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Classical Control and Modern Control
Classical Control

• SISO 
(Single Input Single Output)

• Low order ODEs
• Time-invariant
• Fixed parameters
• Linear
• Time-response approach

• Continuous, analog
• Before 80s

Modern Control
• MIMO

(Multiple Input Multiple Output)
• High order ODEs, PDEs
• Time-invariant and time variant
• Changing parameters
• Linear and non-linear
• Time- and frequency response 

approach
• Tends to be discrete, digital
• 80s and after

The difference between classical control and modern control originates from the 
different modeling approach used by each control.
The modeling approach used by modern control enables it to have new features not 

available for classical control.
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Laplace Transform Approach

RLC Circuit

Input variables: 
• Input voltage u(t)
Output variables: 
• Current i(t)
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For zero initial conditions (v0 = 0, i0 = 0),
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Transfer function

Laplace Transform Approach
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State Space Approach
Laplace Transform method is not effective to model time-varying and 

non-linear systems.
The state space approach to be studied in this course will be able to 

handle more general systems.
The state space approach characterizes the properties of a system 

without solving for the exact output.
Let us now consider the same RLC circuit and try to use state space to 

model it.
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RLC Circuit

State Space Approach

State variables: 
• Voltage across C
• Current through L
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• We now have two first-order ODEs
• Their variables are the state variables and the input
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1C
L

dv
i

dt C


1
( )L

L C

di
u Ri v
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  

State Space Approach

The two equations are called state equations, 
and can be rewritten in the form of:

0 1 0

1 1
CC

LL

vdv dt C
u

idi dt L R L L

      
              

The output is described by an output 
equation:
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 In a more compact form, the 
state space can be written as:

State Space Approach
The state equations and output equation, combined together, form 

the state space description of the circuit.
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
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The main features of state space approach are:
 It describes the behaviors inside the system.
 Stability and performance can be analyzed without solving for any differential 

equations.
Applicable to more general systems such as non-linear systems, time-varying system.
Modern control theory are developed using state space approach.

State Space Approach
The state of a system at t0 is the information at t0 that, together with the input u for t0 ≤ 

t < ∞, uniquely determines the behavior of the system for t ≥ t0.
The number of state variables = the number of initial conditions needed to solve the 

problem.
As we will learn in the future, there are infinite numbers of state space that can 

represent a system.
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Classification of Systems
Systems are classified based on:
The number of inputs and outputs: single-input single-output (SISO), multi-input 

multi-output (MIMO), MISO, SIMO.
Existence of memory: if the current output depends on the current input only, then 

the system is said to be memoryless, otherwise it has memory  purely resistive 
circuit vs. RLC-circuit.
Causality: a system is called causal or non-anticipatory if the output depends only 

on the present and past inputs and independent of the future unfed inputs.
Dimensionality: the dimension of system can be finite (lumped) or infinite 

(distributed).
Linearity: superposition of inputs yields the superposition of outputs.
Time-Invariance: the characteristics of a system with the change of time.
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Linear System
A system y(t) = f(x(t),u(t)) is said to be linear if it follows the 

following conditions:

 1 1
( ), ( ) ( )f t t t  x u y

 1 2 1 2 1 2
( ) ( ), ( ) ( ) ( ) ( )f t t t t t t   x x u u y y

 1 1 1
( ), ( ) ( )f t t tx u y

 2 2 2
( ), ( ) ( )f t t tx u y

 1 1 1
( ), ( ) ( )f t t tx u y ,

 1 2 1 2 1 2
( ) ( ), ( ) ( ) ( ) ( )f t t t t t t        x x u u y y

 If                            

then 

 If                            

and 

then 

 Then, it can also be implied that 
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Linear Time-Invariant (LTI) System

A system is said to be linear time-invariant if it is linear and its parameters 
do not change over time.
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State Space Equations
The state equations of a system can generally be written as:

1 11 1 1 11 1 1

2 22 2 22 2

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n r

n n nn n n nr r

x t a a x t b b u t

x t a x t b u t

x t a a x t b b u t

         
         
          
         
         

        

    

    

        

    

1 2( ), ( ), , ( )nx t x t x t

1 2( ), ( ), , ( )ru t u t u t

are the state variables

are the system inputs

• State equations are built of n linearly-coupled 
first-order ordinary differential equations
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State Space Equations
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By defining:

( ) ( ) ( )t t t x Ax Bu
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u t
t

u t

 
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 
 

u


we can write State Equations
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State Space Equations
The outputs of the state space are the linear combinations of the 

state variables and the inputs:

1 11 1 1 11 1 1

2 22 2 22 2

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n r

m m mn n m mr r

y t c c x t d d u t

y t c x t d u t

y t c c x t d d u t
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         
         

        

    

    

        

    

1 2( ), ( ), , ( )my t y t y t are the system outputs
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 
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y
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By defining:

( ) ( ) ( )t t t y C x Duwe can write Output Equations

State Space Equations

D

B C
( )tx( )tx ( )ty( )tu

A
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Example: Mechanical System

( )u t

k

b

( )y t

m

0y 

frictionless

2

2

( ) ( )
( ) ( )

dy t d y t
u t ky t b m

dt dt
  

Input variables: 
• Applied force u(t)
Output variables: 
• Displacement y(t)

State variables:

1( ) ( )x t y t

2

( )
( )

dy t
x t

dt


1 2( ) ( )x t x t 
2

2 2

( )
( )

d y t
x t

dt
 

State equations:

1 2( ) ( )x t x t

2 1 2

1
( ) ( ) ( ) ( )

k b
x t x t x t u t

m m m
   
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Example: Mechanical System
The state space equations can now be constructed as below:

1 1

2 2

( ) ( )0 1 0
( )

( ) ( ) 1

x t x t
u t

x t x tk m b m m

      
              





  1

2

( )
( ) 1 0

( )

x t
y t

x t

 
  

 
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Homework 1: Electrical System
Derive the state space representation of the following electric circuit:

( )u t





L

R
2C

1C ( )Lv t





Input variables: 
• Input voltage u(t)
Output variables: 
• Inductor voltage vL(t)
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Homework 1A: Electrical System
Derive the state space representation of the following electric circuit:

( )u t





LR

2C1C

( )Lv t





Input variables: 
• Input voltage u(t)
Output variables: 
• Inductor voltage vL(t)
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Solution of Homework 1: Electrical System

State variables: 
• x1 is the voltage across C1
• x2 is the voltage across C2
• x3 is the current through L

R Rv Ri

L
L

di
v L

dt


C
C

dv
i C

dt


LLi 

CCv 

1 1 1 2 2( ) 0x u R C x C x    

2 2 3C x x

1 2 3x x Lx  

1 1 1 1 3 11 1 1x RC x C x RC u      

2 2 31x C x 

3 1 21 1x L x L x   

( )u t





L

R
2C

1C ( )Lv t




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The state space equation can now be written as:

Solution of Homework 1: Electrical System

 

1 1 1 1 1

2 2 2

3 3

1

2

3

1 0 1 1

0 0 1 0

1 1 0 0

1 1 0 0

x RC C x RC

x C x u

x L L x

x

y x u

x

        
               
              

 
     
  







1 1 1 1 3 11 1 1x RC x C x RC u      

2 2 31x C x 

3 1 21 1x L x L x   
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Example: Transfer Function
Given the following transfer function

and assuming zero initial conditions, construct a state space 
equations that can represent the given transfer function.

