
\underline{x}^T \underline{M} = \underline{0} \iff \underline{x} = \underline{0}
$$

Math Preliminaries

■ A symmetric $n \times n$ matrix **P** is *positive semidefinite* if:

 $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{x} \geq \boldsymbol{0}, \ \ \text{for all} \ \boldsymbol{x} \neq \boldsymbol{0}$

It is positive definite if:

 $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{P}\boldsymbol{x} > \boldsymbol{0},\ \ \text{for all}\ \boldsymbol{x} \neq \boldsymbol{0}$

- A matrix *P* is *positive definite* if and only if all eigenvalues of **P** are positive.
- A symmetric positive semidefinite matrix is positive definite if and only if it is nonsingular.

Stability

- There are several ways to define the stability of a system. One of them is "BIBO (Bounded Input Bounded Output) Stability".
- A system is said to be **BIBO stable** if every bounded input excites a bounded output also.
- **Bounded input means, there exists a constant** u_m **such that**

 $\left| u(t)\right| \!<\! u_{{}_{\rm m}}<\!\infty ,\;\;$ for all $t\geq 0$

- Thus, a SISO system, described by a transfer function *G(s)* is said to be BIBO stable **if and only if** every pole of *G*(*s*) has a negative real part.
- Other way stated, a SISO system *G(s)* is stable if every pole of *G*(*s*) lies on the left half plane of *s*.

A state space in the form of:

 $\dot{x}(t) = Ax(t) + Bu(t)$

 $y(t) = \underline{C}x(t) + \underline{D}u(t)$

is said to be <u>marginally stable</u> if for $\underline{u}(t) = \underline{0}$, every finite initial state $\underline{\mathbf{x}}_0$ will excite a bounded response.

The state space is said to be <u>asymptotically stable</u> if for $\underline{u}(t) = \underline{0}$, every finite initial state \underline{x}_0 will excite a bounded response and it approaches **0** as *t*→∞.

Controllability

■ Consider the *n*-dimensional state equations with *r* inputs:

 $\dot{x}(t) = Ax(t) + Bu(t)$

- The state equations above are said to be "controllable" if for any initial state $\underline{\mathbf{x}}(t_0) = \underline{\mathbf{x}}_0$ and any final state $\underline{\mathbf{x}}(t_1) = \underline{\mathbf{x}}_1$, there exists an input that transfers $\underline{\mathbf{x}}_0$ to $\underline{\mathbf{x}}_1$ in a finite time.
- Otherwise, the state equations are said to be "uncontrollable".

Controllability Matrix

■ The controllability of state equations can be checked using the [$nxnr$] controllability matrix:

$$
\mathbf{\underline{C}} = \left[\mathbf{\underline{B}} \mid \mathbf{\underline{A}}\mathbf{\underline{B}} \mid \mathbf{\underline{A}}^2 \mathbf{\underline{B}} \mid \cdots \mid \mathbf{\underline{A}}^{n-1} \mathbf{\underline{B}} \right]
$$

■ A state space described by the pair ($\underline{A}, \underline{B}$) is controllable if the column rank of $\underline{e} = n$, or equivalently, if matrix \underline{e} has *n* linearly independent columns.

Example 1

Investigate the controllability of

$$
\underline{\mathbf{A}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}, \underline{\mathbf{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

$$
\underline{\mathbf{C}} = \left[\underline{\boldsymbol{B}} \mid \underline{\boldsymbol{A}} \underline{\boldsymbol{B}} \mid \underline{\boldsymbol{A}}^2 \underline{\boldsymbol{B}} \right]
$$

Matlab: $C = \text{ctrb}(A, B)$; rank(C);

Observability

■ Consider the *n*-dimensional state space equations with *r* inputs and *m* outputs:

 $\dot{x}(t) = Ax(t) + Bu(t)$

 $y(t) = \underline{C}x(t) + \underline{D}u(t)$

- The state space equations above are said to be "observable" if for any unknown initial state $\underline{\mathbf{x}}(t_0) = \underline{\mathbf{x}}_{0}$, there exists a finite $t_1 > 0$ such that the knowledge of the input $\mathbf{u}(\vec{t})$ and the output $\mathbf{y}(t)$ over the time interval $[t_0,\tilde{t_1}]$ suffices to determine uniquely the initial state $\underline{\mathbf{x}}(t_0)$.
- **Otherwise, the state space equations are said to be** "unobservable".

Observability Matrix

■ The observability of state space equations can be checked using the [$nm \times n$] observability matrix:

■ A state space described by the pair ($\underline{A},\underline{C}$) is observable if the row rank of $\underline{\mathscr{O}} = n$, or equivalently, if matrix $\underline{\mathscr{O}}$ has *n* linearly independent rows.

Example 2

A state space is given as

$$
\dot{\underline{\mathbf{x}}}(t) = \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{\mathbf{x}}(t)
$$

Check its controllability and observability.

$$
n = 2
$$
\n
$$
Q = [B \mid AB] = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 3 & -6 \end{bmatrix}
$$
\n
$$
\begin{aligned}\n\begin{aligned}\n\mathbf{C} &= \mathbf{1} \neq n \\
\mathbf{C} &= \mathbf{1} \neq n \\
\mathbf{C} &= \mathbf{C} \\
\mathbf{C} &= \mathbf{C
$$

State Feedback

- **Feedback control is characterized by a comparison of backward** connection of output signal(s) to set point(s).
- **The feedback signal can be classified into:**
	- **1. Output feedback**, where only some output variables are measured and can be used for feedback
	- **2. State feedback**, where all state variables are measured and can be used for feedback.

