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 Introduction

 Time response of first-order systems

 Properties of first-order system 

 Time response of a prototype 2nd-order system

 Properties of 2nd-order systems

 The effect of pole locations on 2nd-order systems

 Effect of adding poles and zeros

 Stability of linear systems (in complex plane)

 Routh-Hurwithz Criterion

 Steady-state error
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Introduction
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 Since time is used as an independent variable in 
most control systems, it is usually of interest to 
evaluate the output response with respect to time, 
or simply, the time response.

 When you design a system, the time response 
behavior may well be the most important aspect of 
its behavior

 Many design criteria are based on the system 
response to test signals

 Typical test signals are step, ramp, acceleration, 
impulse, sinusoidal functions, and white noise

Time-Response Behavior
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Points you might worry about include

 How quickly a system responds is important.

 If you have a control system that's controlling a temperature, how long it 

takes the temperature to reach a new steady state is important

 Overshoot and how close a system comes to instability.

 Say you're trying to control a temperature, and you want the 

temperature to be 200o C. If the temperature goes to 250o C before it 

settles out, you'll want to know that

 Oscillations in a system are not usually desirable

 If you're trying to control speed of an automobile at 55mph and the 

speed keeps varying between 50mph and 60mph, your design isn't very 

good

Time-Response Behavior (2)
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Points you might worry about include

 These are but a few of many different aspects 

of time behavior of a system that are important 

in control system design.

The points above really are talking about aspects like:

 Speed of response

 Relative stability of the system

 Stability of the system

Time-Response Behavior (3)
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 The time response of a control system consists of two parts: 
the transient response and the steady-state response

 The most important characteristic of the dynamic behavior 
of a control system is absolute stability

 A control system is in equilibrium if, in the absence of any 
disturbance or input, the output stays in the same state

 An LTI control system is stable if the output eventually 
comes back to its equilibrium state when the system is 
subjected to an initial condition

 An LTI control system is critically stable if oscillations of the 
output continue forever

 It is unstable if the output diverges without bound from its 
equilibrium state when the system is subjected to an initial 
condition

Stability and Steady-State Error
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 Other important system behaviors include relative 

stability and steady-state error

 The transient response of a practical control system 

often exhibits damped oscillations before reaching a 

steady state

 If the output of a system at steady state does not 

exactly agree with the input, the system is said to 

have steady-state error

 In analyzing a control system, we must examine 

transient-response behavior and steady-state 

behavior

Stability and Steady-State Error (2)
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Time Response of First-Order Systems
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 What is a first-order system?

 First order systems are described by first order 

differential equations.

Time Response of First-Order Systems

EE 391 Control Systems and Components 10

Example

( )
( ) ( )

dy t
y t Ku t

dt
  First-order differential equation: 

y(t)---output response of the system; u(t)---input to the system

Using Laplace transform and assuming zero initial conditions, we get: 

( ) ( ) ( )sY s Y s KU s  

Transfer function: ( )
( )

( ) 1

Y s K
G s

U s s
 



 - time constant

 - DC gainK


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 Why learn about first order systems?

 First-order systems are the simplest systems, and they 

make a good place to begin a study of system dynamics.

 First-order system concepts form the foundation

for understanding more complex systems.

Everything starts here…

Time Response of First-Order Systems (2)
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 A number of goals
 First, if you have a first-order system, you need to be able to 

predict and understand how it responds to an input, so you 

need to be able to do this.

Time Response of First-Order Systems (3)

EE 391 Control Systems and Components 12

Given a first-order system 

Determine the impulse and step response of the system.
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 A number of goals

 Secondly, you may go into a lab and measure a system, and if 

it is first order, you need to be able to do this.

Time Response of First-Order Systems (4)

EE 391 Control Systems and Components 13

Given the time response of 
a first order system

Determine the parameters  of the system
(time constant and DC gain)
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Parameters of First-order Systems

EE 391 Control Systems and Components 14

𝝉, the time constant, will determine how quickly the system 

moves toward steady state.

K, the DC gain of the system, will determine the size of steady 

state response when the input settles out to a constant value.

( )
1

K
G s

s




Input u(t) output y(t)
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A Resistor-Capacitor Circuit

Example Systems

EE 391 Control Systems and Components 15

Differential equation: 

Transfer function: 

( ) 1
( )

( ) 1

out

in

V s
G s

V s RCs
 


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A Simple Thermal System

Example Systems
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Differential equation: 

Transfer function: 

( )
( )

( ) 1in

Temp s K
G s

Heat s s
 



In this system, heat flows into a heated space and the 

temperature within the heated space follows a first order 

linear differential equation.

in

dTemp
Temp K Heat

dt
    
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 The systems above come from very diverse places, 

including circuit theory, thermal dynamics, etc. 

 However, there is a common mathematical description for 

all of those systems.

 That's what you need to learn the properties of a general 

first-order system.
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 When you learn about first-order system dynamics 
you are learning a topic that:

 Has applicability to a wide variety of areas 

 Is a good introduction to more complex system 
dynamics, like second-order systems and more 
complex systems of higher order.

 We'll start by learning how a first order system 
responds to two inputs: 

 unit impulse input

 unit step input

 Ramp input
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Impulse Response of a First-Order System
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 The impulse response is the response to a unit impulse 

input        . 

 The unit impulse has a Laplace transform of unity (1).

 That gives the unit impulse a unique stature.

( )t

t

( )u t

00
0

a very intense force 

for a very short time

[ ( )] 1L t 

( )t
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For a first-order systems satisfy this generic differential 

equation

( )
( ) ( )

dy t
y t Ku t

dt
  

( ) tK
y t e 





 - time constant

 - DC gainK



For a unit impulse input       and assuming zero initial conditions, 

could you calculate its output? 

( )t

The impulse response is the inverse transform of the transfer 

function of the above system:

( )
1

K
G s

s




Now, we need to examine what the impulse response looks 

like…
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Example 1

0.1Time co  nstant DC ; 20 gains K  

Consider a first-order system with the following parameters.

The problem is to determine the unit impulse response of a system 

that has these parameters.

Solution. Using the general form of the impulse response of 

first –order systems

( ) tK
y t e 





With the parameters above, the impulse response is:

/0.1 1020
( ) 200

0.1

t t tK
y t e e e



    

What value does the impulse response start from?
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Example 1

0.1Time co  nstant DC ; 20 gains K  

Consider a first-order system with the following parameters.

The problem is to determine the unit impulse response of a system 

that has these parameters.

Solution. 
/0.1 1020

( ) 200
0.1

t t tK
y t e e e



    

>> num=20;

>> den=[0.1 1];

>> impulse(num,den)

Using MATLAB to get its 

impulse response

20
( )

1 0.1 1

K
G s

s s
 

 



Faculty of Engineering - Alexandria University 2013

EE 391 Control Systems and Components 23

Example 2 Below is the impulse response of a system - i.e. the 

response to a unit impulse.