3 2
2 1 0

1
( ) ( )Y s U s

s a s a s a


  

3 2
2 1 0( ) ( ) ( ) ( ) ( )s Y s a s Y s a sY s a Y s U s   

2 1 0( ) ( ) ( ) ( ) ( )y t a y t a y t a y t u t     

1

2

3

x y
x y
x y







1 2x x

2 3x x

3 0 1 1 2 2 3 ( )x y a x a x a x u t      
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Example: Transfer Function

 

1 1

2 2

3 0 1 2 3

1

2

3

0 1 0 0
0 0 1 0

1

1 0 0 0

x x
x x u
x a a a x

x
y x u

x

       
        
                

 
  
 
 







The state space equation can now be given as:

The state space equation can 
also be given using block 
diagram:


( )y t

2
a

( )y t
 

( )y t ( )y t

1
a

0
a

( )u t

3 2
2 1 0

1
( ) ( )Y s U s

s a s a s a


  
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Vector Case and Scalar Case
The general form of state space in vector case, where there are multiple inputs and 

multiple outputs, is given as:

( ) ( ) ( )

( ) ( ) ( )

t t t

t t t

 
 

x Ax Bu

y C x Du



 In scalar case, where the input and the output are scalar or single, the state space is 
usually written as:

T

( ) ( ) ( )

( ) ( ) ( )

t t u t

y t t u t

 

 

x Ax b

c x d


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Solution of State Equations
Consider the state equations in vector case.

( ) ( ) ( )t t t x Ax Bu

Multiplying each term with e–At,

( ) ( ) ( )t t te t e t e t   A A Ax Ax Bu

( ) ( ) ( )t t te t e t e t   A A Ax Ax Bu

 ( ) ( )t td
e t e t

dt
 A Ax Bu

 t td
e e

dt
  A AA

The last equation will be integrated from 0 to t:

0
0

( ) ( )
t

tte e d     A Ax Bu
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Solution of State Equations

0
0

( ) ( )
t

tt te e d     A Ax Bu

0

0

( ) (0) ( )
t

te t e e d      A A Ax x Bu

( )

0

( ) (0) ( )
t

t tt e e d    A Ax x Bu Solution of State 
Equations

At t=0, x(t) = x(0) = x0, which are the initial conditions of the states.
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Solution of Output Equations
We know substitute the solution of state equations into 

the output equations:

( ) ( ) ( )t t t y C x Du

( )

0

( ) (0) ( ) ( )
t

t tt e e d t   
   

 
A Ay C x Bu Du Solution of 

Output 
Equations
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Solutions of State Space in Frequency Domain 

The solution of state equations and output equations can also be written 
in frequency domain:

( ) ( ) ( )t t t x Ax Bu

( ) (0) ( ) ( )s s s s  X x AX BU

( ) ( ) (0) ( )s s s  I A X x BU

1 1( ) ( ) (0) ( ) ( )s s s s    X I A x I A BU

 1 1( ) ( ) (0) ( ) ( ) ( )s s s s s     Y C I A x I A BU DU

( ) ( ) ( )t t t y C x Du
Solution of State Equations

Solution of Output Equations

( ) ( ) ( )s s s Y C X DU
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Relation between eAt and (sI–A)
Taylor series expansion of exponential function is 

given by:
2 2

1
2! !

n n
t t t

e t
n

       Scalar Function

2
2

2! !

n
nt t t

e t
n

    A I A A A Vector Function

0 !

k
k

k

t

k





 A

It can be shown that                    so that:( 1)

!

k
kt

s
k

  
 

 
L

0 !

k
kt

k

t
e

k





 
     

 
A AL L ( 1)

0

kk

k

s


 



 A

●Exact solution, around t
= 0, infinite number of 
terms
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Relation between eAt and (sI–A)
Deriving further,

( 1)

0

kt k

k

e s


 



    A AL

21 2 3s s s     I A A 
1

1

s

s





I

I A
1 1 1( )s s   I A

  11( )s s
 I A

1( )te s     
A I AL 1 1( )te s    

A I AL
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Example: Solution of State Equations

Compute              if                  . 1( )s I A
0 1

1 2

 
   

A

1
( )

1 2

s
s

s

 
     
I A

1 2 11
( )

1( )( 2) (1)( 1)

s
s

ss s
   

       
I A

2 2

2 2

2 1

2 1 2 1
1

2 1 2 1

s

s s s s
s

s s s s

  
      
 
     
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Example: Solution of State Equations

Given                                      , find the solution for x(t). 
0 1 0

( ) ( ) ( )
1 2 1

t t u t
   

       
x x

( )

0

( ) (0) ( )
t

t tt e e u d    A Ax x B

1 1( )te s    
A I AL

2 2
1

2 2

2 1

( 1) ( 1)
1 s

( 1) (s+1)

s

s s

s



  
    
 
  

L

(1 )
(1 )

t t

t t

t e te
te t e

 

 

     
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Example: Solution of State Equations
Now, we substitute eAt to obtain the solution for x(t):

( ) ( )

( ) ( )
0

(1 )
( ) (0)

(1 )

0(1 ( )) ( )
        ( )

1( ) (1 ( ))

t t

t t

t t t

t t

t e te
t

te t e

t e t e
u d

t e t e

 

 

 
 

 

 

 

   

   

  
   
      
        


x x

( )

0

( )

0

( ) ( )
(1 )

(0)
(1 )

(1 ( )) ( )

t
t

t t

t t t
t

t e u d
t e te

te t e
t e u d





  

  

 

 

 
 

 
  

            
  




x
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Example: Solution of State Equations

If x(0)=0 and u(t) is a step function, determine x(t). 

( )

0

( )

0

( ) 1( )
(1 )

( )
(1 )

(1 ( )) 1( )

t
t

t t

t t t
t

t e d
t e te

t
te t e

t e d





  

  

 

 

 
 

 
  

            
  




x 0

1

2

( )

( )

x t

x t

 
 
 
 
 
  

( )

0

( )

0

( )

(1 ( ))

t
t

t
t

t e d

t e d





 

 

 

 

 
  

   
  
  




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Example: Solution of State Equations

1

2

( )

( )

x t

x t

 
 
 
 
 
  

( )

0

( )

0

( ) ( )

(( ) 1) ( )

t
t

t
t

t e d t

t e d t





 

 

 

 

 
  

   
   
  





( )
0

( )
0

(1 ( ))

( )

tt

tt

e t

e t









 

 

     
    

1 (1 )t

t

e t

e t





   
  
 

( )
1

d t

d





 

( )d t d   

(1 )t tte dt e t   
t te dt e  

1

2

( ) 1 (1 )

( )

t

t

x t e t

x t e t





   


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( )u t





1 F1 

1 H

( )y t





Equivalent State Equations

1x

2x 2x

2x

State variables: 
• : inductor current iL
• : capacitor voltage vC

1x

2x

R
R

v
i

R


L
L

di
v L

dt


C
C

dv
i C

dt


1x 

2x 

2x
2 1x u x  

2 1 2x x x 

2y x

1 1

2 2

0 1 1
( )

1 1 0

x x
u t

x x

      
             





  1

2

0 1
x

y
x

 
  

 
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( )u t





1 F1 

1 H

( )y t





Homework 2: Equivalent State Equations

1x 2x

State variables: 
• : current of left loop
• : current of right loop

1x

2x

1. Prove that for the same system, with different definition of state variables, we can 
obtain a state space in the form of:

11

22

1 1 1
( )

1 0 1

xx
u t

xx

       
            

 

 

  1

2

1 1
x

y
x

 
   

 




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Homework 2: Equivalent State Equations

2. Derive a state-space description for the following diagram

EE391 Control Systems and Components
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( )u t





1 F1 

1 H

( )y t





Equivalent State Equations

1x

2x 2x

2x

State variables: 
• : inductor current iL
• : capacitor voltage vC

1x

2x

R
R

v
i

R


L
L

di
v L

dt


C
C

dv
i C

dt


1x 

2x 

2x
2 1x u x  

2 1 2x x x 

2y x

1 1

2 2

0 1 1
( )

1 1 0

x x
u t

x x

      
             





  1

2

0 1
x

y
x

 
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( )u t





1 F1 

1 H

( )y t





Homework 2: Equivalent State Equations

1x 2x

State variables: 
• : current of left loop
• : current of right loop

1x

2x

1. Prove that for the same system, with different definition of state variables, we can 
obtain a state space in the form of:

11

22

1 1 1
( )

1 0 1

xx
u t

xx

       
            

 

 

  1

2

1 1
x

y
x

 
   

 




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( )u t





1 F1 

1 H

( )y t





Homework 2: Equivalent State Equations

1x 2x

State variables: 
• : loop current left
• : loop current right

1x

2x

1 2Cv x x y   

1 1 2( ) 0u x x x      

C
C

dv
i C

dt


2 1 2x x x    

1 x 
1 1 2x u x x    

1 2 2( )u x x x      

2 1x u x  

11

22

1 1 1
( )

1 0 1

xx
u t

xx

       
            

 

 

  1

2

1 1
x

y
x

 
   

 




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Homework 2: Equivalent State Equations
2. Derive a state-space description for the following diagram
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Homework 2: Equivalent State Equations

1x2x3x 1x2x3x

1 2x x

2 3x x

3 1 3x ax x by u    

1 2y x cx 
1 1

2 2

3 3

0 1 0 0
0 0 1 0

1 1

x x
x x u
x a b bc x

       
        
               







 
1

2

3

1 0 0
x

y c x u
x

 
  
 
 

1 3 1 2( )ax x b x cx u     

1 2 3( )a b x bcx x u     
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x = P x is called an equivalence transformation.

is said to be algebraically equivalent with the original state space 
equations.

