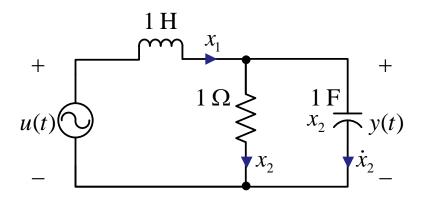
State Space Solutions and Realizations

"Linear System Theory and Design", Chapter 4

http://zitompul.wordpress.com

2 0 1 4



State variables:

- x₁: inductor current i_L
- x_2 : capacitor voltage v_C

$$v_{L} = L \frac{di_{L}}{dt} = \dot{x}_{1}$$

$$i_{R} = \frac{v_{R}}{R} = x_{2}$$

$$i_{C} = C \frac{dv_{C}}{dt} = \dot{x}_{2}$$

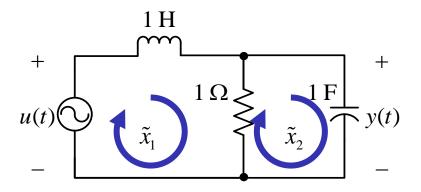
$$x_{2} = u - \dot{x}_{1}$$

$$\dot{x}_{2} = x_{1} - x_{2}$$

$$y = x_{2}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

1. Prove that for the same system, with different definition of state variables, we can obtain a state space in the form of:

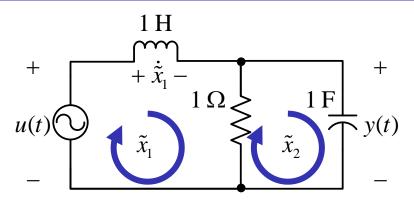


State variables:

- \tilde{x}_1 : current of left loop
- \tilde{x}_2 : current of right loop

$$\begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$$



State variables:

- \tilde{x}_1 : loop current left
- \tilde{x}_2 : loop current right

$$\begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$$

$$-u + \dot{\tilde{x}}_{1} + (\tilde{x}_{1} - \tilde{x}_{2}) = 0$$

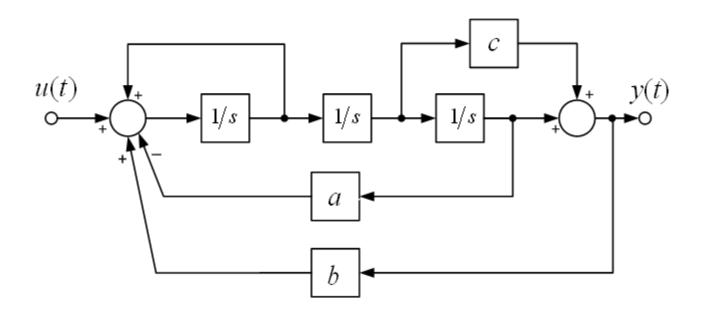
$$\dot{\tilde{x}}_{1} = u - \tilde{x}_{1} + \tilde{x}_{2}$$

