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Chapter 2 Mathematical Descriptions of Systems

Homework 1: Electrical System

B Derive the state space representation of the following electric
circuit:
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Input variable u:
e Input voltage u(t)

Output variable y:
e Inductor voltage v/, (t)




Chapter 2 Mathematical Descriptions of Systems

Solution of Homework 1: Electrical System

+ T VW—e AN + :
di, ;
C VL — E — LIL
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B | _ iC :Cd—f :CVC

State variables:

e X, is the voltage across C,
* X, is the voltage across C,
e X5 is the current through L

(% —u)/R+C% +C,%, =0 % ==1/RC,;-x -1C,-%+YRC, -u
szz = X3 Xz :]/Cz * X

X =X, = LX X =1/L-% -1/L-X,
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Solution of Homework 1: Electrical System

B The state space equation can now be written as:

)°(1=—]7/RC1-X1—]7/C1-X3—I—]/RC1-U

X, =1/C, - X

X =YL-x-YL-X

%] [WRG, 0 -yc]fx] [YRG,

X, |=| O 0 1/C, || % |+ 0 |u

X | YL -1/L 0 |[x] | O |
X

y=[1 -1 0]/ x, [+0-u




Chapter 2 Mathematical Descriptions of Systems

Example: Transfer Function

m Given the following transfer function

1
YS)=F——= U(s)
s° +a,5° +a,5+4a,

and assuming zero initial conditions, construct a state space
equations that can represent the given transfer function.

—
s°Y (s) +a,8°Y (s) +a,sY (s)+a,Y (s) =U (s)

y(t) +a,y(t) +a y(t) +a,y(t) = u(t)




Chapter 2 Mathematical Descriptions of Systems

Example: Transfer Function

The state space equation can now be given as:

X, 0 1 0 ||x 0
X, (= 0 0 1 (IX(+/0}u

_X3_ T, & —dy || X5 _1_
X
y=[1 0 0]|x, |+0u Ve o)
| X5 | s°+a,s" +as+a,
u(t - : t

The state space equation can © y®) y(t) I y(t) I y(t)
also be given using block "R | e
diagram: =

-
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Vector Case and Scalar Case

B The general form of state space in vector case, where there are
multiple inputs and multiple outputs, is given as:

x(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)

B In scalar case, where the input and the output are scalar or single,
the state space is usually written as:

X(t) = Ax(t) +bu(t)
y(t) =c' x(t)+du(t)
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Solution of State Equations

B Consider the state equations in vector case.
X(t) = Ax(t) + Bu(t)

m Multiplying each term with e4¢,

e X(t) =™ Ax(t) +e ' Bu(t)

e X(t)—e ™ Ax(t) =e " Bu(t)

(e x(0) =e “Bu

B The last equation will be integrated from O to ¢:

e x() ] = [ > Bu(e)or
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Solution of State Equations

t
e % x(r) |, = [e *Bu(r)de
0
t

e " x(t) -~ x(0) = [e ¥ Bu(r)dr

Solution of State
Equations

B At =0, x(t) = x(0) = x,, which are the initial conditions of the
states.




Chapter 4 State Space Solutions and Realizations
Solution of Output Equations

B We know substitute the solution of state equations into the output
equations:

y(t) =Cx(t)+ Du(t)

Solution of
Output
Equations

y(t) = Q{GNX(O) + jeé\“‘” Bu(z)d r}+Qg(t)
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Solutions of State Space in Frequency Domain

B The solution of state equations and output equations can also be
written in frequency domain:

x(t) = Ax(t) + Bu(t)

sX(s)—x(0)= AX(s)+BU(s)
(s1-A)X(s) = x(0)+BU(s)

X(s)=(s1 - A)"x(0)+(s1 - A)"BU(s)

Solution of State Equations

y(t) =Cx(t) + Du(t)
Y (s)=CX(s)+DU(s)

Y (s)=C{(s1—A)*x(0)+(sL - A)*BU(s)} + DU(s)

Solution of Output Equations
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Relation between eAf and (sI-A)

B Taylor series expansion of exponential function is given by:

A7 A"
—1+ﬂf[ + + 4+ Scalar Function
| n! e Exact solution, around t = 0O,
infinite number of terms
t* t"
A n
e~ =1 +tA+§A +°"+EA Vector Function

w K N
=2 A

k=0 ™ -

t* s
B It can be shown that L{E} =5 & g5 that:
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Relation between eAf and (sI-A)

m Deriving further,
£l :ZS—(kﬂ)Ak
% ]=2

=5l +52 A+ A +...
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State Transition Matrix

B Writing again the general form of the state space equations:
X(t) = Ax(t) + Bu(t)
y(t) =Cx(t)+ Du(t)

B The behavior of x(t) and y(t) can be classified into:
B Homogenous solution (zero input, initial state applied)
B Non-homogenous solution (input applied, initial state applied)
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State Transition Matrix

