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Chapter 4 Realization of State Space Equations

Homework 3: Transfer Function to State Space

B Find the state-space realizations of the following transfer function
in Frobenius Form, Observer Form, and Canonical Form.

Y(S) S+2
U(s) s°+8s°+19s5+12

G(s) =

B Hint: Learn the following functions in Matlab and use the to solve
this problem: roots, residue, conv.
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) U(s) s°+8s°+19s+12 s’+a,s”+as+a,

B Frobenius Form

x®7 [0 1 o]x@®] [0
@)= 0 0 1| x@)]+o0]u

()] |-12 19 8| x®] [1
% (1) ]
y{t)=[2 1 O0]| x,(t) |+0uf(t)
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Y(s) S+2 B bs+D,

G(s) = = =
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B Observer Form

_>'<1(t)_ 0 0 —12"x1(t)_
X,t) |=]1 0 -19|| x,(t) [+| 1 |u(t)
_Xs(t)_ _O 1 -8 _Xs(t)_

% (1) ]
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Chapter 4 Realization of State Space Equations

Homework 3: Transfer Function to State Space

B Find the state-space realizations of the following transfer function
in Frobenius Form, Observer Form, and Canonical Form.

Y(s) S+2 B bs+D,
U(s) s°+8s°+19s+12 s’+a,s”+as+a,

G(s) =

B Using Matlab function, [R,P,K] = residue(NUM,DEN),

S+2 23 12 16
s +8s°+19s+12 s+4 s+3 s+1
rl r2 r3

= + +
S—A4 S-4 S-4




Chapter 4 Realization of State Space Equations

Homework 3: Transfer Function to State Space

B Canonical Form

X @®] [4 0 0 x()
X,t)|=] 0 =3 0 || x(t) [+]1]|u(t)
_Xs(t)_ 0 0 -1 _Xs(t)_

%, (t) |

y(©) =[-2/3 Y2 16]| x,(t) |+0u(t)
% (1),




Chapter 4 Realization of State Space Equations

Homework 3: Transfer Function to State Space
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Chapter 4 Realization of State Space Equations
Canonical Form

B The state space equations in case all poles are distinct:

Canonical Form,
Distinct Poles

e The resulting matrix A is a diagonal matrix.
e The ODEs are decoupled, each of them can be
solved independently.



Chapter 5 Stability
Math Preliminaries

B Let M be an mxn matrix, then:
Mx=0, forx#0 = rank(M)<n

y'M=0, fory' #0 = rank(M)<m

B If M is nxn matrix, then:

M isnonsingular < rank(M)=n

M For a nonsingular matrix M,




Chapter 5 Stability

Math Preliminaries

B A symmetric nxn matrix P is positive semidefinite if:

)_(TEX >0, forallx=0

It is positive definite if:
X' Px>0, forall x#0

B A matrix P is positive definite
if and only if
all eigenvalues of P are positive.

B A symmetric positive semidefinite matrix is positive definite
if and only if

it is nonsingular.




Chapter 5 Stability
Stability

B There are several ways to define the stability of a system. One of
them is "BIBO (Bounded Input Bounded Output) Stability”.

H A system is said to be BIBO stable if every bounded input excites
a bounded output also.

B Bounded input means, there exists a constant u,, such that

lu(t)| <u,, <o, forallt>0

B Thus, a SISO system, described by a transfer function G(s) is said
to ble BIBO stable if and only if every pole of G(s) has a negative
real part.

B Other way stated, a SISO system G(s) is stable if every pole of
G(s) lies on the left half plane of s.




Chapter 5 Stability
Stability

B A state space in the form of:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

is said to be marginally stable if for u(t)=0, every finite initial
state x, will excite a bounded response.

B The state space is said to be asymptotically stable if for u(t)=0,

every finite initial state x, will excite a bounded response and it
approaches 0 as t—oo0,




Chapter 6 Controllability and Observability

Controllability

B Consider the n-dimensional state equations with r inputs:
X(t) = Ax(t) + Bu(t)

B The state equations above are said to be “controllable” if for any
initial state x(t;) = X, and any final state x(t;) = x;, there exists
an input that transfers X, to x; in a finite time.

B Otherwise, the state equations are said to be “uncontrollable”.




Chapter 6 Controllability and Observability

Controllability Matrix

B The controllability of state equations can be checked using the
[nxnr] controllability matrix:

B A state space described by the pair (A,B) is controllable if the
column rank of € = n, or equivalently, if matrix € has n linearly
independent columns.




Chapter 6 Controllability and Observability

Example 1

Investigate the controllability of

0 1 0 0
A=|0 0 1/,B=|0
-1 -2 -3| |1]

B Matlab: C = ctrb(A,B); rank(C);



Chapter 6 Controllability and Observability

Observability

B Consider the n-dimensional state space equations with r inputs and
m outputs:

X(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)
B The state space equations above are said to be “observable” if for

any unknown initial state x(t;) there exists a finite t;>0 such
that the knowledge of the'i mput u(% and the output y(t) over the

tl?we) interval [t,,t;] suffices to determine uniquely the initial state

X (&,

B Otherwise, the state space equations are said to be
“unobservable”.