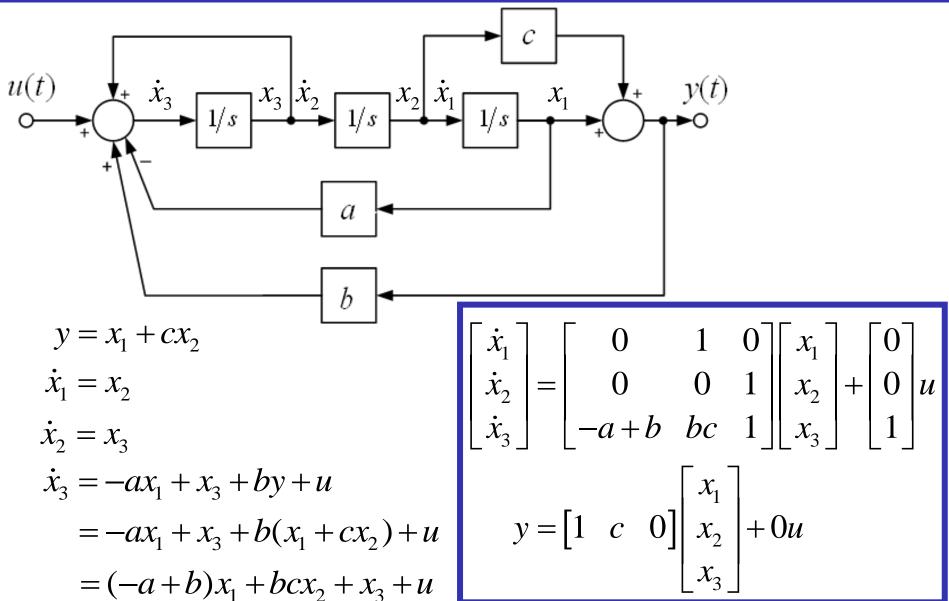
$$v_C = \tilde{x}_1 - \tilde{x}_2 = y$$

$$i_C = C \frac{dv_C}{dt}$$

$$\tilde{x}_2 = \dot{\tilde{x}}_1 - \dot{\tilde{x}}_2
= (u - \tilde{x}_1 + \tilde{x}_2) - \dot{\tilde{x}}_2
\dot{\tilde{x}}_2 = u - \tilde{x}_1$$

2. Derive a state-space description for the following diagram





Consider an n-dimensional state space equations:

$$\dot{\underline{x}}(t) = \underline{A}\underline{x}(t) + \underline{B}\underline{u}(t)$$
$$y(t) = \underline{C}\underline{x}(t) + \underline{D}\underline{u}(t)$$

Let $\underline{\underline{P}}$ be an $n \times n$ real nonsingular matrix, and let $\underline{\underline{x}} = \underline{\underline{P}} \underline{x}$. Then, the state space equations

$$\frac{\dot{\tilde{x}}}{\tilde{x}}(t) = \underline{\tilde{A}}\underline{\tilde{x}}(t) + \underline{\tilde{B}}\underline{u}(t)$$

$$y(t) = \underline{\tilde{C}}\underline{\tilde{x}}(t) + \underline{\tilde{D}}\underline{u}(t)$$

where

$$\tilde{\underline{A}} = \underline{P}\underline{A}\underline{P}^{-1}, \quad \tilde{\underline{B}} = \underline{P}\underline{B}, \quad \tilde{C} = \underline{C}\underline{P}^{-1}, \quad \tilde{\underline{D}} = \underline{D}.$$

is said to be algebraically equivalent with the original state space equations.

 $\mathbf{\underline{x}} = \mathbf{\underline{P}} \mathbf{\underline{x}}$ is called an equivalence transformation.

■ Proof:

Substituting $\underline{\boldsymbol{x}}(t) = \underline{\boldsymbol{P}}^{-1} \underline{\tilde{\boldsymbol{x}}}(t)$

$$\underline{\underline{P}}^{-1}\underline{\dot{x}}(t) = \underline{\underline{A}}\underline{\underline{P}}^{-1}\underline{\tilde{x}}(t) + \underline{\underline{B}}\underline{\underline{u}}(t)$$

$$\underline{\dot{x}}(t) = \underline{\underline{P}}\underline{\underline{A}}\underline{\underline{P}}^{-1}\underline{\tilde{x}}(t) + \underline{\underline{P}}\underline{\underline{B}}\underline{\underline{u}}(t)$$

$$\underline{\tilde{A}}$$

$$\underline{\tilde{B}}$$

$$\underline{\underline{y}}(t) = \underline{\underline{C}}\underline{\underline{P}}^{-1}\underline{\underline{\tilde{x}}}(t) + \underline{\underline{D}}\underline{\underline{u}}(t)$$

$$\underline{\underline{\tilde{C}}} \qquad \underline{\underline{\tilde{D}}}$$

From the last electrical circuit,

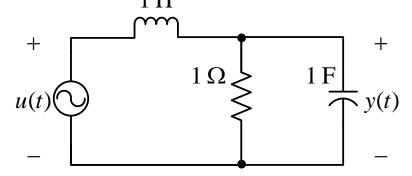
State variables:

x₁: inductor current i_L

• x_2 : capacitor voltage v_C

State variables:

- \tilde{x}_1 : loop current left
- \tilde{x} ,: loop current right



■ The two sets of states can be related in the way:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Linear Independence

■ The *n*-dimensional vectors { $\underline{\boldsymbol{v}}_1$, $\underline{\boldsymbol{v}}_2$, ..., $\underline{\boldsymbol{v}}_n$ } are linearly dependent if there are *n* scalars α_1 , α_2 , ..., α_n such that:

$$\alpha_1 \underline{\mathbf{v}}_1 + \alpha_2 \underline{\mathbf{v}}_2 + \ldots + \alpha_n \underline{\mathbf{v}}_n = 0$$