Equivalent State Equations

( ) ( ) ( )t t t x Ax Bu

( ) ( ) ( )t t t y Cx Du

Consider an n-dimensional state space equations:

Let P be an nn real nonsingular matrix, and let 
x = P x. Then, the state space equations

( ) ( ) ( )t t t x Ax Bu   

( ) ( ) ( )t t t y Cx Du 

where
1,A PAP ,B PB 1,C CP .D D

~

~
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Equivalent State Equations

Proof:
Substituting 1( ) ( )t tx P x

1 1( ) ( ) ( )t t t  P x AP x Bu 

1( ) ( ) ( )t t t y CP x Du

1( ) ( ) ( )t t t x PAP x PBu 

A B

C D
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Equivalent State Equations
From the last electrical circuit,

State variables: 
• : inductor current iL
• : capacitor voltage vC

1x

2x

State variables: 
• : loop current left
• : loop current right

1x

2x

( )u t





1 F1 

1 H

( )y t





The two sets of states can be related in the way:

1 1

2 2

1 0

1 1

x x

x x

    
        




or

1

1 1

2 2

1 0

1 1

x x

x x


    

        





1 1

2 2

1 0

1 1

x x

x x

    
        




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Transfer Function and Transfer Matrix

( ) ( ) ( )t t u t x Ax B

( ) ( ) ( )y t t Du t Cx

Consider a state space equations for SISO systems:

Using Laplace transform, we will obtain:
( ) (0) ( ) ( )s s s U s  X x AX B

( ) ( ) ( )Y s s DU s CX

For zero initial conditions, x(0) = 0,
1( ) ( ) ( )s s U s X I A B

 1( ) ( ) ( )Y s s D U s  C I A B

1( )
( ) ( )

( )

Y s
G s s D

U s
   C I A B Transfer Function
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Realization of State Space Equations

Every linear time-invariant system can be described by the input-output description 
in the form of:

( ) ( ) ( )Y s U s G s

 If the system is lumped (i.e., having concentrated parameters), it can also be described 
by the state space equations 

( ) ( ) ( )t t u t x Ax B

( ) ( ) ( )y t t Du t Cx

The problem concerning how to describe a system in state space equations, provided 
that the transfer function of a system, G(s), is available, is called Realization 
Problem. 

G(s) A, B, C, D.
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Realization of State Space Equations

Three realization methods will be discussed now:
Frobenius Form
Observer Form
Canonical Form
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Frobenius Form

( )
( )

( )

Y s
G s

U s


1
1 1 0

1
1 1 0

m m
m m

n n
n

b s b s b s b

s a s a s a







   


   




1

1 1 01

1

1 1 01

( ) ( ) ( )
( )

( ) ( ) ( )
                              ( )

n n

nn n

m m

m mm m

d y t d y t dy t
a a a y t

dt dt dt
d u t d u t du t

b b b b u t
dt dt dt



 



 

    

   





Special Case: No derivation of input

1

1 1 0 01

( ) ( ) ( )
( ) ( )

n n

nn n

d y t d y t dy t
a a a y t b u t

dt dt dt



     
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Frobenius Form
We now define:

1( ) ( )x t y t
2 ( ) ( )x t y t  1( )x t 

3( ) ( )x t y t  2 ( )x t 


( 1)( ) ( )n

nx t y t 1( )nx t 

1 1

2 2

0 1 1 0

( ) 0 1 0 ( ) 0

( ) 0 0 1 0 ( ) 0
( )

( ) ( )n n n

x t x t

x t x t
u t

x t a a a x t b

       
       
        
       
                

 



    

 

 

1

2

( )

( )
( ) 1 0 0 0 ( )

( )n

x t

x t
y t u t

x t

 
 
  
 
 
 






Frobenius Form,
Special Case
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Frobenius Form

General Case: With derivation of input
1

1 1 0
1

1 1 0

( )

( )

m m
m m

n n
n

b s b s b s bY s

U s s a s a s a







   


   




( )

( )

N s

D s
 m n

 1 2
1 2 1 0

( )
( )

( )
n n

n n

U s
Y s b s b s b s b

D s
 

     

2 1
0 1 2 1

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
n n

n n

U s U s U s U s
Y s b b s b s b s

D s D s D s D s
 

     

1( )X s 2 ( )X s 1( )nX s ( )nX s

 If m = n–1 (largest possible value), then
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1

( )
( )

( )

U s
X s

D s


Frobenius Form

1
1 1 0

( )
n n

n

U s

s a s a s a



   

1 2
1 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

ns X s a s X s a s X s a sX s a X s U s
     

1 2
1 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

ns X s U s a s X s a s X s a sX s a X s
     

( ) ( 1)
1 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

nx t u t a x t a x t a x t a x t
      

1 2 3 1 2 0 1( ) ( ) ( ) ( ) ( ) ( )n n nx t u t a x t a x t a x t a x t      

But

 1
1 1( ) ( )x t X s L

2 1( ) ( )x t x t 

1 2( ) ( )n nx t x t  

1( ) ( )n nx t x t 



 If m = n–1 (largest possible value), then
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Frobenius Form

The state space equations can now be written as:

1 1

2 2

0 1 1

( ) 0 1 0 0 ( ) 0

( ) 0 0 1 0 ( ) 0
( )

( ) ( ) 1n n n

x t x t

x t x t
u t

x t a a a x t

       
       
        
       
                





    

 

 
1

2
0 1 2 1

( )

( )
( ) 0 ( )

( )

n n

n

x t

x t
y t b b b b u t

x t

 

 
 
  
 
 
 









Frobenius Form,
General Case
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Observer Form
1 2

1 2 1 0
1

1 1 0

( )
,

( )

n n
n n

n n
n

b s b s b s bY s

U s s a s a s a

 
 




   


   




1
1 1 0

1 2
1 2 1 0

( ) ( ) ( ) ( )
                            ( ) ( ) ( ) ( )

n n
n

n n
n n

s Y s a s Y s a sY s a Y s
b s U s b s U s b sU s b U s




 
 

    
   





1n m 

1 1 01

1 2 1 02 1

( ) ( ) ( )
( )
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n n n

n n n n

Y s Y s Y s
Y s a a a
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U s U s U s U s

b b b b
s s s s

 

  

    

   





     

 

1 1 2 2

0 0

1 1 1
( ) ( ) ( ) ( ) ( )

1
                    ( ) ( )

n n n nY s b U s a Y s b U s a Y s
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b U s a Y s
s

   
       
 

  
 





1( )X s
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 1 0 0

1
( ) ( ) ( )X s b U s a Y s

s
 

Observer Form

1 0 0( ) ( ) ( )x t b u t a y t 

  2 1 1 1

1
( ) ( ) ( ) ( )X s bU s a Y s X s

s
   2 1 1 1( ) ( ) ( ) ( )x t b u t a y t x t  

 

  1 1 1

1
( ) ( ) ( ) ( )n n n nX s b U s a Y s X s

s      1 1 1( ) ( ) ( ) ( )n n n nx t b u t a y t x t    

( ) ( )nY s X s ( ) ( )ny t x t
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The state space equations in observer form: 

1 0 1 0

2 1 2 1

1 1

( ) 0 0 ( )

( ) 1 0 ( )
( )

( ) 0 0 1 ( )n n n n

x t a x t b

x t a x t b
u t

x t a x t b 

       
               
       
              

 

 

     



 

1

2

( )

( )
( ) 0 0 1 0 ( )

( )n

x t

x t
y t u t

x t

 
 
  
 
 
 




 Observer Form

Observer Form
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Canonical Form

( )
( ) ( )

( )

N s
Y s U s

D s
 0

1

( )
n

i

i i

r
r U s

s 

 
   


To construct state space equations in canonical form, we need to perform partial 
fraction decomposition to the respective transfer function.

