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Homework 3: Transfer Function to State Space

Chapter 4

 Find the state-space realizations of the following transfer function 
in Frobenius Form, Observer Form, and Canonical Form.

Realization of State Space Equations

3 2
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( )

( ) 8 19 12

Y s s
G s

U s s s s


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  

 Hint: Learn the following functions in Matlab and use the to solve 
this problem: roots, residue, conv.
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Homework 3: Transfer Function to State Space

Chapter 4

 Find the state-space realizations of the following transfer function 
in Frobenius Form, Observer Form, and Canonical Form.

Realization of State Space Equations
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( ) 2
( )

( ) 8 19 12

Y s s
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
 

  

1 0

3 2

2 1 0

b s b

s a s a s a




  

1 1

2 2

3 3

( ) 0 1 0 ( ) 0

( ) 0 0 1 ( ) 0 ( )

( ) 12 19 8 ( ) 1

x t x t

x t x t u t

x t x t

       
       

 
       
                

 
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( )

( ) 2 1 0 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
 

 
 
  

 Frobenius Form
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Homework 3: Transfer Function to State Space

Chapter 4

 Find the state-space realizations of the following transfer function 
in Frobenius Form, Observer Form, and Canonical Form.

Realization of State Space Equations
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 

  

1 0
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b s b
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
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  

 Observer Form

1 1

2 2

3 3

( ) 0 0 12 ( ) 2

( ) 1 0 19 ( ) 1 ( )

( ) 0 1 8 ( ) 0

x t x t

x t x t u t

x t x t

       
       

  
       
              

 
1

2

3

( )

( ) 0 0 1 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
 

 
 
  
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Homework 3: Transfer Function to State Space

Chapter 4

 Find the state-space realizations of the following transfer function 
in Frobenius Form, Observer Form, and Canonical Form.

Realization of State Space Equations
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  
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s a s a s a




  

 Using Matlab function, [R,P,K] = residue(NUM,DEN),

3 2

2 2 3 1 2 1 6

8 19 12 4 3 1

s

s s s s s s

 
  

     

31 2

1 2 3

rr r

s s s  
  

  
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Homework 3: Transfer Function to State Space

Chapter 4

 Canonical Form

Realization of State Space Equations

1 1

2 2

3 3

( ) 4 0 0 ( ) 1

( ) 0 3 0 ( ) 1 ( )

( ) 0 0 1 ( ) 1

x t x t

x t x t u t

x t x t

       
       

  
       
              
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( ) 2 3 1 2 1 6 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
 

  
 
  
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Homework 3: Transfer Function to State Space

Chapter 4 Realization of State Space Equations



8

Chapter 4 Realization of State Space Equations

Canonical Form
 The state space equations in case all poles are distinct: 

1 1 1

2 2 2

( ) 0 0 ( ) 1

( ) 0 0 ( ) 1
( )

( ) 0 0 ( ) 1n n n

x t x t

x t x t
u t

x t x t







       
       
        
       
       

       Canonical Form,
Distinct Poles

 

1

2

1 2 0

( )

( )
( ) ( )

( )

n

n

x t

x t
y t r r r r u t

x t

 
 
  
 
 
 

• The resulting matrix A is a diagonal matrix.
• The ODEs are decoupled, each of them can be 

solved independently.
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Math Preliminaries
 Let M be an m×n matrix, then:

, rank( )M n   0 0M x xfor 

rank( )M n M is nonsingular 

 If M is n×n matrix, then:

 For a nonsingular matrix M, 

T T
, rank( )M m   0 0y M yfor 

  0 0M x x 

T
  0 0x M x 

Chapter 5 Stability
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Math Preliminaries
 A symmetric n×n matrix P is positive semidefinite if:

T
, 0 0x Px xfor all 

It is positive definite if:
T

, 0 0x Px xfor all 

 A matrix P is positive definite
if and only if
all eigenvalues of P are positive.

 A symmetric positive semidefinite matrix is positive definite 
if and only if
it is nonsingular.

Chapter 5 Stability
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Stability

Chapter 5 Stability

 There are several ways to define the stability of a system. One of 
them is “BIBO (Bounded Input Bounded Output) Stability”.