■ They are linearly independent if:

$$\sum_{i=1}^{n} \alpha_{i} \underline{\mathbf{v}}_{i} = 0 \Leftrightarrow \alpha_{i} = 0 \text{ for } i = 1, 2, \dots, n$$

■ The vectors $\{\underline{\boldsymbol{v}}_1, \underline{\boldsymbol{v}}_2, ..., \underline{\boldsymbol{v}}_n\}$ are linearly independent *if and only if* $\operatorname{rank}\left[\underline{\boldsymbol{v}}_1, \underline{\boldsymbol{v}}_2, ..., \underline{\boldsymbol{v}}_n\right] = n$

Let matrix \underline{A} be $n \times n$. If $rank(\underline{A}) = r < n$, then there are (n-r) linearly independent vectors $\underline{\mathbf{v}}_1$, $\underline{\mathbf{v}}_2$, ..., $\underline{\mathbf{v}}_{n-r}$ such that

$$\underline{A}\underline{v}_i = \underline{\mathbf{0}}, \text{ for } i = 1, 2, \dots, n-r$$

A square matrix is non-singular if and only if all its columns are linearly independent.

- Rank of a matrix <u>A</u> is the maximum number of linearly independent column (the **column rank**) in <u>A</u> or the maximum number of linearly independent rows in <u>A</u> (the **row rank**).
- For every matrix, the column rank is equal to the row rank.

Basis

■ A basis $\mathbf{B} = \{\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2, ..., \underline{\mathbf{v}}_n\}$ of a vector space v over a scalar field \mathbf{F} is a linearly independent subset of v, i.e.,

$$\sum \alpha_i \underline{\mathbf{v}}_i = 0 \longleftrightarrow \alpha_i = 0 \text{ for } i = 1, 2, \dots, n$$

that spans v , i.e, for every $x \in V$ there exist α_1 , α_2 , ..., $\alpha_n \in \mathbf{F}$ such that

$$x = \sum_{i=1}^{n} \alpha_i \underline{\mathbf{v}}_i$$

- Every set of n linearly-independent vectors $\{\underline{\boldsymbol{v}}_1,\,\underline{\boldsymbol{v}}_2,\,...,\,\underline{\boldsymbol{v}}_n\}$ in an n-dimensional space v is a basis of v.
- \blacksquare Way to prove: It can be shown, that the independent set can be reduced (using Gauss-Jordan elimination) to unit vectors of v, and thus spans v

- Eigenvalues and Eigenvectors
- For an $n \times n$ matrix \underline{A} , the eigenvalues and eigenvectors are defined by:

$$\underline{A}\underline{v}_i = \lambda_i \underline{v}_i$$

- The matrix has n eigenvalues λ_1 , λ_2 , ..., λ_n with corresponding eigenvectors.
- The eigenvalues are the roots of the characteristic equation $det(s\mathbf{I} \mathbf{A}) = 0$
- If the eigenvalues are distinct, then the eigenvectors are linearly independent.

Example 1

Find the eigenvalues and the eigenvectors of the matrix below:

$$\underline{\mathbf{A}} = \begin{bmatrix} -5 & -4 & -2 \\ -0.5 & -3 & 1 \\ 10 & 14 & 2 \end{bmatrix}$$

Transfer Function and Transfer Matrix

Consider a state space equations for SISO systems:

$$\underline{\dot{x}}(t) = \underline{A}\underline{x}(t) + \underline{B}u(t)$$
$$y(t) = \underline{C}\underline{x}(t) + Du(t)$$

Using Laplace transform, we will obtain:

$$s\underline{X}(s) - \underline{x}(0) = \underline{A}\underline{X}(s) + \underline{B}U(s)$$
$$Y(s) = \underline{C}\underline{X}(s) + DU(s)$$

For zero initial conditions, $\underline{x}(0) = \underline{0}$,

$$\underline{X}(s) = (s\underline{I} - \underline{A})^{-1}\underline{B}U(s)$$

$$Y(s) = (\underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D)U(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D$$

Transfer Function

Example 2

Find the transfer function of the following state space:

$$\dot{\underline{x}} = \begin{bmatrix} -4 & 0 \\ 1 & -2 \end{bmatrix} \underline{x} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0.5 & 1 \end{bmatrix} \underline{x}$$

Realization of State Space Equations

Every linear time-invariant system can be described by the inputoutput description in the form of:

$$Y(s) = U(s)G(s)$$

■ If the system is lumped (i.e., having concentrated parameters), it can also be described by the state space equations

$$\underline{\dot{x}}(t) = \underline{A}\underline{x}(t) + \underline{B}u(t)$$

$$y(t) = \underline{C}\underline{x}(t) + Du(t)$$

■ The problem concerning how to describe a system in state space equations, provided that the transfer function of a system, G(s), is available, is called **Realization Problem**.

$$G(s)$$
 A, B, C, D .