 In case all poles are distinct, we define:

1 1 1( ) ( ) ( )x t x t u t 1
1

1
( ) ( )X s U s

s 




2
2

1
( ) ( )X s U s

s 



 1

( ) ( )n
n

X s U s
s 




2 2 2( ) ( ) ( )x t x t u t 

( ) ( ) ( )n n nx t x t u t 

1 1 2 2

0

( ) ( ) ( )
          ( ) ( )n n

y t r x t r x t
r x t r u t

  
 

1 1 2 2

0

( ) ( ) ( )

         ( ) ( )n n

Y s r X s r X s

r X s r U s

  
 
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Canonical Form
The state space equations in case all poles are distinct: 

1 1 1

2 2 2

( ) 0 0 ( ) 1

( ) 0 0 ( ) 1
( )

( ) 0 0 ( ) 1n n n

x t x t

x t x t
u t

x t x t






       
       
        
       
       

      

 



     

  Canonical Form,
Distinct Poles

 
1

2
1 2 0

( )

( )
( ) ( )

( )

n

n

x t

x t
y t r r r r u t

x t

 
 
  
 
 
 




• The resulting matrix A is a diagonal matrix.
• The ODEs are decoupled, each of them can be 

solved independently.
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Canonical Form
 In case of repeating poles, for example λ1 is repeated for p times, the decomposed 

equation will be:

1 111 12 2
0 2

1 1 1 2 1

( ) ( )
( ) ( )

p n p

p
n p

r rr r r
Y s r U s

s s s s s    
 

 

                
 

We define:
1 1 1( ) ( ) ( )x t x t u t 1
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1
( ) ( )X s U s

s 




2 2
1
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( ) ( )
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X s U s

s 




2 1 2 1( ) ( ) ( )x t x t x t 1
1

1
( )X s

s 




1

1
( ) ( )

( )p p
X s U s

s 




1 1( ) ( ) ( )p p px t x t x t  



1
1

1
( )pX s

s  




•x1(t ) coupled with x2(t )

•xp–1(t ) coupled with xp(t )
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11 1 12 2
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1
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s   
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

Canonical Form
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Canonical Form

The state space equations in case of repeating poles:

11 1

12 2

1

1

21 1

1

0 0( ) ( ) 1

1 0 0( ) ( ) 0

0

0 1( ) ( ) 0

0 0( ) ( ) 1
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






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      
      
      
      
             
      
      
      
           





    





   
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( )t

Canonical Form,
Repeating Poles
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1

2

11 12 1 2 1 0

1

( )

( )

( ) ( ) ( )

( )
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p n p p

p

n

x t

x t

y t r r r r r x t r u t

x t
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 



 
 
 
 
      
 
 
 
  



 



The state space equations in case of repeating poles:

Canonical Form,
Repeating Poles

Canonical Form
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Homework 3: Transfer Function - State Space

 Find the state-space realizations of the following transfer function in 
Frobenius Form, Observer Form, and Canonical Form.

3 2

( ) 2
( )

( ) 8 19 12

Y s s
G s

U s s s s


 

  

 Hint: Learn the following functions in Matlab and use the to solve this 
problem: roots, residue, convolution.
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Homework 3A: Transfer Function - State Space

 Perform a step by step transformation (by calculation of transfer matrix)  from the 
following state-space equations to result the corresponding transfer function.

     

     

0 1 0 0

0 0 1 0

3 4 2 1

5 1 0

t t u t

y t t

   
         
        

 

x x

x



 Verify your calculation result using Matlab.
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Homework 3: Transfer Function to State Space

 Find the state-space realizations of the following transfer function in Frobenius Form, 
Observer Form, and Canonical Form.

3 2

( ) 2
( )

( ) 8 19 12

Y s s
G s

U s s s s


 

  

 Hint: Learn the following functions in Matlab and use the to solve this problem: roots, 
residue, conv.
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Homework 3: Transfer Function to State Space

 Find the state-space realizations of the following transfer function in Frobenius Form, 
Observer Form, and Canonical Form.

3 2

( ) 2
( )

( ) 8 19 12

Y s s
G s

U s s s s


 

  
1 0

3 2
2 1 0

b s b

s a s a s a




  

1 1

2 2

3 3

( ) 0 1 0 ( ) 0

( ) 0 0 1 ( ) 0 ( )

( ) 12 19 8 ( ) 1

x t x t

x t x t u t

x t x t

       
               
                







 
1

2

3

( )

( ) 2 1 0 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
   
  

 Frobenius Form
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Homework 3: Transfer Function to State Space

 Find the state-space realizations of the following transfer function in Frobenius Form, 
Observer Form, and Canonical Form.

3 2

( ) 2
( )

( ) 8 19 12

Y s s
G s

U s s s s


 

  
1 0

3 2
2 1 0

b s b

s a s a s a




  

 Observer Form

1 1

2 2

3 3

( ) 0 0 12 ( ) 2

( ) 1 0 19 ( ) 1 ( )

( ) 0 1 8 ( ) 0

x t x t

x t x t u t

x t x t

       
                
              







 
1

2

3

( )

( ) 0 0 1 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
   
  
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Homework 3: Transfer Function to State Space

 Find the state-space realizations of the following transfer function in Frobenius Form, 
Observer Form, and Canonical Form.

3 2

( ) 2
( )

( ) 8 19 12

Y s s
G s

U s s s s


 

  
1 0

3 2
2 1 0

b s b

s a s a s a




  

 Using Matlab function, [R,P,K] = residue(NUM,DEN),

3 2

2 2 3 1 2 1 6

8 19 12 4 3 1

s

s s s s s s

 
  

     

31 2

1 2 3

rr r

s s s  
  

  
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Homework 3: Transfer Function to State Space

 Canonical Form

1 1

2 2

3 3

( ) 4 0 0 ( ) 1

( ) 0 3 0 ( ) 1 ( )

( ) 0 0 1 ( ) 1

x t x t

x t x t u t

x t x t

       
                
              







 
1

2

3

( )

( ) 2 3 1 2 1 6 ( ) 0 ( )

( )

x t

y t x t u t

x t

 
    
  
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Homework 3: Transfer Function to State Space
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Canonical Form
The state space equations in case all poles are distinct: 

1 1 1

2 2 2

( ) 0 0 ( ) 1

( ) 0 0 ( ) 1
( )

( ) 0 0 ( ) 1n n n

x t x t

x t x t
u t

x t x t






       
       
        
       
       

      

 



     

  Canonical Form,
Distinct Poles

 

1

2
1 2 0

( )

( )
( ) ( )

( )

n

n

x t

x t
y t r r r r u t

x t

 
 
  
 
 
 




• The resulting matrix A is a diagonal matrix.
• The ODEs are decoupled, each of them can be 

solved independently.

EE391 Control Systems and Components
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Stability
There are several ways to define the stability of a system. One of them is “BIBO 

(Bounded Input Bounded Output) Stability”.
A system is said to be BIBO stable if every bounded input excites a bounded output 

also.
Bounded input means, there exists a constant um such that

m ,     0( ) u tu t    for all

Thus, a SISO system, described by a transfer function G(s) is said to be BIBO stable if 
and only if every pole of G(s) has a negative real part.
Other way stated, a SISO system G(s) is stable if every pole of G(s) lies on the left half 

plane of s.
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A state space in the form of:

Stability

( ) ( ) ( )t t t x Ax Bu

( ) ( ) ( )t t t y Cx Du

is said to be marginally stable if for u(t)=0, every finite initial state x0 will excite a 
bounded response.