Could you compute the parameters of the system?

The system starts with 

an initial condition of 

zero just before the 

impulse comes along at 

t = 0, so y(0-) = 0.
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Solution. 

The general time response 

of a first-order system is  

From the right figure, we have

at 0,  (0) 20t y 

So we can get

How to get K ?

Pick up a point on the response curve: 

A

A: at 2sec; (2) 8t y 

2/(2) 20 8y e  

20
K


 (2)

2(2) 8
K

y e 



  (3)

With (2) and (3), we have

Solving the equation yields: 2/ 0.4e  

2 / ln(0.4) 0.9163   

2.2sec  20 44K  

Transfer function:

44
( )

1 2.2 1

K
G s

s s
 

 ( ) tK
y t e 



 (1)
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Few Conclusions From the Examples
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 Calculating the impulse response is straight-forward.

 Given the system parameters it is not difficult to calculate -

predict - the response of the system.

 The inverse problem is somewhat more difficult.

 Given a response, you will have to be more inventive to 

determine what the system was that produced the given 

response - the system identification problem.

 The underlying theory is the same.

 You use the same general principles to solve both problems, 

but the way you have to use the information makes the 

identification problem more difficult.
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Step Response of First-Order Systems
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 The step response is the response to a step input        . 

 The Laplace transform of the unit step       is

1
[1( )]L t

s


( )su t

t

( )su t

A

0

1( )t

When the magnitude of the 

step input is 1, it is called a 

unit-step input, denoted 

by       .1( )t

0
( )

0 0
s

A t
u t

t


 


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For a first-order systems satisfy this generic differential 

equation

( )
( ) ( )

dy t
y t Ku t

dt
  

( ) ( ) ( )sY s Y s KU s  

 - time constant

 - DC gainK



For a unit step input                and assuming zero initial 

conditions, could you calculate its output? 

( ) 1( )u t t

1
( ) [1( )]U s L t

s
 

( 1) ( )
K

s Y s
s

  

1
( )

( 1) 1

K
Y s K

s s s s



 

 
   

  

/( ) (1 )ty t K e  

0 ( ) 0t y t 

( )t y t K 
Can you imagine what the response looks like?
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Example 3

0.1Time co  nstant DC ; 20 gains K  

Consider a first-order system with the following 

parameters.

The problem is to determine the unit step response of a system 

that has these parameters.

Solution. 

Using the general form of the unit-step response of first –order 

systems

/( ) (1 )ty t K e  

With the parameters above, the impulse response is:

/0.1 10( ) 20(1 ) 20(1 )t ty t e e    
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Example 3 0.1Time co  nstant ; DC 20 gains K  

Solution. 

>> num=20;

>> den=[0.1 1];

>> step(num,den)

Using MATLAB to get its 

step response

20
( )

1 0.1 1

K
G s

s s
 

 

10( ) 20(1 )ty t e 

Transfer function of the 

first-order system: 

Unit-step time response:

If we keep              

but change K, 

what will happen?

0.1s 
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20DC gai  10n 16 4K  

Time consta 0.  ;nt 1s 
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DC gain 20K 

0.1  Time 0. const 2ant 0 3 0.. 5ss ss   

Note: the time constant reflects the system inertia. The smaller is the system inertia, the 

shorter is and the quicker is the response, vice versa.
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,  ( ) 0.632 ( ) 63.3% final value;

2 ,  (2 ) 0.865 ( ) 86.5% final value;

3 ,  (3 ) 0.950 ( ) 95.0% final value;

4 ,  (4 ) 0.982 ( ) 98.2% final value;

t y y

t y y

t y y

t y y

 

 

 

 

   

   

   

   

Two important properties of the unit-step response of a first-

order system: 

a) The time constant can be used to calculate the system output

0

( ) 1 ( ) 1 ( )
, 0.368 , 0.

t t t

dy t dy t dy t

dt dt dt   

  

b) The initial slope of the response curve is 1/𝜏 and the slope 

decreases with time

experiment methods 

-- estimate the 

time constant

--judge whether a 

system is first-order 

or not

It is also a common method to obtain the time constant though the initial 

slope in control engineering.



Faculty of Engineering - Alexandria University 2013

EE 391 Control Systems and Components 33

( )y t

( )y 

0

0.632 ( )y 
1

slope




t

/( ) (1 )ty t K e  



Unit-step response of a first-order system
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( ) tK
y t e 





Unit-impulse 

response: 

Encountering 1-order Systems

( )
1

K
G s

s




/( ) (1 )ty t K e  

Unit-step 

response: 



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 Laplace transform of the unit-ramp function is 
1

𝑠2

 The system output is

𝐶 𝑠 =
1

1+𝜏𝑠

1

𝑠2
=

1

𝑠2
−
𝜏

𝑠
+

𝜏2

1+𝜏𝑠

using partial fraction method

𝑐 𝑡 = 𝑡 − 𝜏 + 𝜏𝑒−
𝑡

𝜏

 The error 𝑒 𝑡 signal equals 𝑖𝑛𝑝𝑢𝑡 𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡
𝑒 𝑡 = 𝑟 𝑡 − 𝑐 𝑡 = 𝜏(1 − 𝑒−𝑡/𝜏)

Unit-Ramp Response of First-Order Systems

EE 391 Control Systems and Components 35

( )
1

K
G s

s




Input

r(t)

output c(t) = ??
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 As t approaches infinity, e–t/T approaches zero, and 

thus the error signal e(t) approaches T

Unit-Ramp Response of First-Order Systems (2)

EE 391 Control Systems and Components 36
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Time Response of Second-Order 

Systems
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 The servo system shown 

consists of a proportional 

controller and load elements

Open-loop response

Closed-loop response
𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝐽𝑠2 + 𝐵𝑠 + 𝐾

Servo System (A 2nd-order System )

EE 391 Control Systems and Components= 38
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 The closed-loop transfer function of the 2ndorder system 
is

 This Eqn can be rewritten as

 In the transient-response analysis, it is convenient to write

where 𝜎 is called the attenuation ; 𝜔𝑛, the undamped natural 
frequency; and 𝜁, the damping ratio of the system

Servo System (A 2nd-order System )

EE 391 Control Systems and Components 39
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Time Response of Second-Order Systems
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 What is a second-order system?

 Second-order systems are described by second-

order differential equations.

Example

2
2 2

2
( ) 2 ( ) ( ) ( )n n n

d d
y t y t y t u t

dt dt
    

A prototype second-order differential equation: 

y(t)---output response of the system;

u(t)---input to the system
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Time response of 2nd-order systems
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Using Laplace transform and assuming zero initial conditions, 

we get: 

2 2 2( ) 2 ( ) ( ) ( )n n ns Y s sY s Y s U s    

Transfer function of a second-order system: 

2

2 2

( )
( )

( ) 2

n

n n

Y s
G s

U s s s



 
 

 

, will determine how fast the 

system oscillates during any transient response

 - undamped natural frequencyn

, will determine how much the system oscillates as 

the response decays toward steady state.

