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Chapter 4 State Space Solutions and Realizations

Equivalent State Equations

X; = — ¥
P g ) o=Los=X
10 1F| v X =U=X%
() X, 7R y(t) =R _x .
B X, Y%, R Xy =X =X
ch =X
State variables: I =C dt =X y=%

e X : inductor current j;
e X,: capacitor voltage v
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Homework 2: Equivalent State Equations

1. Prove that for the same system, with different definition of state
variables, we can obtain a state space in the form of:
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State variables: y=[1 _1]{5(’ }

e % : current of left loop
e %,: current of right loop
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Homework 2: Equivalent State Equations

X,
. dv
State variables: . =C—%
e % : loop current left dt
e %, : loop current right
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Homework 2: Equivalent State Equations

2. Derive a state-space description for the following diagram
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Homework 2: Equivalent State Equations

C.
X,| X X + o W(1)
1/s 2| M 1/?%—*}

X, =—aX, + X, +by +u
=—ax, + X, +b(x, +cx,) +u

= (—a+b)x, +becx, +x;,+u
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Equivalent State Equations

® Consider an n-dimensional state space equations:
x(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)

et P be an nxn real nonsingular matrix, and let
= P x. Then, the state space equations

X(t) = AX(t) + Bu(t)
y(t) =CX(t) + Du(t)

where

A=PAP* B=PB, C=CcP’, D=D

I<r—

is said to be algebraically equivalent with the original state
space equations.

m X = P x is called an equivalence transformation.
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Equivalent State Equations

W Proof:
Substituting X(t) = P X(t)

P7X(t) = AP X(t) + Bu(t)

X(t)=PAP"X(t) + PBu(t)

A B

y(t) =CP " X(t) + Du(t)

o« 9
C D
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Equivalent State Equations

B From the last electrical circuit,
State variables: St
o
o

ate variables:
% . loop current left
%, . loop current right

e X : inductor current j,
e X,: capacitor voltage v, H

™M

+ +

10 1F
u)Q =y (t)

B The two sets of states can be related in the way:
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Chapter 4 State Space Solutions and Realizations
Math Preliminaries

H Linear Independence

B The n-dimensional vectors {v;, V,, ..., ¥,} are linearly dependent
if there are n scalars a4, a,, ..., a;, such that:

oV, +a,V,+...+a,V, =0

B They are linearly independent if:

Zlozi\_/i =0 o, =0for1=12,...,n
i=1
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Math Preliminaries

B The vectors {v,, V>, ..., ¥} are linearly independent if and only if
rank|v,,V,,...,V, |=n

B Let matrix A be nxn . If rank(A) =r<n, then there are (n-r)
linearly independent vectors vy, ¥,, ..., ¥,_, such that

Av. =0, for1=12,...,n—r

B A square matrix is non-singular if and only if all its columns are
linearly independent.

B Rank of a matrix A is the maximum number of linearly independent
column (the column rank) in A or the maximum number of linearly
independent rows in A (the row rank).

B For every matrix, the column rank is equal to the row rank.
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Math Preliminaries

H Basis

m A basis B={v,, V>, ..., ¥,} of a vector space ¥ over a scalar field F
is a linearly independent subset of v, i.e.,

Y v, =06, =0fori=12,...,n

that spans v, i.e, for every x €% there exist oy, a5, ..., a, € F
such that

B Every set of n linearly-independent vectors{yv;, V5, ..., ¥,} in an n-
dimensional space V is a basis of .

B Way to prove: It can be shown, that the independent set can be
reduced (using Gauss-Jordan elimination) to unit vectors of ¥, and

thus spans .
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Math Preliminaries

H Eigenvalues and Eigenvectors

B For an nxn matrix A, the eigenvalues and eigenvectors are
defined by:

AV. = A V.

B The matrix has n eigenvalues A4, A,, ..., A, with corresponding
eigenvectors.

B The eigenvalues are the roots of the characteristic equation

det(sl —A)=0

B If the eigenvalues are distinct, then the eigenvectors are linearly
independent.
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Example 1

Find the eigenvalues and the eigenvectors of the matrix below:

(5 4 2]
A=|-05 -3 1
10 14 2
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Transfer Function and Transfer Matrix
B Consider a state space equations for SISO systems:
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

B Using Laplace transform, we will obtain:

sX(s)—x(0) = AX(s)+BU(s)
Y(s) =CX(s)+DU(s)

B For zero initial conditions, x(0) = 0,
X(s)=(s1-A)"BU(s)
Y(s)=(C(s1-A)'B+D)U(s)

Transfer Function
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Example 2

Find the transfer function of the following state space:

-4 0 —2
X = X + u
- 1 2|17 |1

y=[05 1]x
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Realization of State Space Equations

B Every linear time-invariant system can be described by the input-
output description in the form of:

Y(s)=U(s)G(s)

W If the system is lumped (i.e., having concentrated parameters), it
can also be described by the state space equations

x(t) = Ax(t) + Bu(t)
y(t) =CXx(t) + Du(t)
B The problem concerning how to describe a system in state space

equations, provided that the transfer function of a system, G(s), is
available, is called Realization Problem.