The state space is said to be asymptotically stable if for u(t)=0, every finite initial 
state x0 will excite a bounded response and it approaches 0 as t→∞.

EE391 Control Systems and Components
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Controllability
Consider the n-dimensional state equations with r inputs:

( ) ( ) ( )t t t x Ax Bu

The state equations above are said to be “controllable” if for any initial state x(t0) = x0
and any final state x(t1) = x1, there exists an input that transfers x0 to x1 in a finite 
time.
Otherwise, the state equations are said to be “uncontrollable”.

EE391 Control Systems and Components
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2 1n   B AB A B A BC 

The controllability of state equations can be checked using the [nnr] 
controllability matrix:

Controllability Matrix

A state space described by the pair (A,B) is controllable if the column rank 
of C = n, or equivalently, if matrix C has n linearly independent columns.

EE391 Control Systems and Components
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Consider the n-dimensional state space equations with r inputs and m outputs:

( ) ( ) ( )t t t x Ax Bu

The state space equations above are said to be “observable” if for any unknown 
initial state x(t0) = x0, there exists a finite t1>0 such that the knowledge of the input 
u(t) and the output y(t) over the time interval [t0,t1] suffices to determine uniquely 
the initial state x(t0).
Otherwise, the state space equations are said to be “unobservable”.

Observability

( ) ( ) ( )t t t y Cx Du

EE391 Control Systems and Components
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Observability Matrix

2

1n

 
 
 
   
 
 
  

C

CA

CA

CA

O


The observability of state space equations can be checked using the [nmn] 
observability matrix:

A state space described by the pair (A,C) is observable if the row rank of O = n, or 
equivalently, if matrix O has n linearly independent rows.
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Example
A state space is given as 

1 1 1
( ) ( ) ( )

0 2 3
t t u t

   
       

x x

 ( ) 1 0 ( )y t t x

Check its controllability and observability.

  B ABC

2n 
1 1 1 1

3 0 2 3

       
             

1 2

3 6

 
   

 
  
 

C

CA
O

 

 

1 0

1 1
1 0

0 2

 
 

   
    

1 0

1 1

 
   

• Column rank of 
C = 1 ≠ n

• The state space is 
“uncontrollable”

• Row rank of 
O = 2 = n

• The state space is 
“observable”

EE391 Control Systems and Components
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State Feedback
Consider the n-dimensional single-variable state space equations:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

Main idea: Using measurements of state variables x(t), determine an input u(t)=f(x(t)) 
such that the dynamic properties of the system can be changed to fulfill a certain 
criteria.

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

: vector flow
: scalar flow

State Feedback

Reference 
value

Measured 
value

( )u t
+
–

( )r t
b 

A

k

c+
+

( )y t

( )z t

( )tx( )tx

The states x(t) are fed back through a feedback gain k.
The input u(t) is given by:

( ) ( ) ( )u t r t t  k x  
 

1 2
T

1 2( ) ( ) ( ) ( )
n

n

k k k

t x t x t x t





k

x




1

( ) ( )
n

i i
i

r t k x t


 

EE391 Control Systems and Components
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State Feedback

 ( ) ( ) ( )t t r t x x bA bk

Substituting u(t) to the original state space equations,

( ) ( )y t t cx

EE391 Control Systems and Components
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Consider a state space 
1 2 0

( ) ( ) ( )
3 1 1

t t u t
   

    
   

x x

 ( ) 1 2 ( )y t t x

Example

  B ABC
0 2

1 1

 
  
 

 
  
 

C

CA
O

1 2

7 4

 
  
 

The controllability and observability matrices are:

• Column rank of C = 2
 “controllable”

• Row rank of O = 2
 “observable”

EE391 Control Systems and Components
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Example
Let us now introduce a state feedback:

 ( ) ( ) ( )3 1u t r t t  x

The state space is now:

 ( ) 1 2 ( )y t t x

 ( ) ( ) ( )t t r t x x bA bk

 1 2 0 0
( ) ( )3 1

3 1 1 1
t r t

      
        

      
x

1 2 0 0 0
( ) ( )

3 1 3 1 1
t r t

      
        

      
x

1 2 0
( ) ( ) ( )

0 0 1
t t r t

   
    
   

x x 0 2

1 0

 
  
 

C

1 2

1 2

 
  
 

O

• Column rank of C = 2
 “controllable”

• Row rank of O = 1
 “not observable”

• State feedback may make a state 
space become “not observable”

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

Example
Consider a SISO system with the following state equations:

1 3 1
( ) ( ) ( )

3 1 0
t t u t

   
    
   

x x

The transfer function of the system is:
1( ) ( )G s s D  C I A B

The characteristic equation, or the denominator of G(s), is given by:
( ) det( )a s s I A

1 3
det

3 1

s

s

    
      

2( 1) ( 3)( 3)s    
2 2 8s s  

( 4)( 2)s s   • λ = 4, positive
• Unstable eigenvalues or unstable pole

EE391 Control Systems and Components
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Let us now introduce a state feedback:
 1 2( ) ( ) ( )u t r t tk k  x

Example

The state space is now:

1 21 3 1
( ) ( ) ( )

3 1 0

k k
t t r t

    
    
   

x x

The characteristic equation becomes:
1 2(1 ) (3 )

( ) det
3 1

s k k
a s

s

      
      

1 2( 1 )( 1) ( 3 )( 3)s k s k       
2

1 2 1( 2) (3 8)s k s k k     

• The roots of the new characteristic equation can be placed 
in any location by assigning appropriate value of k1 and k2

• Condition: complex eigenvalues must be given in pairs

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

Homework 4

1 3 0
( ) ( ) ( )

3 1 1
t t u t

   
    
   

x x

Again, consider a SISO system with the state equations:

a. If the state feedback in the form of: 
 1 2( ) ( ) ( )u t r t tk k  x

is implemented to the system and it is wished that the poles of the 
system will be –3 and –4, determine the value of k1 and k2.

b. Find the transfer function of the system and again, check the location 
of the poles of the transfer function.

 ( ) 1 2 ( )y t t x

EE391 Control Systems and Components
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Homework 4A
Consider a SISO system with the state equations:

a. If the state feedback in the form of: 
 1 2( ) ( ) ( )u t r t tk k  x

is implemented to the system and it is wished that the damping factor ζ of the 
system is equal to 0.8 while keeping the system stable. Determine the required value 
of k1 and k2.

b. Find the transfer function of the system and again, check the location of the poles of 
the transfer function.

1 2 1
( ) ( ) ( )

3 1 1
t t u t

   
       

x x

 ( ) 2 3 ( )y t t x
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Homework 4

1 3 0
( ) ( ) ( )

3 1 1
t t u t

   
    
   

x x

Again, consider a SISO system with the state equations:

a. If the state feedback in the form of: 
 1 2( ) ( ) ( )u t r t tk k  x

is implemented to the system and it is wished that the poles of the system will be –3 
and –4, determine the value of k1 and k2.

b. Find the transfer function of the system and again, check the location of the poles of 
the transfer function.