Realization of State Space Equations

- Three realization methods will be discussed now:
 - Frobenius Form
 - Observer Form
 - Canonical Form

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{0}y(t) = b_{m}\frac{d^{m}u(t)}{dt^{m}} + b_{m-1}\frac{d^{m-1}u(t)}{dt^{m-1}} + \dots + b_{1}\frac{du(t)}{dt} + b_{0}u(t)$$

Special Case: No derivation of input

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{0}y(t) = b_{0}u(t)$$

We now define:

$$x_{1}(t) = y(t)$$

$$x_{2}(t) = \dot{y}(t) = \dot{x}_{1}(t)$$

$$x_{3}(t) = \ddot{y}(t) = \dot{x}_{2}(t)$$

$$\vdots$$

$$x_{n}(t) = y^{(n-1)}(t) = \dot{x}_{n-1}(t)$$

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ b_{0} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + 0u(t)$$

Frobenius Form, Special Case

■ General Case: With derivation of input

$$\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{N(s)}{D(s)} \qquad m < n$$

■ If m = n-1 (largest possible value), then

$$Y(s) = \left(b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0\right)\frac{U(s)}{D(s)}$$

$$Y(s) = b_0 \frac{U(s)}{D(s)} + b_1 s \frac{U(s)}{D(s)} + \dots + b_{n-2} s^{n-2} \frac{U(s)}{D(s)} + b_{n-1} s^{n-1} \frac{U(s)}{D(s)}$$

$$X_1(s) \quad X_2(s) \quad X_{n-1}(s) \quad X_n(s)$$

■ If m = n-1 (largest possible value), then

$$x_{1}(t) = \mathcal{L}^{-1} [X_{1}(s)]$$

$$x_{2}(t) = \dot{x}_{1}(t)$$

$$\vdots$$

$$x_{n-1}(t) = \dot{x}_{n-2}(t)$$

$$x_{n}(t) = \dot{x}_{n-1}(t)$$

■ But
$$X_1(s) = \frac{U(s)}{D(s)} = \frac{U(s)}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

 $s^n X_1(s) + a_{n-1}s^{n-1} X_1(s) + \dots + a_2s^2 X_1(s) + a_1s X_1(s) + a_0 X_1(s) = U(s)$
 $s^n X_1(s) = U(s) - a_{n-1}s^{n-1} X_1(s) - \dots - a_2s^2 X_1(s) - a_1s X_1(s) - a_0 X_1(s)$
 $x_1^{(n)}(t) = u(t) - a_{n-1}x_1^{(n-1)}(t) - \dots - a_2\ddot{x}_1(t) - a_1\dot{x}_1(t) - a_0x_1(t)$
 $\dot{x}_n(t) = u(t) - a_{n-1}x_n(t) - \dots - a_2x_3(t) - a_1x_2(t) - a_0x_1(t)$

The state space equations can now be written as:

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & \vdots \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_{n}(t) \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} b_{0} & b_{1} \cdots b_{n-2} & b_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + 0u(t)$$

Frobenius Form, General Case

Example 3

Find the state-space realization of the following ordinary differential equation, where the initial conditions are zero.

$$\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + \frac{dy}{dt} + 2y = u$$

Let
$$x_1 = y$$

 $x_2 = \dot{x}_1 = y'$
 $x_3 = \dot{x}_2 = y''$

$$\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$\Rightarrow y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Example 3

Find the state-space realization of the following ordinary differential equation, where the initial conditions are zero.

$$\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + \frac{dy}{dt} + 2y = u$$