  - damping ratio
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Relationship between the characteristic-equation roots 
and the step response

A second-order system: 

2

2 2
( )

2

n

n n

G s
s s



 


 

Its characteristic equation: 
2 2( ) 2 0n nD s s s    

The value of      determines the location of the roots of  ( ) 0.D s 

0 1: 
2

1,2 1n ns j      underdamped

1:  1,2 ns   critically damped

1: 
2

1,2 1n ns       overdamped

0 :  1,2 ns j  undamped

0 : 
2

1,2 1n ns j      negatively damped
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1: 
overdamped

1: 
critically damped

0 1: 

underdamped

0 : 

undamped

j

j

j

2

1,2 1n ns      

1,2 ns  

2

1,2 1n ns j     

1,2 ns j 

A second-order system: 

2

2 2
( )

2

n

n n

G s
s s



 


 

j
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Step Response of Second-Order Systems
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A 2nd-order system: 
2

2 2
( )

2

n

n n

G s
s s



 


 

Case 1: underda0 1 ( mp ,d)e  including =0 unda ( )mped

1
( ) 1 sin( ),nt

ny t e t
  




  

2

1

where = 1

           =tan ( / )

 

  



Case 2: overdam1 d ( )pe 

1 2/ /

1 2( ) 1
t t

y t k e k e
  

   1,2
2

1
where 

1n n


  


 

Case 3: critica1 (  lly da )mped 

/ /

1 2( ) 1 t ty t k e k e     where 1 n 

Input : 
( ) 1( );

1
( )

u t t

U s
s




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Step Response of Second-Order Systems (2)
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A 2nd-order system: 

2

2 2
( )

2

n

n n

G s
s s



 


 

Case 1: underda0 1 ( mp ,d)e 

1
( ) 1 sin( )nt

ny t e t
  




  

Case 2: overdam1 d ( )pe 

1 2/ /

1 2( ) 1
t t

y t k e k e
  

  

Case 3: critically dam(  )d1 pe 

/ /

1 2( ) 1 t ty t k e k e    
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Transient and steady-state response
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t0

1

y(t)The time response of a 

control system is 

usually divided into 

two parts:

( ) ( ) ( )t ssy t y t y t 

Transient response        

-- defined as the part of the time 

response that goes to zero as 

time becomes very large.

( )ty t

lim ( ) 0t
t

y t




Steady-state response 

-- the part of the time response 

that remains after the transient 

has died out.

( )ssy t
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Time-domain Specifications
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2. Maximum overshoot: 

max ;p ssM y y 

4. Rise time: rt

5. Settling time: st

1. Steady-state value: ssy
Percent overshoot 100%

p

ss

M

y
 

3. Peak time: 
pt

How to calculate      ?pt

Is there overshoot in the 

time response of a first-

order system?

ss
y

p
t st

error band

0.1

r
t

0.9

p
M

maxy
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In practical applications, the following 
criteria are often used：
 Rise time: evaluate the response speed of the 

system （quickness)

 Overshoot: evaluate the damping of the system 
(smoothness)

 Settling time: reflect both response speed and 
damping

Time-domain Specifications (2)

EE 391 Control Systems and Components 48



Faculty of Engineering - Alexandria University 2013

EE 391 Control Systems and Components 49

Effects of damping ratio 

rise time
rt



Overshoot 
pM

The oscillation is 

smaller

The speed of 

the response is 

slower

We are confronted with a necessary compromise between the 

speed of response and the allowable overshoot.

A second-order system: 
2

2 2
( )

2

n

n n

G s
s s



 


 

(for a given      )n
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Few Comments about 2nd-Order Systems

EE 391 Control Systems and Components 50

Note: In control engineering, except those systems that do 

not allow any oscillation, usually a control system is 

desirable with 

- moderate damping (allowing some overshoot)

- quick response speed

- short settling time

Therefore, a second-order control system is usually designed as an 

underdamped system. 
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Underdamped second-order system
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,  damping ratio

,  natural undamped frequencyn





2

2 2
( )

2

n

n n

G s
s s



 


 

21
arctan









arccos 

2

1,2 1n ns j     

2

,   damping factor

,   damped frequenc1 y

n

d n

 

  



 

dj   

1s

2s

Im

Re

d

d

n





? 

0 1 
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2
( ) 1 sin( ) 1

1
d

tn

y t t
e



  




   


，0<

2
 0,  ( 0, 1, 2, )

1

n rt

d r

e
t n n

 

  


  

      


2
( ) 1,   that is,  1 sin( ) 1

1

n rw t

r d r

e
y t w t








    


1.  Rise Time

2
     sin( ) 0     

1

n rt

d r

e
t



 




  


tr is the time needed for 

the response to reach 

the steady-state value 

for the first time, so n=1.

2
 

1
r

d n

t
   

  

 
 



For a given wn， ζ ↓，tr ↓；
For a given ζ，wn↑，tr ↓ .

Unit-step 

response:
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2 . Peak time

( )
0

dy t

dt


2
2

2

2

( )
( 1 ) sin

1

sin
1

n

n

tn
n d

tn
d

dy t
e t

dt

e t

 

 

 
  








  

  

  





sin 0 ( 0, 1, 2, )d p d pt t n n        

=0

tp is the time needed for 

the response to reach 

the maximum value for 

the first time, so n=1.

21
d pp

d n

t t
 

 



  




For a given wn，ζ ↓，tp ↓；
For a given ζ，wn↑，tp ↓

2
( ) 1 sin( ) 1

1
d

tn

y t t
e



  




   


，0<
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3.  Overshoot

21
p

d n

t
w w

 


 



2
( ) 1 sin( )

1

n pw t

p

e
y t



 


  

  


( ) ( )
% 100%

( )

py t y

y


 
 



2

2

/

2

1

1

/

sin( ) sin 1

( ) 1   

Suppose that ( ) 1

Th % 1us  00%

py t e

y

e


 

 

  





 

 

   

 

 

  

 

Im

Re

d

d

n

21
arctan









Overshoot is a function of damping ratio ζ , independent of wn.

2
( ) 1 sin( ) 1

1
d

tn

y t t
e



  




   


，0<
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ζ ↑，Mp% ↓

Usually ζ is set between 0.4 and 0.8 to get better smoothness and 

quickness, the corresponding overshoot is between 25% and 2.5%.

Damping ratioξ
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With the definition of error band

ts can not be obtained directly, but we can get the relationship 

between wnts and ζ.