 A system is said to be BIBO stable if every bounded input excites 
a bounded output also.

 Bounded input means, there exists a constant um such that

m ,     0( ) u tu t   for all

 Thus, a SISO system, described by a transfer function G(s) is said 
to be BIBO stable if and only if every pole of G(s) has a negative 
real part.

 Other way stated, a SISO system G(s) is stable if every pole of 
G(s) lies on the left half plane of s.
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 A state space in the form of:

Stability

Chapter 5 Stability

( ) ( ) ( )t t t x Ax Bu

( ) ( ) ( )t t t y Cx Du

is said to be marginally stable if for u(t)=0, every finite initial 
state x0 will excite a bounded response.

 The state space is said to be asymptotically stable if for u(t)=0, 
every finite initial state x0 will excite a bounded response and it 
approaches 0 as t→∞.
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Controllability

Chapter 6 Controllability and Observability

 Consider the n-dimensional state equations with r inputs:

( ) ( ) ( )t t t x Ax Bu

 The state equations above are said to be “controllable” if for any 
initial state x(t0) = x0 and any final state x(t1) = x1, there exists 
an input that transfers x0 to x1 in a finite time.

 Otherwise, the state equations are said to be “uncontrollable”.
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2 1n   B AB A B A BC

 The controllability of state equations can be checked using the 
[nnr] controllability matrix:

Controllability Matrix

Chapter 6 Controllability and Observability

 A state space described by the pair (A,B) is controllable if the 
column rank of C = n, or equivalently, if matrix C has n linearly 
independent columns.
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Example 1

Chapter 6 Controllability and Observability

Investigate the controllability of

0 1 0 0

0 0 1 , 0

1 2 3 1

   
   

 
   
        

A B

2 
 
B AB A BC

 Matlab: C = ctrb(A,B); rank(C);
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 Consider the n-dimensional state space equations with r inputs and 
m outputs:

( ) ( ) ( )t t t x Ax Bu

 The state space equations above are said to be “observable” if for 
any unknown initial state x(t0) = x0, there exists a finite t1>0 such 
that the knowledge of the input u(t) and the output y(t) over the 
time interval [t0,t1] suffices to determine uniquely the initial state 
x(t0).

 Otherwise, the state space equations are said to be 
“unobservable”.

Observability

Chapter 6 Controllability and Observability

( ) ( ) ( )t t t y Cx Du
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Observability Matrix

Chapter 6 Controllability and Observability

2

1n

 
 
 
 
 
 
 
  

C

C A

C A

C A

O

 The observability of state space equations can be checked using 
the [nmn] observability matrix:

 A state space described by the pair (A,C) is observable if the row 
rank of O = n, or equivalently, if matrix O has n linearly 
independent rows.
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Chapter 6 Controllability and Observability

Example 2
A state space is given as 

1 1 1
( ) ( ) ( )

0 2 3
t t u t

   
    

   
x x

 ( ) 1 0 ( )y t t x

Check its controllability and observability.

  B ABC

2n 
1 1 1 1

3 0 2 3

       
       

      

1 2

3 6

 
  

 

 
  
 

C

C A
O

 

 

1 0

1 1
1 0

0 2

 
 

   
    

1 0

1 1

 
  


 

• Column rank of 
C = 1 ≠ n

• The state space is 
“uncontrollable”

• Row rank of 
O = 2 = n

• The state space is 
“observable”
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Chapter 8 State Feedback and State Estimators

State Feedback

 Consider the n-dimensional single-variable state space equations:

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

 Main idea: Using measurements of state variables x(t), determine 
an input u(t)=f(x(t)) such that the dynamic properties of the 
system can be changed to fulfill a certain criteria.

 Feedback control is characterized by a comparison of backward 
connection of output signal(s) to set point(s).

 The feedback signal can be classified into:

1. Output feedback, where only some output variables are 
measured and can be used for feedback

2. State feedback, where all state variables are measured and 
can be used for feedback.
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: vector flow
: scalar flow

Chapter 8 State Feedback and State Estimators

State Feedback

Reference 
value

Measured 
value

( )u t
+
–

( )r t
b 

A

k

c+
+

( )y t

( )z t

( )tx( )tx

 The states x(t) are fed back through a feedback gain k.