Alternatively,

$$s^{3}Y(s) + 5s^{2}Y(s) + sY(s) + 2Y(s) = U(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^{3} + 5s^{2} + s + 2}$$

$$a_{2} \quad a_{1} \quad a_{0}$$

$$\Rightarrow \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_{0} & -a_{1} & -a_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^3 + 5s^2 + s + 2}$$

$$a_2 \quad a_1 \quad a_0$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Observer Form

$$\frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}, \quad n = m+1$$

$$s^{n}Y(s) + a_{n-1}s^{n-1}Y(s) + \dots + a_{1}sY(s) + a_{0}Y(s) = b_{n-1}s^{n-1}U(s) + b_{n-2}s^{n-2}U(s) + \dots + b_{1}sU(s) + b_{0}U(s)$$

$$Y(s) + a_{n-1} \frac{Y(s)}{s} + \dots + a_1 \frac{Y(s)}{s^{n-1}} + a_0 \frac{Y(s)}{s^n} = b_{n-1} \frac{U(s)}{s} + b_{n-2} \frac{U(s)}{s^2} + \dots + b_1 \frac{U(s)}{s^{n-1}} + b_0 \frac{U(s)}{s^n}$$

$$Y(s) = \frac{1}{s} \left\{ \left(b_{n-1} U(s) - a_{n-1} Y(s) \right) + \frac{1}{s} \left\{ \left(b_{n-2} U(s) - a_{n-2} Y(s) \right) + \frac{1}{s} \left(\cdots \right) + \frac{1}{s} \left\{ b_0 U(s) - a_0 Y(s) \right\} \right\} \cdots \right\}$$

$$X_1(s)$$

Observer Form

$$\begin{split} X_{1}(s) &= \frac{1}{s} \left\{ b_{0}U(s) - a_{0}Y(s) \right\} \\ X_{2}(s) &= \frac{1}{s} \left\{ \left(b_{1}U(s) - a_{1}Y(s) \right) + X_{1}(s) \right\} \longrightarrow \dot{x}_{2}(t) = b_{1}u(t) - a_{1}y(t) + x_{1}(t) \\ &\vdots \\ X_{n}(s) &= \frac{1}{s} \left\{ \left(b_{n-1}U(s) - a_{n-1}Y(s) \right) + X_{n-1}(s) \right\} \longrightarrow \dot{x}_{n}(t) = b_{n-1}u(t) - a_{n-1}y(t) + x_{n-1}(t) \end{split}$$

$$Y(s) = X_n(s) \longrightarrow y(t) = x_n(t)$$

Observer Form

The state space equations in observer form:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & -a_0 \\ 1 & 0 & \cdots & -a_1 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + 0u(t)$$

Observer Form

Example 4

Find the state-space realization of the following transfer function in Frobenius Form.

$$G(s) = \frac{4s^3 + 25s^2 + 45s + 34}{2s^3 + 12s^2 + 20s + 16}$$

$$G(s) = \frac{4s^3 + 25s^2 + 45s + 34}{2s^3 + 12s^2 + 20s + 16} = 2 + \frac{s^2 + 5s + 2}{2s^3 + 12s^2 + 20s + 16} = 2 + \frac{\frac{1}{2}s^2 + 2\frac{1}{2}s + 1}{s^3 + 6s^2 + 10s + 8}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} u$$

$$\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -8 \\ 1 & 0 & -10 \\ 0 & 1 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} u$$

$$\Rightarrow y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 0u(t)$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2u(t)$$

To construct state space equations in canonical form, we need to perform partial fraction decomposition to the respective transfer function.

$$Y(s) = \frac{N(s)}{D(s)}U(s) = \left\{\sum_{i=1}^{n} \frac{r_i}{s - \lambda_i} + r_0\right\}U(s)$$

■ In case all poles are distinct, we define:

The state space equations in case all poles are distinct:

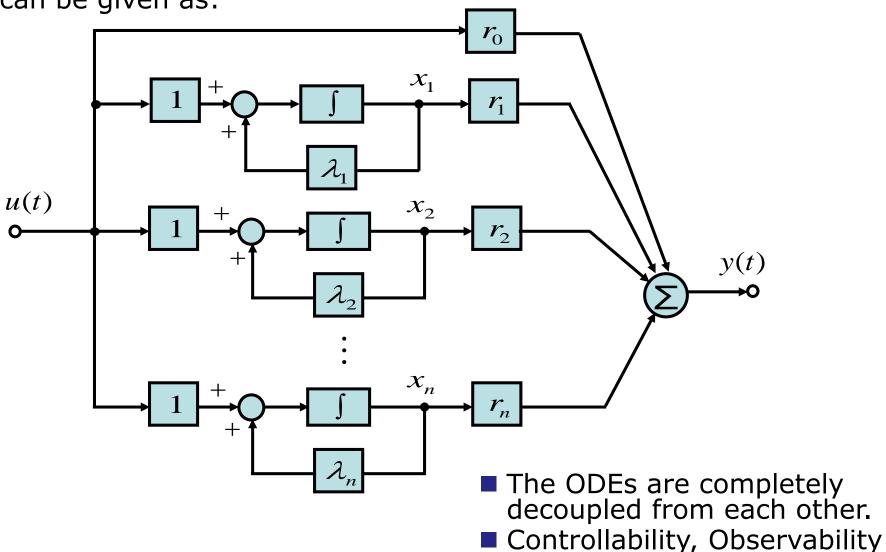
$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} r_1 & r_2 & \cdots & r_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + r_0 u(t)$$