2

2
sin( 1 ) 0.05 0.02

1

n t

n s

e
t or

 

  


  

    


4  Settling Time

2
( ) 1 sin( ) 1

1
d

tn

y t t
e



  




   


，0<
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2
 

1
r

d n

t
  







 
 



21
p

d n

t
 

  
 



2/ 1
 % 100%e

   
 

3
( 5%)

4
( 2%)

s

n

s

n

t

t





  

  

For a given n

r pt t



   

%   

n st   

 can be calculated by the requirement 

on the overshoot %. [0.4,0.8].



  

Once  is determined,  can be 

determined based on the requirement

on error band %.

n 



Relationship between ( , ) and ( , , %, )n r p st t t  
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Example 1: Consider the following unit-feedback system

System input is the unit-step function, When the amplifier gains 

are KA=200, KA=1500, KA=13.5 respectively, can you calculate the 

time-domain specifications of the unit-step response ?

5

( 34.5)

AK

s s -

R(s) C(s)

Investigate the effect of the amplifier gain KA on the system 

response
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Solution: The closed-loop transfer function is

2 1000,   2 34.5

34.5
31.6( / ), 0.545

2

n n

n

n

rad s

 

 


  

   

2

2

5( )
( )

1 ( ) 34.5 5

1000
200, ( )

34.5 1000

A

A

A

KG s
s

G s s s K

K s
s s





 
  

  
 
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According to the formula to calculate the performance 

indices, it follows that

2

2

/ 1

0.12(sec)
1

3
0.174(sec)

% 100% 13%

p

n

s

n

t

t

e
 



 



  

 


 

  
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Thus, the greater the KA, the less the ξ, the greater the wn, the 

less the tp, the greater the б%, while the settling time ts has no 

change.

 If 1500,  then 86.2( / ); 0.2

0.037( ), 0.174( ), % 52.7%

A n

p s

K rad s

t s t s

 



  

   

 If 200,  then 34.5( / ); 0.545

0.12( ), 0.174( ), % 13%

A n

p s

K rad s

t s t s

 



  

   

When 13.5, 8.22( / ), 2.1A nK rad s   

13.5AK 

1500AK 

Overdamped

1 
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When system is over-damped, there is no peak time, overshoot
and oscillation.

The settling time can be calculated approximately: 

The settling time is greater than previous cases, although the 
response has no overshoot, the transition process is very slow, 
the curves are as follows:

2

3 1.46( )

1
( 1)

s

n

t T

T
  

 

  

sec

When 13.5, 8.22( / ), 2.1A nK rad s   
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0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1.0

1.2
1.4

)1500(2.0  AK

)200(545.0  AK

)5.13(1.2  AK

twn

)(tc

Note:  When KA increases，tp decreases，tr decreases，the speed 

of response increases, meanwhile, the overshoot increases. 

Therefore, to improve the dynamic performance indexes of a system, 

we adopt PD-control or velocity feedback control，namely, PD 

compensation
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Effects of Adding Poles and Zeros to 

Transfer Function
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( )R s ( )Y s2

( 2 )

n

ns s





1

1 pT s

( )R s ( )Y s2

( 2 )

n

ns s



 Closed-loop TF：
2

2 2

( ) ( )
( )

( ) 1 ( ) 2

n

n n

Y s G s
s

R s G s s s




 
  

  

1. Adding a pole at                to the open-loop TF   1 ps T 

2

( )
( 2 (1 ))

n

n p

G s
s T ss



 




Open-loop TF：

Open-loop TF：
2

( )
( 2 )

n

n

G s
s s








Closed-loop TF：
2

3 2 2
( )

(1 2 ) 2

n

p n p n n

s
T s T s s




  


   

Effects of Adding Poles 
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1. Adding a pole at                to the open-loop TF   1 ps T 

0, 1, 2, 5pT 

: , 1, 0.5, 0.2poles s     

j

0
1

0.5

0.2

-- Increasing the maximum overshoot of the closed-loop system;

How does it affect closed-loop system step-response performance?

-- Increasing the rise time of the closed-loop system.
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( )R s ( )Y s2

( 2 )

n

ns s




Closed-loop TF：

Open-loop TF：

2

2 2

( ) ( )
( )

( ) 1 ( ) 2

n

n n

Y s G s
s

R s G s s s




 
  

  

Closed-loop TF：

2

( )
( 2 )

n

n

G s
s s








2. Adding a pole at                to the closed-loop TF   1 ps T 

Effects of Adding Poles 

2

2 2
( )

( (12 )) p

n

n n T s
s

s s




  


 

2

3 2 2 2(1 2 ) (2 )

n

p n p n n p nT s T s T s



   


    
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0, 0.5, 1, 2, 5pT 

, 2, 1, 0.5, 0.2s     

j

01

0.5

0.22

-- the maximum overshoot of the closed-loop system decreases;

-- the rise time of the closed-loop system increases.

As the pole at               is moved toward the origin in the s-plane1 ps T 

opposite effects to 

that of adding a pole 

to open-loop TF

1. Adding a pole to the closed-loop system has the effect as increasing the damping ratio;

2. An originally underdamped system can be made into overdamped by adding a closed-

loop pole.

2. Adding a pole at                to the closed-loop TF   1 ps T 
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( )R s ( )Y s2

( 2 )

n

ns s



 Closed-loop TF：

Open-loop TF：

2

2 2

( ) ( )
( )

( ) 1 ( ) 2

n

n n

Y s G s
s

R s G s s s




 
  

  

1. Adding a zero at                to the closed-loop TF   1 zs T 

Closed-loop TF：

2

( )
( 2 )

n

n

G s
s s








2

2 2

(1( )
(

2

)
)

( )

n

n n

zTY s
s

R

s

s s s




 
 

 



Effects of Adding Zeros 

2 2

2 2 2 22 2

n n

n n n n

z

s s s

s

s

T 

   
 

   
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1. Adding a zero at                to the closed-loop TF   1 zs T 

2

2 2

(1( )
(

2

)
)

( )

n

n n

zTY s
s

R

s

s s s




 
 

 

 2

2 2

2

2 2 22

n

n

n z

n nn

s

s ss s

T





 
 

  

For a unit-step input      ,1( )t
1

( )R s
s



The step response of the closed-loop system

22

2 2 22

1 1
( ) ( ) ( )

2 2

n

n n

n
z

n n

Y s s R s
sss s

T
ss

s



   

 
 

  
 

1 1
1

( )
( ) [ ( )] ( ) z

dy t
y t L Y s y t T

dt

  

Closed-loop TF：
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1. Adding a zero at                to the closed-loop TF   1 zs T 

0, 1, 3, 6, 10ZT 

1 1 1
, 1, , ,

3 6 10
s      

j

01 1

3


1

6


1

10


-- the maximum overshoot of the closed-loop system increases;

-- the rise time of the closed-loop system decreases.