■ Consider the *n*-dimensional single-variable state space equations: $\dot{x}(t) = Ax(t) + bu(t)$
 $y(t) = cx(t)$

■ **Main idea**: Using measurements of state variables $\underline{\mathbf{x}}(t)$, determine an input $u(t)=f(x(t))$ such that the dynamic properties of the system can be changed to fulfill a certain criteria.

State Feedback

■ The states $\underline{\mathbf{x}}(t)$ are fed back through a feedback gain $\underline{\mathbf{k}}$. The input $u(t)$ is given by:

$$
u(t) = r(t) - \underbrace{k \, \mathbf{x}(t)}_{i=1} \qquad \qquad \underbrace{k}_{i} = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix}
$$
\n
$$
= r(t) - \sum_{i=1}^n k_i x_i(t) \qquad \qquad \underbrace{\mathbf{x}(t)} = \begin{bmatrix} x_1(t) & x_2(t) & \cdots & x_n(t) \end{bmatrix}^\mathrm{T}
$$

State Feedback

■ Substituting $u(t)$ to the original state space equations,

 $\dot{x}(t) = (\underline{A} - \underline{b}\underline{k}) \underline{x}(t) + \underline{b}r(t)$

 $y(t) = c x(t)$

Consider a state space

$$
\dot{\underline{\mathbf{x}}}(t) = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{\mathbf{x}}(t)
$$

The controllability and observability matrices are:

$$
\underline{\mathcal{C}} = [\underline{\mathbf{B}} \quad \underline{\mathbf{A}} \underline{\mathbf{B}}] = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}
$$

$$
\underline{\mathcal{C}} = \begin{bmatrix} \underline{\mathbf{C}} & 1 & 2 \\ \underline{\mathbf{C}} \underline{\mathbf{A}} & 1 & 1 \end{bmatrix}
$$

• Column rank of
$$
\mathcal{C} = 2
$$
 \rightarrow "controlled"

• **Row rank of** $\mathcal{O} = 2$ **"observable"**

Let us now introduce a state feedback:

$$
u(t) = r(t) - \begin{bmatrix} 3 & 1 \end{bmatrix} \underline{x}(t)
$$

The state space is now:

$$
\begin{split}\n\underline{\dot{\mathbf{x}}}(t) &= \left(\underline{A} - \underline{b}\underline{k}\right)\underline{\mathbf{x}}(t) + \underline{b}r(t) \\
&= \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
&= \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
\end{bmatrix} r(t) \\
\underline{\dot{x}}(t) &= \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
\underline{\dot{x}}(t) &= \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cdot \text{Column rank of } \underline{c} = 2 \\
\cdot \text{ 'controllabel''} \\ \cdot \text{ 'nontrollable''} \end{bmatrix} \\
y(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}(t) \\
y(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \cdot & \text{State feedback may make a} \\
\cdot & \text{state space become "not} \end{bmatrix} \\
\underline{\underline{\underline{\underline{v}}}(t) \end{split}
$$

Consider a SISO system with the following state equations:

$$
\dot{\underline{\mathbf{x}}}(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)
$$

The transfer function of the system is:

$$
G(s) = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D
$$

The characteristic equation, or the denominator of *G*(*s*), is given by:

$$
a(s) = det(s\underline{I} - \underline{A})
$$

= det $\begin{pmatrix} s-1 & -3 \\ -3 & s-1 \end{pmatrix}$
= $(s-1)^2 - (-3)(-3)$
= $s^2 - 2s - 8$
= $(s-4)(s+2) \cdot A = 4$, positive
• Unstable eigenvalues or unstable pole

Let us now introduce a state feedback: $u(t) = r(t) - \left[k_1 \quad k_2\right] \underline{x}(t)$

The state space is now:

$$
\dot{\underline{\mathbf{x}}}(t) = \begin{bmatrix} 1 - k_1 & 3 - k_2 \\ 3 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r(t)
$$

The characteristic equation becomes:

$$
a(s) = det \begin{pmatrix} s - (1 - k_1) & -(3 - k_2) \\ -3 & s - 1 \end{pmatrix}
$$

= $(s - 1 + k_1)(s - 1) - (-3 + k_2)(-3)$
= $s^2 + (k_1 - 2)s + (3k_2 - k_1 - 8)$
• The roots of the new characteristic equation can be placed in any location by assigning appropriate value of k_1 and k_2
• Condition: complex eigenvalues must be given in

s must be given in **pairs**

Homework 4

Again, consider a SISO system with the state equations:

$$
\begin{aligned} \n\dot{\underline{\mathbf{x}}}(t) &= \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ \ny(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{\mathbf{x}}(t) \n\end{aligned}
$$

a. If the state feedback in the form of:

$$
u(t) = r(t) - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \underline{\mathbf{x}}(t)
$$

is implemented to the system and it is wished that the poles of the system will be -3 and -4 , determine the value of k_1 and k_2 .

b. Find the transfer function of the system and again, check the location of the poles of the transfer function.

Homework 4A

Consider a SISO system with the state equations:

$$
\dot{\mathbf{x}}(t) = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 2 & 3 \end{bmatrix} \mathbf{x}(t)
$$

a. If the state feedback in the form of:

 $u(t) = r(t) - [k_1 \quad k_2] \underline{\mathbf{x}}(t)$

is implemented to the system and it is wished that the damping factor ζ of the system is equal to 0.8 while keeping the system stable. Determine the required value of k_1 and k_2 . **Hint**: Take one reasonable value of *ω*.

b. Find the transfer function of the system and again, check the location of the poles of the transfer function.