Chapter 6 Controllability and Observability

Observability Matrix

B The observability of state space equations can be checked using
the [nmxn] observability matrix:

A
1
O
35S

W A state space described by the Pair (A,C) is observable if the row
rank of ¢ = n, or equivalently, i
independent rows.

matrix ¢ has n linearly




Chapter 6 Controllability and Observability

Example 2

A state space is given as

, 1 -1 1
x()=| _Jz(WMU(t)

y®)=[1 0]x(®)

Check its controllability and observability.

; - 1 1 _1 1 - 1 _2 o go=lu1m: 'l;ank of
B AE] — - e The state space is
3 0 —2]3 3:-6 “uncontrollable”

9 ........................................ 1 0 e Row rank of
0 S — 1 _1 S Q =2 =n
— |CA [1 O] N 1 -1 e The state space is

“observable”




Chapter 8 State Feedback and State Estimators
State Feedback

B Feedback control is characterized by a comparison of backward
connection of output signal(s) to set point(s).

B The feedback signal can be classified into:

1. Output feedback, where only some output variables are
measured and can be used for feedback

2. State feedback, where all state variables are measured and
can be used for feedback.

B Consider the n-dimensional single-variable state space equations:

X(t) = Ax(t) +bu(t)
y(t) =cx(t)

B Main idea: Using measurements of state variables x(t), determine
an input u(t?;f()_((t)) such that the dynamic properties of the
system can be

changed to fulfill a certain criteria.




Chapter 8 State Feedback and State Estimators
State Feedback

r(t) u(t) X(t)—— X(t) y(t)
e aie ; : 1 j Q M el
A

—— : vector flow
— : scalar flow

K =

2(t)

M The states x(t) are fed back through a feedback gain k.
M The input u(t) is given by:

u(t) = r(t) —kx(t) k=[k Kk, - k]
=r(t)- > kx(t) xM=[x® %O - %O



Chapter 8 State Feedback and State Estimators
State Feedback

B Substituting u(t) to the original state space equations,
X(t) = (A-bk) x(t) +br(t)
y(t) = cx(t)




Chapter 8 State Feedback and State Estimators

Consider a state space

X(t) =
y(t) =

(1 2 0
3 J x(t) + L} u(t)

1 2]x(t)

The controllability and observability matrices are:

|
I

C=[B | AB] {

- “controllable”

0 2 e Column rank of ¢ = 2
1:1

C } 1 2}
....... | e Row rankof ¢ = 2

- “"observable”

Example 3




Chapter 8 State Feedback and State Estimators
Example 4

Let us now introduce a state feedback:
ut)=r(t)—[3 1]x(t)

The state space is now:
X(t) = (A-Dbk) x(t) +br(t)

(1 2 0 0
=[_3 1_—_1}[3 1]]5(0{1}(0
1 2] [0 O 0
=(_3 173 1D§(t)+mr(t)
e Column rank of ¢ = 2

12 0 0 “controllable”
X(t) = O}X(t){ }r(t) e- 0:2| = trollabl

0 1 1:0|eRowrankof(¢ =1
- - “not observable”

state space become “not
observable”

y®)=[1 2]x(t) 1 2} o State feedback may make a




Chapter 8 State Feedback and State Estimators
Example 5

Consider a SISO system with the following state equations:

. 1 3 1
X(1) {3 Jz(t){o}u(t)

]
The transfer function of the system is:

G(s)=C(sl-A)"B+D

The characteristic equation, or the denominator of G(s), is given by:
a(s) =det(sl1 - A)

Rl
-3 s-1
=(s—1)* - (-3)(-3)

—s°—-25-8

=(s—4)(s+2) A= 4, positive
e Unstable eigenvalues or unstable pole



Chapter 8 State Feedback and State Estimators
Example 5

Let us now introduce a state feedback:

ut)=r(t)—[k k. ]x()

The state space is now:

1-k, 33—k 1
>_'<(t)={ 31 . Z}Z(t){o}f(t)

The characteristic equation becomes:
a(s) :det[{s_(l_kl) _(3_k2):|]
-3 s—1
=(s—1+k)(s -1 —(-3+k,)(-3)

=% +(k, —2)s+(3k, -k, —8
A '\J

e The roots of the new characteristic equation can
be placed in any location by assigning appropriate
value of k, and k,

e Condition: complex eigenvalues must be given in
pairs




Chapter 8 State Feedback and State Estimators
Homework 4

Again, consider a SISO system with the state equations:

x(t) =

y(t) =

1 3 0
3 1}x(t) +mua)

1 2]x(t)

a. If the state feedback in the form of:
u(t) =r(t) _[kl kz])_((t)

is implemented to the system and it is wished that the poles of
the system will be -3 and -4, determine the value of k; and k..

b. Find the transfer function of the system and again, check the
location of the poles of the transfer function.




Chapter 8 State Feedback and State Estimators
Homework 4A

Consider a SISO system with the state equations:

(1 2
x0=| }x(t){ _ﬂu(t)

yt)=[2 3]x(t)

a. If the state feedback in the form of:
u(t) =r(t) _[kl kz])_((t)

is implemented to the system and it is wished that the damping
factor C of the system is equal to 0.8 while keeping the system
stable. Determine the required value of k; and k,. Hint: Take one
reasonable value of w.

b. Find the transfer function of the system and again, check the
location of the poles of the transfer function.