As the zero at               is moved toward the origin in the s-plane1 zs T 

a) Its effects on an underdamped (             )system 0 1 

The additional zero has the effect as reducing the damping ratio
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1. Adding a zero at                to the closed-loop TF   1 zs T 

0, 1, 3, 6, 10ZT 

1 1 1
, 1, , ,

3 6 10
s      

j

0
1 1

3


1

6


1

10


b) Its effects on an overdamped (        )system 1 

Adding a zero to an overdamped system can change it into an underdamped

system by putting the zero at a proper position.
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( )R s ( )Y s2

( 2 )

n

ns s




1 zT s

( )R s ( )Y s2

( 2 )

n

ns s



 Closed-loop TF：

Open-loop TF：

2

2 2

( ) ( )
( )

( ) 1 ( ) 2

n

n n

Y s G s
s

R s G s s s




 
  

  

1. Adding a zero at                to the open-loop TF   1 zs T 

2

( )
( 2 )

(1 )z n

n

T s
G s

s s








Open-loop TF：

Closed-loop TF：

2

( )
( 2 )

n

n

G s
s s








2

2

2 2

1( )
( )

(2 )

z

z n

n

n n

s
s

T s

T s




 


  



Effects of Adding Zeros 

The additional zero 

changes both 

numerator and 

denominator.



Faculty of Engineering - Alexandria University 2013

EE 391 Control Systems and Components 74

1. Adding a zero at                to the open-loop TF   1 zs T 

Closed-loop TF：
2

2 2 2

(1 )
( )

(2 )

n z

n z n n

T s
s

s T s




  




  

The additional zero changes 

both numerator and 

denominator.
2

2 2

(1 )

2

n z

n nz

T s

s s



 




 

2

z n
z

T
    

The equivalent damping 

ratio:

zT  z  overshoot % 

An additional zero                will increase 

overshoot

1 zs T 

zT  overshoot % 

1

overdampe

when ,  the closed-loop system

becomes  no overshoot 

no matter how large i ) s

(d

z

zT

 
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Dominant poles: those poses that have a dominant effect on the 

transient response.

By identifying dominant poles, high-order systems can be approximated by lower 

ones as the transient response is concerned.

close to the imaginary axis 

Position of Poles in the left-half s-plane Their effects on transient response

decaying relatively slowly

far away from the imaginary axis decaying fast

31 2

1 2 3( )
p tp t p t

y t c e c e c e
 

   1 2 3poles: - , - , -p p p

1 2 3If ,p p p  1

1  decays fastest,
p t

c e
 3

3  decays slowest.
p t

c e


1 2 3

1
( )

( )( )( )
Y s

s p s p s p


  

e.g.
31 2

1 3 3

cc c

s p s p s p
  

  
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Dominant Poles of Transfer Function
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1
15 

If the ratio of real parts exceed 5 

and no zeros nearby, the closed-

loop poles nearest the imaginary-

axis will dominate in the transient 

response behavior.

The dominant poles can be a real 

pole, but a pair of complex conjugate 

poles are more preferable in control 

engineering（why?）.

In order to apply second-order 

system in approximating the 

dynamic performance of 

higher-order system
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Higher-Order Systems
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 The response of a higher-order system is the sum of 

the responses of first-order and second-order systems

 The closed-loop 

transfer function is 

or

Transient Response of Higher-Order Systems
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 The response behavior of this system to a unit-step 
input can be written as (using partial fractions):

𝐶 𝑠 =
𝑎

𝑠
+  𝑖=1

𝑛 𝑎𝑖

𝑠+𝑝𝑖
where ai is the residue of the pole at s=-pi

 If all closed-loop poles lie in the left-half s plane, the 
relative magnitudes of the residues determine the 
relative importance of the components in the expanded 
form of C(s)

 If there is a closed-loop zero close to a closed-loop 
pole, then the residue at this pole is small and the 
coefficient of the transient-response term 
corresponding to this pole becomes small

 A pair of closely located poles and zeros will effectively 
cancel each other

Transient Response of Higher-Order Systems (2)
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 If a pole is located very far from the origin, the 

residue at this pole may be small

 The transients corresponding to such a remote pole 

are small and last a short time

 Terms in the expanded form of C(s) having very 

small residues contribute little to the transient 

response, and these terms may be neglected

 If this is done, the higher-order system may be 

approximated by a lower-order one

Transient Response of Higher-Order Systems (3)
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 Consider the case where the poles of C(s)consist of real poles 

and pairs of complex-conjugate poles

 A pair of complex-conjugate poles yields a second-order term 

in s

 The step response can be rewritten as

 The inverse Laplace transform of C(s), is 

Transient Response of Higher-Order Systems (4)
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 If all closed-loop poles lie in the left-half s plane, then the 

exponential terms and the damped exponential terms 

approach zero as time t increases

 The exponential terms that correspond to poles located 

far from the jw axis decay very rapidly to zero

 Note that the horizontal distance from a closed-loop 

pole to the jw axis determines the settling time of 

transients due to that pole

 Remember that the type of transient response is 

determined by the closed-loop poles, while the shape of 

the transient response is primarily determined by the 

closed-loop zeros

Transient Response of Higher-Order Systems (5)

EE 391 Control Systems and Components 82



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 The relative dominance of closed-loop poles is 
determined by the ratio of the real parts of the closed-
loop poles, as well as by the relative magnitudes of the 
residues evaluated at the closed-loop poles

 The magnitudes of the residues depend on both the 
closed-loop poles and zeros

 If the ratios of the real parts of the closed-loop poles 
exceed 5 and there are no zeros nearby, then the 
closed-loop poles nearest the jw axis will dominate in 
the transient-response 

 Those closed-loop poles that have dominant effects on 
the transient-response behavior are called dominant 
closed-loop poles

Dominant Closed-Loop Poles
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Dominant Poles of a Transfer Function
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Dominant poles: those poses that have a dominant effect on the 

transient response.

By identifying dominant poles, high-order systems can be approximated by lower 

ones as the transient response is concerned.

close to the imaginary axis 

Position of Poles in the left-half s-plane Their effects on transient response

decaying relatively slowly

far away from the imaginary axis decaying fast

31 2

1 2 3( )
p tp t p t

y t c e c e c e
 

   1 2 3poles: - , - , -p p p

1 2 3If ,p p p  1

1  decays fastest,
p t

c e
 3

3  decays slowest.
p t

c e


1 2 3

1
( )

( )( )( )
Y s

s p s p s p


  

e.g.
31 2

1 3 3

cc c

s p s p s p
  

  
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Dominant Poles of Transfer Function
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1
15 

If the ratio of real parts exceed 5 

and no zeros nearby, the closed-

loop poles nearest the imaginary-

axis will dominate in the transient 

response behavior.

The dominant poles can be a real 

pole, but a pair of complex conjugate 

poles are more preferable in control 

engineering（why?）.