H Homogenous Solution:
X(t) = Ax(t)
sX(s)—x(0)=AX(s)
X($)=(s1-A)'x(0) =—=> x({t)=£"(s1-A)"|x(0)
x(t) =e" x(0)

W eAt js called the state transition matrix, able to give the current
state x(t) out of the initial state x(0),

D=e" =L (sI-A)" |
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State Transition Matrix

m Since

x(t) =e” x(0) =(t)x(0)
B \We can write
X(t,) = x(0) = x(0) =e~" x(t,)
x(t) =eMe o x(t,) =V x(t,) =Dt —t,)x(t,)

B Some properties of state transition matrix:
1. @(0)=1
2. @7 (1) = ()
3. x(0) =&(-1)x(t)
4. D(t,—t)D(t, —t,) = D(t, —t,)
> O(1)" = D(kt)
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State Transition Matrix

® Non-Homogenous Solution:

sX(s)—x(0) = AX(s)+BU(s)
(s1-A)X(s) = x(0)+BU(s)

X(s)=(sL-A)"x(0)+(s1 - A)"BU(s)

® Then,

X(t)= £ (s1-A)* [x(0)+£*| (sL-A)"BU(S) |

X(t) = @(1)x(0) + |B(t—7)Bu(r)dz
] 0

Homogenous
Solution



Chapter 4 State Space Solutions and Realizations

Example 1: Solution of State Equations

0 -1
Compute (s1—A)"if A={ }

1 -2
S—
S 1
sl —A)=
(s1=A) {—1 s+2}
(sI—A)" = 1 s+2 -1
- (s)s+2)-MH(-D| 1 S
. 5+2 -1
_ s°+2s+1 s°+2s5+1
1 S
| 52 +25+1 S°+2s+1
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Example 2: Solution of State Equations

0 -1 0
Given X(t) =L 5 z(t)w{l}u(t), find the solution for x(t).
] _t.
x(t) =e* x(0)+ | e*" Bu(r)dz
0
e® =L (s1-A)"| f(#) F(s)
[ 542 -1 5'1:;1_51_3?':1[3]';“3_’1 1.5—.|.1?:.F
_ pt (s+1)° (s+1)°
- 1 S
(s+1)° (s+1)*

|l @+t)et —te”
ottt (@1-t)e
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Example 2: Solution of State Equations

Now, we substitute eAt to obtain the solution for x(t):

X(0) = L+t)et  —te }

j:(1+ (t—z)e ™  —(t-7)e" Mo

L @0 a-ope J”(T) dT

—j (t—7)e "u(r)dr

j 1-(t-7))e " u(r)dr
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Example 3: Solution of State Equations

If Xx(0)=0 and u(t) is a step function, determine x(t).

—j (t—7)e " 1(r)dr

_t[ (1-(t—7))e " 1(r)dr

X, (t) —j (t—7)e " "dr

X, (t) _t[(l— (t—7))e " dr
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Example 3: Solution of State Equations

X, (t) _ Jt. (t—7)e " d(t-1)

o] | [(t-0)-Ded(t-o)

eI (t-0) ]
eIt

B —1+et(1+1)
et

X () =-1+e"(1+t)
X(0)=et o
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Example 4: Solution of State Equations

C t Af'fA—O -
ompute ed if A= .
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Example 5: Solution of State Equations

1

2

-1 1
Find eAt forA={ }
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Equivalent State Equations

Xl u— = y
L —TLs N Vi dt X
10 1F| v X =U=X%
() X, 7R y(t) =R _x .
B X, Y%, R Xy =X =X
dve . — X
State variables: lc = C—dt =X, y="%

e X : inductor current j;
e X,: capacitor voltage v

S e
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Homework 2: Equivalent State Equations

1. Prove that for the same system, with different definition of state
variables, we can obtain a state space in the form of:

1H
i [ N {xl} [—1 }
10 F L | T
u®® @ %@,\ y(t) X, -1 0

1
S X
|—|
|—|
= =
c
~~
(o
N

_ X,
State variables: y=[1 _1]{5(’ }

e % : current of left loop
e %,: current of right loop
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Homework 2: Equivalent State Equations

2. Derive a state-space description for the following diagram

c |
L ‘ % WD)
1/ s 1fs -

a =

h [
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Homework 2A: Equivalent State Equations

1. From Homework 1A, find out whether it is possible to describe
the same circuit with different definition of state variables.

Cl C2
| ( 4
+ I\ \ +

State variables:
e % : current of left loop
e %,: current of right loop
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Homework 2A: Equivalent State Equations

2. Given the following state space, with zero initial conditions,

0 -1
_X(t){1 _Jx(t){ . }u(t)

y(t)=[1 -2]x(),

ﬁPd the solution for y(t) for a unit step input and draw a sketch
of it.