G(s) ——> A, B, C, D.
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Realization of State Space Equations

B Three realization methods will be discussed now:
B Frobenius Form
B Observer Form
B Canonical Form
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Frobenius Form

~Y(s) _b,s"+b, ,s" "+ +bs+b,

G(s)

~U(s) s"+a_s" +---+aS+a,
d"y(t) d"ty(t) dy(t)
+a +-ee+a —+ t) =
dt" gt 4 dt %Y (1)
d™u(t) d™u(t) du(t)
b +b +oeet +byu(t
R g™t b dt ou(t)

B Special Case: No derivation of input

dn t dn_l [ d t
di/”( ) +a_, dt”y£ ) +...+a1%+aoy(t) =byu(t)

T
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Frobenius Form

B We now define:
X, (t) = y(t)
X, (1) = y(t) =%,(t)
X5 (1) = Y(t) =%, (1)

X )=y (1) =%, ()

Frobenius Form,
Special Case
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Frobenius Form

B General Case: With derivation of input
Y(s) b,s"+b, ,s""+--+bs+b, N(s)

N = m<n
U(S) g" +an_1Sn—l+...+als_|_ao D(S)
m If m = n-1 (largest possible value), then
Y(s)= (bn_ls”‘1 +h, 8"+ +bs+ bo)_U 8
v(©) =0, 28 5 YO, U0 iU

ViV Lﬂ@

Xi(s)  Xy(s) X;4(8) X, (8)
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Frobenius Form

m If m=n-1 (largest possible value), then

Xl(t) =L [Xl(s)]
Xy (t) — Xi(t)

X, (1) =%, (t)
Xn (t) — Xn—l (t)

m But X,(s)= ) _ U (s)

D(s) s"+a ,s""+---+aS+a,

s"X, (s)+a_,S" X, (S)+---+a,5° X, (s) +a,sX,(s) +a,X,(s) =U(s)
s Xl(S) =U (S) - an—lsn_lxl(s) T 8.252)(1(5) - a18x1(5) - a‘Oxl(S)
X" () = u(t) —a, X" (t) - — 2%, (t) — 8% (t) —agx, (t)

DI | R TRy T

X, (1) = U(t) 2, 4%, (1) =+ — 3,5 (1) — 3%, (t) —a,X, (1
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Frobenius Form

B The state space equations can now be written as:

% ()
X, (t)

_Xn (t)_ L B Frobenius Form,
B . General Case

y(t) = [bo bl e 'bn—2 bn—1]
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Example 3

Find the state-space realization of the following ordinary differential
equation, where the initial conditions are zero.

3 2
d—2/+5CI ¥+dy+2y=u
dt dt® dt
I o o
X =Y X, 0 1 0] x 0
Let X, =% =V’ X, =10 0 11| x|+/0ju
X3:X2:y” N | X3 | _—2 -1 —5__X3_ _l_
X
y=[1 0 0] x,
RN




Chapter 4 Realization of State Space Equations

Example 3

Find the state-space realization of the following ordinary differential
equation, where the initial conditions are zero.

3 2
d—2/+5CI ¥+dy+2y=u
dt dt® dt
]
Alternatively, -4 - o
S (5) 4557 (s)+sY (s)+ 2Y(s) =u(s) || | @ 1 O x| (@
X, = 0 0 1 |x|+/0fu
G(S)zY(S)z - ;L X |78 A -8, [ %] [1
U(s) s°+5s5°+S5+2 = o
1 1 1 X
L & & y=[1 0 0] x
| X5 _
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Observer Form

Y(s) b,,s""+b, 5"+ -+bs+h,

== = n=m+1
U (s) s'+a ,S +---+aS+a,

s"Y (s)+a,_S" Y (S)+---+asSY(s)+a,Y (s) =
b _s"U(s)+b ,s"U(s)+---+bsU(s)+bU(s)

(@ra, T rrg 10,0 YO
o U6y U<s> U6) .y, U6
S s* S

Y(s)= %{(bn—lu (s)—a,,Y(s))+ % {(bn_zu (s)-a,,Y(s))+ % (--)+
l{bOU (s) —aOY(s)}}---}

L 1
X, (s)
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Observer Form

X,(9) = BU )-8 (9)}  ———> % (0) =BUO -2y

X(5) =< {(BUS)-aY (5)+ X,(9)} ——> %0 =Bu-ay®)+x (1

X, (5) = %{(bnlu (8)=2,.Y (9))+ X, ,(8)} = %, (1) =b, u®) ~a, Y1) +x, , (1)

Y (5) = X (5) e Y (t) = X, (t)
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Observer Form

B The state space equations in observer form:

Observer Form
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Example 4

Find the state-space realization of the following transfer function in

Frobenius Form.