In order to apply second-order 

system in approximating the 

dynamic performance of 

higher-order system
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 The stability of a linear closed-loop system can be 

determined from the location of the closed-loop 

poles in the s plane

 If any of these poles lie in the right-half s plane, then 

the system is unstable

 If all closed-loop poles lie to the left of the jw axis, 

any transient response eventually reaches quilibrium. 

This represents a stable system

 The fact that all closed-loop poles lie in the left-half 

s plane does not guarantee satisfactory transient-

response characteristics

Stability Analysis in the Complex Plane
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 If dominant complex-
conjugate closed-loop 
poles lie close to the jw
axis, the transient 
response may exhibit 
excessive oscillations or 
may be very slow

 To guarantee fast, yet well-
damped, transient-
response characteristics, it 
is necessary that the 
closed-loop poles of the 
system lie in a particular 
region in the complex 
plane as shown

Stability Analysis in the Complex Plane (2)
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Stability Analysis in the complex plane
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The Concept of Stability

EE 391 Control Systems and Components 89

Two types of response for LTI systems:

--Zero-state response: the response is due to input only; all the initial 

conditions are zero;

--Zero-input response: the response is due to the initial conditions 

only; all the inputs are zero;

Bounded-input-bounded-output(BIBO) stability: with zero initial 

conditions, the system’s output y(t)  is bounded to a bounded input 

u(t).

Asymptotic stability: with zero input, for finite initial 

conditions                          , an LTI system is asymptotic 

stable there exist a positive number M which depends on the 

initial conditions, such that 

( )

0 0 0( ), ( ), , ( )ny t y t y t

01) ;( ( )y t M for all t t    (2) lim (and ) 0.
t

y t



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Time-Domain Definition
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The initial condition of the system is zero. When system input 

is unit impulse function δ(t), the system output is g(t).

If                    ,  then the system is stable。lim  ( ) 0
t

g t




1

( )
( )

( )

n
i

i i

CY s
G s

U s s p

 



1

1

( ) [ ( )] i

n
p t

i

i

g t L G s C e




 

lim  ( ) 0
t

g t


   decay with timeip t
e


All poles should locate in the left side of s-plane
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Stability Criterion in Complex Plane
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A system is stable if and only if 

For LTI systems, both BIBO stability and asymptotic stability have 

the same requirement on pole location. Thus if a system is BIBO 

stable , it must also be asymptotic stable. 

So we simply refer to the stability condition of an LTI system as 

stable or unstable.

all roots of the system characteristic equation have negative 

real parts

all poles of closed-loop transfer functions must locate in the 

left half of s-plane.

or equivalently
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LTI Systems Stability Conditions
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Stability Conditions Location of poles

stable all poles in LHP

marginally stable simple poles on the jw-axis 

and no poles in RHF

unstable
at least one simple pole in 

RHF or at least one multi-

order pole on the jw-axis
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Routh-Hurwitz’s Stability Criterion

EE 391 Control Systems and Components 93

 The criterion tests whether any of the roots of the 

characteristic equation lie in the right half of the s-plane, 

without actually calculating the roots.

 Information about stability can be obtained directly from the 

coefficients of the characteristic equation

All poles in left s-

plane

No poles in right 

s-plane＝>
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Routh-Hurwitz’s Stability Criterion
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1

0 1 1 0( ) ... 0,    0n n

n nD s a s a s a s a a

      

A necessary (but not sufficient) condition for stability: 

(1)  All the coefficients of the characteristic equation 

have the same  sign. 

(2)  None of the coefficients vanishes.

Consider the characteristic equation of a LTI system
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Note 1: The above conditions are based on the laws of algebra .

Note 2: These conditions are not sufficient.

1 2 3( )( )( ) 0s s s s s s   

2 3 1 2 3( )( ) ( )( ) 0s s s s s s s s s s     

2 2

2 3 2 3 1 2 3 2 3( ( ) ) ( ( ) ) 0s s s s s s s s s s s s s s       
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) 0s s s s s s s s s s s s s s s       

3 2

0 1 2 3 0a s a s a s a    

3
1

10

0i

i

a
s

a 

  
3

2

, 10

0i j

i j
i j

a
s s

a 


 
3

3

, , 10

0i j k

i j k
i j k

a
s s s

a 
 

  

If all roots of the system characteristic equation have negative 
real parts, all the coefficients have the same  sign
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Routh’s Tabulation
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31
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1
1

1
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a
b



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a
b



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1
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a
b




21

31

1
1

1

bb
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b
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
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1
2

1

bb
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b
c



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1
3

1

bb

aa

b
c




1
0

1
1

21
2

4321
3

4321
2

7531
1

6420

gs

fs

ees

ccccs

bbbbs

aaaas

aaaas

n

n

n

n



















1

0 1 1 0( ) ... 0,    0n n

n nD s a s a s a s a a

      

Consider the characteristic equation of a LTI system
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Routh’s Criterion
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A necessary and sufficient condition for stability: 

all the elements of the first column of the Routh’ 

Tabulation are of the same sign.

The number of changes of signs in the elements of the 

first column equals the number of roots in the right-half 

s-plane.
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4

3

2

1

0

1 3 5

2 4

1 5

6 0

5

s

s

s

s

s



Example

4 3 22 3 4 5 0s s s s    

Therefore, the system is unstable and has two roots in the 

right-half s-plane.

＋

＋
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First-order:

If a0 and a1 have the same sign, the system is stable.

Second-order:

If a0 , a1 and a2 have the same sign, the system is stable.

Third-order:

0 1 0a s a 

2

0 1 2 0a s a s a  

3 2

0 1 2 3 0a s a s a s a   

3

0 2

2

1 3

1 0 3 1 2

1

0

3

s a a

s a a

a a a a
s

a

s a




If a0,a1,a2,a3 are all 

positive and a1a2>a3a0,the 

system is stable.
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16

0
4812

16)(0

123

1641

0161243

0

1

2

3

4

234

s

s

s

s

s

ssss









The  system is unstable and has 

two roots not in the left-half s-

plane.

0
48

12
4812








Special cases when applying Routh’s Tabulation

Case 1: only the first element in one of the rows of Routh’s 

tabulation is zero

Solution: replace the zero with a small positive constant              

and proceed as before by taking the limit as 


0 

when 0 
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Case 2: an entire row of Routh’s tabulation is zero. 

This indicates… 

There are complex conjugate pairs of roots that are mirror 

images of each other with respect to the imaginary axis.

j

0

e.g.  1,2 1s  

j

0

e.g.  1,2

3,4

1 1

1 1

s j

s j

  

 

j

0

e.g.  1,2

3,4

1

2

s j

s j

 

 
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The characteristic equation of a system is：

0124933 2345  sssss

0

1

2

3

4

5

000

1293

431

s

s

s

s

s

s





4 2

3

Introducing an auxiliary equation:

( ) 3 9 12 0

( )
Its  derivative: 12 18 0

A s s s

dA s
s s

ds

   

  

5

4

3

2

1

0

1 3 4

3 9 12

8 012 1

s

s

s

s

s

s





5

4

3

2

1

0

1 3 4

3 9 12

0

9 / 2 12

50 0

12

12 18

s

s

s

s

s

s








The sign in the first column changes once, so the system is unstable 
and there is one root outside LHP.