 The input u(t) is given by:

( ) ( ) ( )u t r t t k x  

 
1 2

T

1 2( ) ( ) ( ) ( )

n

n

k k k

t x t x t x t





k

x
1

( ) ( )
n

i i

i

r t k x t


 
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Chapter 8 State Feedback and State Estimators

State Feedback

 ( ) ( ) ( )t t r t x x bA bk

 Substituting u(t) to the original state space equations,

( ) ( )y t t cx
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Consider a state space 

1 2 0
( ) ( ) ( )

3 1 1
t t u t

   
    
   

x x

 ( ) 1 2 ( )y t t x

Chapter 8 State Feedback and State Estimators

Example 3

  B ABC
0 2

1 1

 
  
 

 
  
 

C

C A
O

1 2

7 4

 
  
 

The controllability and observability matrices are:

• Column rank of C = 2
 “controllable”

• Row rank of O = 2
 “observable”
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Chapter 8 State Feedback and State Estimators

Example 4
Let us now introduce a state feedback:

 ( ) ( ) ( )3 1u t r t t  x

The state space is now:

 ( ) 1 2 ( )y t t x

 ( ) ( ) ( )t t r t x x bA bk

 
1 2 0 0

( ) ( )3 1
3 1 1 1

t r t
      

        
      

x

1 2 0 0 0
( ) ( )

3 1 3 1 1
t r t

      
        

      
x

1 2 0
( ) ( ) ( )

0 0 1
t t r t

   
    
   

x x
0 2

1 0

 
  
 

C

1 2

1 2

 
  
 

O

• Column rank of C = 2
 “controllable”

• Row rank of O = 1
 “not observable”

• State feedback may make a 
state space become “not 
observable”
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Chapter 8 State Feedback and State Estimators

Example 5
Consider a SISO system with the following state equations:

1 3 1
( ) ( ) ( )

3 1 0
t t u t

   
    
   

x x

The transfer function of the system is:
1( ) ( )G s s D  C I A B

The characteristic equation, or the denominator of G(s), is given by:

( ) det( )a s s I A

1 3
det

3 1

s

s

    
   

   
2( 1) ( 3)( 3)s    

2 2 8s s  

( 4)( 2)s s   • λ = 4, positive
• Unstable eigenvalues or unstable pole
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Let us now introduce a state feedback:

 1 2
( ) ( ) ( )u t r t tk k  x

Chapter 8 State Feedback and State Estimators

Example 5

The state space is now:

1 21 3 1
( ) ( ) ( )

3 1 0

k k
t t r t

    
    
   

x x

The characteristic equation becomes:

1 2(1 ) (3 )
( ) det

3 1

s k k
a s

s

      
   

   

1 2( 1 )( 1) ( 3 )( 3)s k s k       

2

1 2 1( 2) (3 8)s k s k k     

• The roots of the new characteristic equation can 
be placed in any location by assigning appropriate 
value of k1 and k2

• Condition: complex eigenvalues must be given in 
pairs
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Chapter 8 State Feedback and State Estimators

Homework 4

1 3 0
( ) ( ) ( )

3 1 1
t t u t

   
    
   

x x

Again, consider a SISO system with the state equations:

a. If the state feedback in the form of: 

 1 2
( ) ( ) ( )u t r t tk k  x

is implemented to the system and it is wished that the poles of 
the system will be –3 and –4, determine the value of k1 and k2.

b. Find the transfer function of the system and again, check the 
location of the poles of the transfer function.

 ( ) 1 2 ( )y t t x
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Chapter 8 State Feedback and State Estimators

Homework 4A
Consider a SISO system with the state equations:

a. If the state feedback in the form of:

 1 2
( ) ( ) ( )u t r t tk k  x

is implemented to the system and it is wished that the damping 
factor ζ of the system is equal to 0.8 while keeping the system 
stable. Determine the required value of k1 and k2. Hint: Take one 
reasonable value of ω.

b. Find the transfer function of the system and again, check the
location of the poles of the transfer function.

1 2 1
( ) ( ) ( )

3 1 1
t t u t

   
    

   
x x

 ( ) 2 3 ( )y t t x