 ( ) 1 2 ( )y t t x

EE391 Control Systems and Components
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a. With the state feedback:
 1 2( ) ( ) ( )u t r t tk k  x

The state equations become:

 ( ) ( ) ( )t t r t x x bA bk

1 2

1 3 0 0
( ) ( )

3 1 1 1
k k t r t

      
        

      
x

1 2

0 01 3 0
( ) ( )

3 1 1
t r t

k k

     
       

     
x

1 2

1 3 0
( ) ( )

3 1 1
t r t

k k

    
          

x

Solution of Homework 4
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The characteristic equation is:
( ) det( ( ))a s s  I A bk

1 2

1 3
det

(3 ) (1 )

s

k s k

   
        

2 1( 1)( 1 ) ( 3)( (3 ))s s k k       
2

2 1 2( 2) (3 8)s k s k k     

The wished poles are –3 and –4, corresponding with the wished characteristic 
equation of:

( ) ( 3)( 4)a s s s  

2 7 12s s  

Comparing a(s) and a(s), we obtain:

)

2( 2) 7k  
2 9k 

1 2(3 8) 12k k  
1 29 3 9.67k  

Solution of Homework 4

EE391 Control Systems and Components
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Solution of Homework 4
b. The transfer function of the system can be found as:

1( )
( ) ( ( ))

( )

Y s
G s s

R s
   c I A bk b

 
1

1 2

1 3 0
1 2

(3 ) (1 ) 1

s

k s k

    
          

 
1

1 3 0
1 2

6.67 8 1

s

s

    
       

 
2

8 3 0
1 2

6.67 1 1

7 12

s

s

s s

   
       

 

2

2 1

7 12

s

s s




 
2 1

( 3)( 4)

s

s s




 
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Solution of Homework 4
Using Matlab, the following function can be utilized:
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State Feedback
Consider the n-dimensional single-variable state space equations:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

For this SISO system, if the pair (A,b) is controllable, there exists a nonsingular 
transformation matrix Q such that:

( ) ( )t tx Qz
and:

0 1 2 1

0 1 0 0

0 0 1 0
ˆ ,

0 0 0 1

na a a a 

 
 
 

  
 
 
     

A





 





ˆ( ) ( )y t t cz

ˆ ˆ( ) ( ) ( )t t u t z Az b

0

0
ˆ

0

1

 
 
 

  
 
 
 

b with the matrices
A and b given by:
^ ^
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State Feedback
The coefficients ai are the coefficients of the characteristic equation of A, that is:

( ) det( )a s s I A 1
1 1 0

n n
ns a s a s a
    

The state feedback for the transformed system is given by:
ˆ( ) ( ) ( )u t r t t  kz

1 2
ˆ ˆ ˆ ˆ

nk k k   k 

with:

Substituting u(t) into the transformed system:
ˆ ˆ ˆ( ) ( ) ( ( ) ( ))t t r t t  z Az b kz

  ˆˆ ˆ ˆ( ) ( ) ( )t t r t z z bA bk
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0 1 1 2 2 3 1

0 1 0 0 0
0 0 1 0 0

( ) ( ) ( )
0 0 0 1 0

ˆ ˆ ˆ ˆ 1( ) ( ) ( ) ( )n n

t t r t

a k a k a k a k

   
   
   
    
   
   
             

z z





  





State Feedback

The  characteristic equation of the closed-loop system is:
1 2

1 2 1

1 2 0 1

ˆ ˆ( ) ( ) ( )
ˆ ˆ               ( ) ( )

n n n
n n n na s s a k s a k s

a k s a k

 
       

   

 If the desired closed-loop poles are specified by p1, p2, …,pn then:

1 2( ) ( )( ) ( )na s s p s p s p   


1
1 1 0

n n
ns a s a s a
      



EE391 Control Systems and Components
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By comparing the coefficients of the previous two polynomials, it is clear, 
that in order to obtain the desired characteristic equation, the feedback 
gain must satisfy:

State Feedback

0 1 0
ˆa k a  

1 2 1
ˆa k a  

 

1 1
ˆ

n n na k a   

1 0 0k̂ a a 

2 1 1k̂ a a 

1 1
ˆ
n n nk a a  
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0 1 0 0

( ) 0 0 1 ( ) 0 ( )

2 5 10 1

t t u t

   
       
        

z z

Example: State Feedback
Consider the following system given in Frobenius Form

It is required that the closed-loop system has the eigenvalues located 
at s=–1±j and s=–5. 
Find the feedback gain vector k.̂

( ) ( (1 )) ( (1 )) ( 5)a s s j s j s       

(( 1) ) (( 1) ) ( 5)s j s j s       
2(( 1) 1) ( 5)s s    

2( 2 2) ( 5)s s s    
3 27 12 10s s s   

0a


1a


2a


From the state equations we 
can find out that:

0 2a 

1 5a 

2 10a 

1 0 0k̂ a a 

2 1 1k̂ a a 

3 2 2k̂ a a 

8

7
3 

 ˆ 8 7 3 k

EE391 Control Systems and Components
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Transformation to Frobenius Form

By performing the procedure presented previously, we are be able to 
place the poles of a controllable SISO system in any location so easily.
The condition: The system is written in Frobenius Form.
In order to be able to apply this procedure to any controllable SISO 

systems easily, we need to transform the systems to Frobenius Form first.
That means, we need to know the nonsingular transformation matrix Q.
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Transformation to Frobenius Form
 If the controllability matrix of the open-loop system is given by:

2 1n   b Ab A b A bC 

It can be shown that the required transformation matrix Q to transform the system to 
a Frobenius Form is given by:

1 2 3 n
   q q q qQ 

where

n
q b

11 nn n n
a 

 q Aq q 1na  Ab b

22 1 nn n n
a  

 q Aq q 2
1 2n na a   A b Ab b

 

11 2 n
a q Aq q 1 2

1 2 1
n n

na a a 
    A b A b Ab b

• ai are the coefficients of the characteristic polynomial a(s) of matrix A
EE391 Control Systems and Components
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Transformation to Frobenius Form
In matrix form, the set of equations can be formulated as:

1 2 3 n
   q q q qQ 

1 2 3 1

2 3

32 1

1

1

1 0

1 0 0

1 0 0 0

n

n

n

a a a a

a a

a

a







 
 
 
 

     
 
 
 
 

Q b Ab A b A b





 


 





C

T
Q CT • ai are the coefficients of the characteristic 

polynomial a(s) of matrix A
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Original System Equivalent System 
in Frobenius Form

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

ˆ( ) ( )y t t cz

ˆ ˆ( ) ( ) ( )t t u t z Az b

Transformation to Frobenius Form

Calculate the 
feedback gain for 
the transformed 

system

The feedback gain for 
the original system is 

obtained

k̂

( ) ( )t tx Qz

1( ) ( )t tz Q x

1ˆ k kQ
EE391 Control Systems and Components
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Example: Transformation

1 1 1
( ) ( ) ( )

1 1 0
t t u t

   
    
   

x x

Two poles at –1 are wished for the following system:

Calculate the required k.

• Find the characteristic 
equation

( ) det( )a s s I A
1 1

det
1 1

s

s

    
      

( 1)( 1) ( 1)( 1)s s     
( 2)s s  • unstable

• Calculate C, T  
1 1

,
0 1

 
   

 
b AbC

1 1 2 1

1 0 1 0

a    
    
   

T

0 0a 
1 2a  

2 2s s 
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Transformation to Frobenius Form

• Calculate Q

• Perform transformation

• Calculate k

• Calculate k

Q CT
1 1 2 1

0 1 1 0

   
    
   

1 1

1 0

 
  
 

1 0 1

1 1
  
  
 

Q

1 0 1ˆ
0 2

  
   

 
A Q AQ

1 0ˆ
1

  
   

 
b Q b

^
( ) ( 1) ( 1)a s s s   

2 2 1s s   0 1a 

1 2a  1 0 0k̂ a a 

2 1 1k̂ a a 
1
4

 ˆ 1 4k

1ˆ k kQ   0 1
1 4

1 1

 
  

 
 4 5 • Check the new characteristic equation
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Homework 5

A state-space equation of a third-order system is given as:

a. Perform a step-by-step transformation of the given model to 
Frobenius Form.

b. Calculate the required feedback gain k so that the system may have two 
conjugate poles at –2±j1 and –4.

1 0 0 1

( ) ( ) ( )0 2 0 1

0 0 3 1

t t u t

   
       
      

 x x

 ( ) 6 6 1 ( )y t t  x
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Homework 5A
A state-space equation of a third-order system is given as:

a. Perform a step-by-step transformation of the given model to Frobenius Form.
b. Calculate the required feedback gain k so that the system may have two conjugate 
poles at –1±j3 and –2.

1 1 0 1

( ) ( ) ( )1 2 0 0

0 0 3 1

t t u t

   
       
      

 x x

 ( ) 6 6 1 ( )y t t  x
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Homework 5

A state-space equation of a third-order system is given as:

a. Perform a step-by-step transformation of the given model to Frobenius Form.
b. Calculate the required feedback gain k so that the system may have two conjugate 
poles at –2±j1 and –4.