Example

Determine whether there are any roots on the imaginary 

axis or in the RHP.
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4 2 2 23 4 ( 1)( 4) 0s s s s     

12,1 s 3,4 2s j 

4 2( ) 3 9 12 0A s s s   

Solving the auxiliary equation

j

0
11

2j

2j

A positive real 

root locates in 

the RHP
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 Determine the stability of the following systems:

Exercise
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4 3 2

5 4 3 2

(1) 2 3 5 10 0

(2) 3 12 24 32 48 0

s s s s

s s s s s

    

     
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 Routh’s tabulation can not only be used to determine 

the stability of a system, but also the spread of its 

characteristic roots.

 For a control system with a regulator, Routh’s

tabulation can be used to select parameter values so 

that the system is stable.

Application of Routh Tabulation

EE 391 Control Systems and Components 105
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Example
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( )R s ( )Y s10

( 1)( 2)s s s 
K

2

• Determine the range of K so that the system is stable. 

10

( )( ) ( 1)( 2)
( )

20( ) 1 ( )
1

( 1)( 2)

forward

loop

k

G sC s s s s
s

kR s G s

s s s


 

  



 

• Solution:
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Example (2)
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1 ( ) 0

20
1 0

( 1)( 2)

G s

k

s s s

 

  
 

l oop
Characteristic equation:

So when 0 0.3 , the system is stable.k 

3

2

1

0

1 2

3 20

3 2 20
0

3

20

s

s k

k
s

s k

 
 6 - 20 0 0.3

 0

k k

k

   

 

3 23 2 20 0s s s k   
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Exercise
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0325.0025.0 23  ksss
Consider that a 3rd-order system has the characteristic 
equation
Determine the range of k so that the system is stable.

Solution. 

0404013 23  ksss

Reformulate the characteristic equation as

3

2

1

0

1 40

13 40

13 40 40

13

40

s

s k

k
s

s k

 
 13

 0

k

k

 

 
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Effects of Integral and Derivative Control 

Actions on System Performance
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 In the proportional control of a plant whose transfer 

function does not possess an integrator 1/s, there is 

a steady-state error, or offset, in the response to a 

step input. Such an offset can be eliminated if the 

integral control action is included in the controller

 In the integral control of a plant, the control signal at 

any instant is the area under the actuating-error-

signal curve up to that instant

 The control signal u(t) can have a nonzero value 

when the actuating error signal e(t) is zero

Integral Control Action
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Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 Figure shows the curve e(t) versus t and the 

corresponding curve u(t) versus t when the 

 controller is of the proportional type

Integral Control Action (2)

EE 391 Control Systems and Components 111

Integral control action Proportional control action
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 We will prove that proportional control of a system 
without an integrator will result in a steady-state error 
with a step input. 

Let:

𝐺 𝑠 =
𝐾

1 + 𝑇𝑠
𝐸 𝑠 = 𝑅 𝑠 − 𝐶 𝑠

= 𝑅 𝑠 − 𝐸 𝑠 𝐺(𝑠)

𝐸 𝑠 =
1

1 + 𝐺(𝑠)
𝑅 𝑠 =

1 + 𝑇𝑠

1 + 𝑇𝑠 + 𝐾
𝑅(𝑠)

For the unit-step input 𝐸 𝑠 =
1+𝑇𝑠

1+𝑇𝑠+𝐾

1

𝑠

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 𝑡 = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

1+𝑇𝑠

1+𝑇𝑠+𝐾
=

1

1+𝐾

Proportional Control of Systems
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 Such a system without an integrator in the feed-

forward path always has a steady-state error in the 

step response

 Such a steady-state error is called an offset

Proportional Control of Systems (2)
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 Let 

𝐺 𝑠 =
𝐾/𝑠

1+𝑇𝑠

𝐸 𝑠 =
1

1 + 𝐺(𝑠)
𝑅 𝑠 =

1 + 𝑇𝑠 𝑠

1 + 𝑇𝑠 𝑠 + 𝐾
𝑅 𝑠

For the unit-step input:

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 𝑡 = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠2(1 + 𝑇𝑠)

𝑠 + 𝑇𝑠2 + 𝐾

1

𝑠
= 0

 Integral control of the system thus eliminates the 

steady-state error in the response to the step input.

Integral Control of Systems
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 Let us investigate a control system with a torque 

disturbance

 Assuming that R(s)=0
𝐶(𝑠)

𝑅(𝑠)
=

1

𝐽𝑠2+𝑏𝑠+𝐾

Hence:
𝐸(𝑠)

𝐷(𝑠)
= −

𝐶 𝑠

𝐷 𝑠
= −

1

𝐽𝑠2+𝑏𝑠+𝐾𝑃

 The steady-state error due to a step disturbance 

torque of magnitude Td is given by

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

−𝑠

𝐽𝑠2+𝑏𝑠+𝐾𝑃

𝑇𝑑

𝑠
=
−𝑇𝑑

𝐾𝑃

Response to Torque Disturbances
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 To eliminate offset due to torque disturbance, the 
proportional controller may be replaced by a 
proportional-plus-integral controller

 The closed-loop transfer function between C(s) and 
D(s) is

𝐶(𝑠)

𝐷(𝑠)
=

𝑠

𝐽𝑠3+𝑏𝑠2+𝐾𝑃𝑠+
𝐾𝑃
𝑇𝑖

Response to Torque Disturbances (PI Control)
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 Assuming that R(s)=0

𝐸 𝑠 = −
𝑠

𝐽𝑠3 + 𝑏𝑠2 + 𝐾𝑃𝑠 +
𝐾𝑃
𝑇𝑖

𝐷(𝑠)

 The steady-state error due to a step disturbance 

torque of magnitude is given by

𝑒𝑠𝑠= lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

−𝑠2

𝐽𝑠3 + 𝑏𝑠2 + 𝐾𝑃𝑠 +
𝐾𝑃
𝑇𝑖

1

𝑠
= 0

 The steady-state error to the step disturbance 

torque can be eliminated if the controller is PI

Response to Torque Disturbances (PI Control) (2)
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 Note that the integral control action added to the 
proportional controller has converted the originally 
second-order system to a third-order one

 Hence the control system may become unstable for a 
large value of Kp, since the roots of the characteristic 
equation may have positive real parts

 It is important to point out that if the controller were 
only an integral controller, then the system always 
becomes unstable because the characteristic equation 
will have roots with positive real parts

𝐽𝑠3 + 𝑏𝑠2 + 𝐾 = 0

 Such an unstable system cannot be used in practice

Response to Torque Disturbances (PI Control) (3)