Canonical Form, Distinct Poles

- The resulting matrix <u>A</u> is a diagonal matrix.
- The ODEs are decoupled, each of them can be solved independently.

The block diagram of the state space equations in Canonical Form can be given as:



■ In case of **repeating poles**, for example λ_1 is repeated for p times, the decomposed equation will be:

$$Y(s) = \left\{ r_0 + \frac{r_{11}}{s - \lambda_1} + \frac{r_{12}}{(s - \lambda_1)^2} + \dots + \frac{r_{1p}}{(s - \lambda_1)^p} + \frac{r_2}{s - \lambda_2} + \dots + \frac{r_{n-p+1}}{s - \lambda_{n-p+1}} \right\} U(s)$$

We define:

$$X_{1}(s) = \frac{1}{s - \lambda_{1}} U(s) \qquad \qquad \dot{x}_{1}(t) = \lambda_{1} x_{1}(t) + u(t)$$

$$X_{2}(s) = \frac{1}{(s - \lambda_{1})^{2}} U(s)$$

$$= \frac{1}{s - \lambda_{1}} X_{1}(s) \qquad \qquad \dot{x}_{2}(t) = \lambda_{1} x_{2}(t) + x_{1}(t)$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$X_{p}(s) = \frac{1}{(s - \lambda_{1})^{p}} U(s)$$

$$= \frac{1}{s - \lambda_{1}} X_{p-1}(s) \qquad \qquad \dot{x}_{p}(t) = \lambda_{1} x_{p}(t) + x_{p-1}(t)$$

$$\dot{X}_{p+1}(s) = \frac{1}{s - \lambda_2} U(s) \qquad \dot{x}_{p+1}(t) = \lambda_2 x_{p+1}(t) + u(t) \\
\vdots \qquad \vdots \qquad \vdots \\
X_n(s) = \frac{1}{s - \lambda_{n-p+1}} U(s) \qquad \dot{x}_n(t) = \lambda_{n-p+1} x_n(t) + u(t)$$

$$Y(s) = r_{11}X_1(s) + r_{12}X_2(s) + \cdots + r_{1p}X_p(s) + r_2X_{p+1}(s) + \cdots + r_{1p}X_p(s) + r_0U(s)$$

$$y(t) = r_{11}X_1(t) + r_{12}X_2(t) + \cdots + r_{1p}X_p(t) + r_2X_{p+1}(t) + \cdots + r_{1p}X_p(t) + r_2X_{p+1}(t) + \cdots + r_{n-p+1}X_n(t) + r_0U(t)$$

The state space equations in case of repeating poles:

Canonical Form, Repeating Poles

The state space equations in case of repeating poles:

$$y(t) = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} & r_2 & \cdots & r_{n-p+1} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \\ x_{p+1}(t) \\ \vdots \\ x_n(t) \end{bmatrix} + r_0 u(t)$$
Canonical Free Repeating P

Canonical Form, Repeating Poles

Homework 3: Transfer Function - State Space

■ Find the state-space realizations of the following transfer function in *Frobenius Form*, *Observer Form*, and *Canonical Form*.

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 8s^2 + 19s + 12}$$

Hint: Learn the following functions in Matlab and use the to solve this problem: roots, residue, convolution.

Homework 3A: Transfer Function - State Space

Perform a step by step transformation (by calculation of transfer matrix) from the following state-space equations to result the corresponding transfer function.

$$\underline{\dot{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -4 & -2 \end{bmatrix} \cdot \underline{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot u(t)$$

$$y(t) = \begin{bmatrix} 5 & 1 & 0 \end{bmatrix} \cdot \underline{x}(t)$$

- Verify your calculation result using Matlab.
- Hint: Learn the following functions in Matlab and use the to solve this problem: ss2tf, tf2ss.