1 0 0 1

( ) ( ) ( )0 2 0 1

0 0 3 1

t t u t

   
       
      

 x x

 ( ) 6 6 1 ( )y t t  x
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Solution of Homework 5

a. Transformation to Frobenius Form.

• Find the characteristic 
equation

( ) det( )a s s I A

1 0 0

det 0 2 0

0 0 3

s

s

s

   
     
    

( 1)( 2)( 3)s s s   
3 26 11 6s s s   

• Calculate C, T 2

1 1 1

1 2 4

1 3 9

 
       
  

b Ab A bC

1 2

2

1 11 6 1

1 0 6 1 0

1 0 0 1 0 0

a a

a

   
       
      

T
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Solution of Homework 5

• Calculate Q

• Perform transformation

Q CT
1 1 1 11 6 1

1 2 4 6 1 0

1 3 9 1 0 0

   
       
      

6 5 1

3 4 1

2 3 1

 
   
  

1

0.5 1 0.5

0.5 2 1.5

0.5 4 4.5



 
    
  

Q

1

0 1 0
ˆ 0 0 1

6 11 6



 
    
    

A Q AQ

1

0
ˆ 0

1


 
    
  

b Q b • Transformation accomplished
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Solution of Homework 5

• Calculate k

• Calculate k

^
( ) ( 2 ) ( 2 ) ( 4)a s s j s j s       

3 2( ) 8 21 20a s s s s   

1 0 0k̂ a a 

2 1 1k̂ a a 
14
10  ˆ 14 10 2k

1ˆ k kQ

 
0.5 1 0.5

14 10 2 0.5 2 1.5

0.5 4 4.5

 
    
  

 3 2 1 

3 2 2k̂ a a 

3 2( ) 6 11 6a s s s s   

2

b. Finding k.
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Solution of Homework 5

c. Direct calculation of k without transformation.
( ) det( ( ))a s s  I A bk

 1 2 3

1 0 0 1 0 0 1

det 0 1 0 0 2 0 1

0 0 1 0 0 3 1

s k k k

        
                

              

1 2 3

1 2 3

1 2 3

1 0 0 (1 )

det 0 1 0 (2 )

0 0 1 (3 )

k k k

s k k k

k k k

        
             
           

1 2 3

1 2 3

1 2 3

(1 )

det (2 )

(3 )

s k k k

k s k k

k k s k

    
      
     

• Complicated to be done
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Output Feedback
Consider the n-dimensional controllable single-variable state space equations:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

Main idea: Using measurement of output variable y(t), determine an input 
u(t)=f(r(t),y(t)) such that the dynamic properties of the system can be changed to 
fulfill a certain criteria.

 In contrast to state feedback, output feedback has less degree of freedom in the 
controller parameter. 
However, the output feedback method is superior to the state feedback method from 

the practical point of view, because the output y(t) is known and measurable.
On the contrary, it is almost always difficult, if not impossible, to measure the entire 

state vector x(t) due to practical limitations. This can be encompassed by using state 
observer which will be discussed later.

EE391 Control Systems and Components
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: vector flow
: scalar flow

Output Feedback

Reference 
value

Measured 
value

( )u t( )r t ( )y t( )tx( )tx

The output y(t) is fed back through a feedback gain j.
The input u(t) is given by:

( ) ( ) ( )u t r t jy t 

( ) ( )r t j t  cx

By inspection the state feedback gain k and output feedback gain j are actually 
related via the following equation: jk c

EE391 Control Systems and Components
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Output Feedback

( ) ( ) ( ) ( )t j t r t  x A bc x b

Substituting u(t) to the original state space equations,

( ) ( )y t t cx

The roots of the characteristic equation can now be repositioned through

( ) det( ( ))a s s j  I A bc

The output feedback has less degree of freedom in placing the poles, thus it may 
happen that the location to place the poles is limited.
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Example: Output Feedback
Let us redo the previous example with the following state equations:

1 3 0
( ) ( ) ( )

3 1 1
t t u t

   
    
   

x x

The characteristic equation of the given system is:
( ) det( )a s s I A

( 4)( 2)s s   • Unstable eigenvalues or unstable pole
Introducing the output feedback,

( ) ( ) ( )u t r t jy t 

The state space is now:
1 3 0

( ) ( ) ( )
3 1 1

t t r t
j j

   
        

x x

( ) ( )r t j t  bcx

 ( ) 1 1 ( )y t t x

EE391 Control Systems and Components
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Example: Output Feedback

The characteristic equation becomes:

1 3
( ) det

(3 ) (1 )

s
a s

j s j

    
        

( 1)( (1 )) (3 )(3)s s j j     
2 ( 2) (2 8)s j s j    

• The roots of the new characteristic equation 
can be moved to a new stable position

• However, there are cases where the system 
cannot be stabilized, i.e., if c=[1 0]
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Example: Output Feedback

Unit step 
input

• Matlab Simulink realization

EE391 Control Systems and Components
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Example: Output Feedback

• Output of original system • Output of system with output 
feedback, j = 5
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Example: Output Feedback

• Output of system with output 
feedback, j = 4

• Output of system with output 
feedback, j = 6

Integrator 
property

Steady-state 
error
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State Estimator

In previous section, we have discussed the state feedback, based on the 
assumption that all state variables are available for feedback.
Also, we have discussed the output feedback, provided that the output is 

available for feedback.
On the purpose of state feedback, practically, the state variables might be 

not accessible for direct connection. The sensing devices or transducers 
might be not available or very expensive.
In this case, we need a “state estimator” or a “state observer”. Their 

output will be the “estimate of the state”, provided that the system 
under consideration is observable.

EE391 Control Systems and Components
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State Estimator
Consider the n-dimensional single-variable state space equations:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

where A, b, c are given, u(t) and y(t) are available, and the states x(t) 
are not available.

Problem: How to estimate x(t)?
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Open-Loop State Estimator

The block diagram of an open-loop state estimator can be seen below:

( )u t
b 

A

c+
+

( )y t( )tx( )tx

b 

A

+
+

ˆ( )txˆ( )tx

The open-loop state estimator duplicates the original system and deliver:

ˆ ˆ( ) ( ) ( )t t u t x Ax b

EE391 Control Systems and Components
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Several conclusions can be drawn by comparing both state equations

ˆ ˆ( ) ( ) ( )t t u t x Ax b
( ) ( ) ( )t t u t x Ax b

 If the initial states of both equations are 

the same, x(t0) = x(t0), then for any t ≥ 0, 

x(t) = x(t).

 If the pair (A,c) is observable, the initial 

state can be computed over any time 

interval [0,t0], and after setting x(t0)=x(t0), 

then x(t)=x(t) for t ≥ t0. 

^

^

^

^

Open-Loop State Estimator

( )u t
b 

A

c+
+

( )y t( )tx( )tx

b 

A

+
+

ˆ( )txˆ( )tx

^
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The disadvantages of open-loop 
estimator are:
Initial state must be computed 

and appointed each time the 
estimator is used.
If the system is unstable, any 

small difference between x(t0) 
and x(t0) will lead to even 
bigger difference between x(t) 
and x(t), making x(t) unusable.

Open-Loop State Estimator

^ ^

^

( )u t
b 

A

c+
+

( )y t( )tx( )tx

b 

A

+
+

ˆ( )txˆ( )tx
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Closed-Loop State Estimator
 The block diagram of a closed-loop state estimator can be seen below:

( )u t
b 

A

c
( )y t( )tx( )tx

b 

A

ˆ( )tx
ˆ( )tx

l

c

( )ŷ t

 In closed-loop estimator, 

y(t) = cx(t) is compared with y(t) = 

cx(t).

 Their difference, after multiplied by 

the matrix l, is used as a correcting 

term in the calculation of x(t).

 If l is properly assigned, the difference 

will drive x(t) to x(t).