EE 391 Control Systems and Components 118



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 Derivative control action, when added to a 

proportional controller, provides a means of 

obtaining a controller with high sensitivity

 An advantage of using derivative control action is 

that it responds to the rate of change of the 

actuating error and can produce a significant 

correction before the magnitude of the actuating 

error becomes too large

 Derivative control thus anticipates the actuating 

error, initiates an early corrective action, and tends 

to increase the stability of the system

Derivative Control Action
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 Although derivative control does not affect the 

steady-state error directly, it adds damping to the 

system and thus permits the use of a larger value of 

the gain K, which will result in an improvement in 

the steady-state accuracy

 Because derivative control operates on the rate of 

change of the actuating error and not the actuating 

error itself, this mode is never used alone

 It is always used in combination with proportional 

or proportional-plus-integral control action

Derivative Control Action (2)
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 Consider the system 
shown in Figure

𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑃

𝐽𝑠2+𝐾𝑃

 the roots of the 
characteristic equation 
are imaginary

 the response to a unit-
step input continues to 
oscillate indefinitely, as 
shown in Figure

 Such a system is not 
desirable

Proportional Control of Systems with Inertia Load
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 Let us consider the following system

 The closed-loop transfer function is given by
𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑃(1+𝑇𝑑𝑠)

𝐽𝑠2+𝐾𝑃𝑇𝑑𝑠+𝐾𝑃

 The Transfer function has two poles with negative 

real parts for positive values of J ,Kp , and Td

 Thus derivative control introduces a damping effect

PD Control of a System with Inertia Load
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 Consider the system shown in Figure

 The closed-loop transfer function is
𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑃 + 𝐾𝑑𝑠

𝐽𝑠2 + 𝐵 + 𝐾𝑑 𝑠 + 𝐾𝑃

 The characteristic equation is: 𝐽𝑠2 + 𝐵 + 𝐾𝑑 𝑠 + 𝐾𝑃 = 0

 The effective damping coefficient of this system is: 𝜁 =
𝐵+𝐾𝑑

2 𝐾𝑃𝐽

 It is possible to control 𝜁 by adjusting B, KP , Kd.

PD Control of Second-Order Systems
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Steady-state Error
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Error and steady-state error
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( )R s ( )Y s
( )G s

( )r t ( )y t

( )R s ( )Y s
( )G s

( )r t

( )E s

( )y t( )e t

Open-loop control system Closed-loop control system

Error: 

Steady-state error: 

Utilizing the final value theorem: 

( ) ( ) ( )e t r t y t 

lim ( )ss
t

e e t




0
lim ( ) lim ( )
t s

f t sF s
 



0
lim ( ) lim ( )ss
t s

e e t sE s
 

 

Assuming r(t)=l(t) is a unit-step input, according to the above definition, could 

you calculate the steady-state error of  the open-loop and closed-loop 

control systems?
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Error and steady-state error for a unit-step input

 Open-loop control system  Closed-loop control system
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( )R s ( )Y s
( )G s

( )r t ( )y t

( ) ( ) ( )

( ) ( ) ( )

[1 ( )] ( )

E s R s Y s

R s G s R s

G s R s

 

 

 

0

0

0

lim ( )

1
lim [1 ( )]

lim[1 ( )]

1 (0)

ss
s

s

s

e sE s

s G s
s

G s

G









 

 

 

( )R s ( )Y s
( )G s

( )r t

( )E s

( )y t( )e t

( ) ( ) ( )

( )
( ) ( )

1 ( )

1
( )

1 ( )

E s R s Y s

G s
R s R s

G s

R s
G s

 

 





0 0

0

1 1
lim ( ) lim

1 ( )

1 1
lim

1 ( ) 1 (0)

ss
s s

s

e sE s s
G s s

G s G

 



 


 
 
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0 0

0

1
lim ( ) lim ( )

1 ( )
ss

s s
e sE s s R s

k
G s

s
 

 



System Type: the order of the pole of G(s) at s=0.

1
( ) ( )

1 ( )
E s R s

G s




When  ν=0,1,2, the system is called type 0, type 1, type 2; k is called 

open-loop gain.

2 2

1 2 1 2

2 2

1 2 2 2

0 0

( 1) ( 2 1)
( )  

( 1) ( 2 1)

( ) when 0, ( ) 1

v

v

k s s s
G s

T s T s T s

k
G s G

s
s s

s

   



  


  

  

The forward-path transfer function G(s) can be formulated as

ν is the order of 

the pole of G(s) at 

s=0
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ν=0, type 0 system

1

1
sse

k




sse  

sse  

Steady-state 

error exists 

and is finite.

Unstable

Unstable

Step input:

1
( ) 1( ) ( )r t t R s

s
 

2

Ramp input:

1
( ) ( )r t t R s

s
 

2

3

Parabolic input:

1 1
( ) ( )

2
r t t R s

s
 

0 0

00

1
lim ( ) lim ( )

1 ( )
ss

s s
e sE s s R s

k
G s

s

 
 


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0 0

01

1
lim ( ) lim ( )

1 ( )
ss

s s
e sE s s R s

k
G s

s

 
 


ν=1, type 1 system

1
0

1
sse  



1
sse

k


sse  

No steady-

state error

Steady-state 

error exists

Unstable

Step input:

1
( ) 1( ) ( )r t t R s

s
 

2

Ramp input:

1
( ) ( )r t t R s

s
 

2

3

Parabolic input:

1 1
( ) ( )

2
r t t R s

s
 

Type-1 system can track step signal accurately.
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0 0

02

1
lim ( ) lim ( )

1 ( )
ss

s s
e sE s s R s

k
G s

s

 
 


ν=2, type 2 system

1
0

1
sse  



0sse 

1
sse

k


No steady-state 

error

No steady-

state error

Steady-state error 

exists

Step input:

1
( ) 1( ) ( )r t t R s

s
 

2

Ramp input:

1
( ) ( )r t t R s

s
 

2

3

Parabolic input:

1 1
( ) ( )

2
r t t R s

s
 

Type-2 system can track step and ramp signals accurately.
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Steady-state error constants
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with step input

- step-error constant

(static position error constant)

with ramp input

- ramp-error constant

(static velocity error constant)

with parabolic input

- parabolic-error constant

(static acceleration error constant)

0
lim ( )p
s

k G s




0
lim ( )
s

k sG s




2

0
lim ( )a
s

k s G s



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Type of

System

Error

constants
Steady-state error

j

0

Ⅰ

Ⅱ

)(1)( 0 tRtr  tVtr 0)(  2)( 2

0tAtr 



 

k

R

1

0  


k

V0

k

A0

0

00

0

00k

k

k

pk
vk

ak

sse

Summary of steady-state error and error constants

for unit-feedback systems (H(s)=1)