4s® +25s° + 455 +34
G(s)=— 2
25° +12s° +20s+16
]
3 2 2 12 1
G(s):433+2532+458+34=2+ : S +255+2 _o. 325 +2225+1
25° +12s° +20s+16 25° +12s° +20s+16 S°+6s°+10s+8
_Xl_ 0 0 —ao__xl_ _bo_ _>'<1_ 0 0 —8"x1_ 1
X, |=|1 0 —a || X, [+|b |u X, |=|1 =10 || X, |+]| 25 U
X, 0 1 —-a, | X b, X, 1 -6 || X 3
| A3 L 2% ] 12 _, Ll L CAL%e ] L7
X X
y=[0 0 1] x, |+0uf(t) y=[0 0 1] x, [+2u(t)
| Xy | Xy
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Canonical Form

B To construct state space equations in canonical form, we need to
1E)erform partial fraction decomposition to the respective transfer
unction.

V()= 2U(s) —{i “ +ro}U(s)

D(s) o S— A
®m In case all poles are distinct, we define:
1

X,(s) =qU(S) > %(1) = 4%, (1) +u(t)

Xo(5) = ——U (8) e %, (t) = A, %, (6) +u(t)

Xn(s);%U(S)_b X, (£) = 4,%, (1) +u(t)

n

Y(s) =X, (s)+X,(s)+ , y(t) = nx (0 +rx,(t)+
-+ 1 X (S)+rU(s) s+ X (B) + U (t)
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Canonical Form

B The state space equations in case all poles are distinct:

Canonical Form,
Distinct Poles

e The resulting matrix A is a diagonal matrix.
e The ODEs are decoupled, each of them can be
solved independently.
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Canonical Form

B The block diagram of the state space equations in Canonical Form

can be given as:

> rO
X
——| 1 + I . o I
=
A
u(t) X
(0 ¢ o 1 r I . I, |
+ ‘ y(t)
A,
: X
_|_
An B The ODEs are completely

decoupled from each other.
B Controllability, Observability

32
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Canonical Form

B In case of repeating poles, for example A, is repeated for p
times, the decomposed equation will be:

Y(s)={ro+ ha it i b g }U(s)
S—A, (S /11) (S )" 5—22 S— A\ pu

B We define:
x1<s)=ﬁu<s> —_—— %) =A%) +u(t)
1
X = U
2(S) (S—//il)z (S)

() —, %, (£) = A%, (t) + X, (t)

N *x,(f) coupled with x,(?)

X (s) = S L U

( 1_ ﬂ’l)p *X,1(f) coupled with x,()
Xp1(8) e X, (0) = 20X, (1) + X, 4 (1)

"L
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Canonical Form

xpﬂ(s):iws) —— %O =AX,, (1) +U()

X, ()= ———U(s) ——— 5 % () =4, % 1) +u(t)

~ h-p+L

Y(s) =1, X (8) + 1, X,(s) + — V() =1 X (1) 1L, (1) +
e L, X (S)+ 0L X () + e X (D) 0X (1) +

Ip”"p
et X (8)+ U (S) X (t)+ru(t)

vt rn—p+1
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Canonical Form

B The state space equations in case of repeating poles:

Canonical Form,
Repeating Poles
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Canonical Form

B The state space equations in case of repeating poles:

Canonical Form,
Repeating Poles
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Homework 3: Transfer Function - State Space

B Find the state-space realizations of the following transfer function
in Frobenius Form, Observer Form, and Canonical Form.

Y(S) S+2
U(s) s°+8s°+19s5+12

G(s) =

B Hint: Learn the following functions in Matlab and use the to solve
this problem: roots, residue, convolution.




Chapter 4 Realization of State Space Equations

Homework 3A: Transfer Function - State Space

B Perform a step by step transformation (by calculation of transfer
matrix) from the following state-space equations to result the
corresponding transfer function.

(0 1 O] 0
Xt)=1 0 0 1 |-x(t)+]0[-u(t)
3 -4 -2 1

yt)=[5 1 0]-x(t) o

B Verify your calculation result using Matlab.

B Hint: Learn the following functions in Matlab and use the to solve
this problem: ss2tf, tf2ss.