^

^

^

^
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Closed-Loop State Estimator
Following the previous figure,

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t t   x Ax b l cx

 ˆ ˆ( ) ( ) ( ) ( )t t u t y t  x x b lA lc

• “New” inputs

We now define
ˆ( ) ( ) ( )t t t e x x

ˆ( ) ( ) ( )t t t e x x 

    ˆ ( ) ( ) ( )( ) ( ) t u t y tt u t     x b lAx b A lc

    ˆ( ) ( )t t  x xA lc A lc

  ˆ( ) ( )t t  x xA lc

 ( ) ( )t t e eA lc
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 ( ) ( )t t e eA lc

Closed-Loop State Estimator
 ( ) (0)tt e  A l ce e

• The time domain solution of 
estimation error e(t) 
depends on e(0), but not u(t)

( ) ( )t t ΛE E ( ) (0)tt e ΛE E

1

2

0 0

0

0

0 0 n






 
 
 
 
 
 

Λ





 



1

2

0 0

0

0

0 0 n

t

t
t

t

e

e
e

e







 
 
 
 
 
 





 



Λ

C
an

on
ic

al
Tr

an
sf

or
m

at
io

n
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Closed-Loop State Estimator

From the fact that E(t) = eΛtE(0), we can conclude that:
If all eigenvalues of Λ = (A-lc) are negative, then the estimation error 

e(t) will approach zero as t increases.
There is no need to calculated the initial states each time the closed-

loop estimator will be used. 
After a certain time, the estimation error e(t) will approach zero and 

the state estimates x(t) will approach the system’s state x(t).

^
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Example: State Estimators

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
       


x x

x



A system is given in state space form as below:

(a) Find a state feedback gain k, so that the closed-loop system has –1 and –2 as its 
eigenvalues.
(b) Design a closed-loop state estimator for the system, with eigenvalues –2 ± j2.

EE391 Control Systems and Components



05/16/2013

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

(a) Find a state feedback gain k, so that the closed-loop system has –1 and –2 as its 
eigenvalues.

( ) det( )a s s  I A bk

1 2

1 2

2 1
det

1 2 1 2

s k k

k s k

     
       

2
1 2 1 2( 2 3) ( 5 3)s k k s k k      

( 1)( 2)s s  
1 4k 

2 1k 
 4 1k

(b) Design a closed-loop state estimator for the system, with eigenvalues –2 ± j2.

( ) det( )s s   I A lc

1 1

2 2

2 1
det

1 1

s l l

l s l

     
       

2
1 2 1 2( 3) ( 2 3)s l l s l l       

( 2 2)( 2 2)s j s j    
1 12l  

2 19l 

12

19

 
  
 

l

Example: State Estimators
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Example: State Estimators

• unstable

• stabilized

0

0.2

1

 
  
 

x
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Example: State Estimators

0

0.2
,

1

 
  
 

x 0

0
ˆ

0

 
  
 

x

• If x0 ≠ x0, then for a certain amount of time 
there will be estimation error e = x – x, which 
in the end will decay to zero

• For unstable system, 
e ∞, no decay

^

^
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Example: State Estimators

0

0.2
,

1

 
  
 

x 0

0
ˆ

0

 
  
 

x

• Although x0 ≠ x0, in a very short time 
the estimation error decays to zero

• Estimation error e will also decay in 
case of unstable system

^
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Homework 6: State Estimators

(a) For the same system as discussed in previous slides, design another 
closed-loop state estimator, with eigenvalues at –3 and –4.

(b)Compare the performance of the estimator in the previous slides and 
the one you have designed through simulation using Matlab Simulink.

(c) Give some explanations of the comparison results.

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

Homework 6A: State Estimators

(a) For the same system as discussed in previous slides, design another closed-loop state 
estimator, with eigenvalues at 
–0.5 ± j1. This means, the eigenvalues of the estimator is to the right of those of the 
system, which is –1 and –2.

(b) Compare the performance of the estimator in the previous slides and the one you 
have designed through simulation using Matlab Simulink.

(c) Give some explanations of the comparison results.

EE391 Control Systems and Components
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Homework 6: State Estimators
(a) For the same system as discussed in previous slides, design another closed-loop state 

estimator, with eigenvalues at 
–3 and –4.

(b) Compare the performance of the estimator in the previous slides and the one you 
have designed through simulation using Matlab Simulink.

(c) Give some explanations of the comparison results.
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 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
       


x x

x



The system is rewritten as:

Solution of Homework 6: State Estimators

(a) Design another closed-loop state estimator, with eigenvalues at –3 and –4.

( ) det( )s s   I A lc

1 1

2 2

2 1
det

1 1

s l l

l s l

     
       

2
1 2 1 2( 3) ( 2 3)s l l s l l       

( 3)( 4)s s  
1 2 3 7l l  

1 22 3 12l l   

19

29

 
  
 

l
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Solution of Homework 6: State Estimators

(b)Compare the performance of both 
closed-loop state estimators.
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Solution of Homework 6: State Estimators

: y(t)
: y(t), l = [–12;19]
: y(t), l = [–19;29] 

^
^

• What is the difference?

EE391 Control Systems and Components
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Solution of Homework 6: State Estimators

: y(t) – y(t), 
l = [–12;19] 

: y(t) – y(t), 
l = [–19;29]

^

^

• If the eigenvalues of a closed-loop estimator lie further to the left of 
imaginary axis, then the estimation error decays faster

• A faster estimator requires larger estimator gain, larger energy, more 
sensitive to disturbance

(c) Give some explanations of the comparison results.
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Transformation to Observer Form
The calculation of state estimator gain l can only be done for observable SISO 

systems.
The procedure presented previously can be performed easily if the system is written in 

Observer Form.
The original system needs to be transformed using a nonsingular transformation 

matrix R.

EE391 Control Systems and Components
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Transformation to Observer Form
 If the observability 

matrix of the open-
loop system is given 
by:

It can be shown that the required transformation matrix R–1

to transform a given system to an Observer Form is given 
by:

2

1n

 
 
 
   
 
 
  

C

CA

CA

CA

O


1 R TO

1 2 3 1

2 3

21 3

1 1

1

1 0

1 0 0

1 0 0 0

n

n n

a a a a

a a

a

a





 

                           

C

CA

CAR

CA





 

 






OT
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Transformation to Observer Form
With the pair (A,c) being observable, the transformation follows the equation:

( ) ( )t tx Rz
so that:

1 0 1 0

2 1 2 1

1 1

( ) 0 0 ( )

( ) 1 0 ( )
( )

( ) 0 0 1 ( )n n n n

z t a z t b

z t a z t b
u t

z t a z t b 

       
               
       
              

 

 

     



 

1

2

( )

( )
( ) 0 0 1

( )n

z t

z t
y t

z t

 
 
 
 
 
 




Â b̂

ĉ
1ˆ A R AR
1ˆ b R b

ˆ c cR
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The characteristic equation of the transformed system can easily be found as:

ˆ( ) det( )a s s I A 1
1 1 0

n n
ns a s a s a
    

After connecting the closed-loop state estimator, its output can be written as:

T

1 2
ˆ ˆ ˆ ˆ

nl l l   l 

with:

Transformation to Observer Form

  ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) ( )ˆt t u t y t  z z b lA l c

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

Further matrix operations yield:
Transformation to Observer Form

0 1

1 2

1

ˆ0 0 ( )

ˆ1 0 ( ) ˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆ0 0 1 ( )n n

a l

a l
t t u t y t

a l

  
 

     
 
   

z z b l




  

The  characteristic equation of the closed-loop estimator is now:
1 2

1 2 1

1 2 0 1

ˆ ˆ( ) ( ) ( )
ˆ ˆ               ( ) ( )

n n n
n n n na s s a l s a l s

a l s a l

 
       

   

 If the desired poles of the closed-loop estimator are specified by p1, p2, …,pn then:

1 2( ) ( )( ) ( )na s s p s p s p   


1
1 1 0

n n
ns a s a s a
      


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Transformation to Observer Form

By comparing the coefficients of the previous two polynomials, it is clear, that in order 
to obtain the desired characteristic equation, the feedback gain must satisfy:

0 1 0
ˆa l a  

1 2 1
ˆa l a  

 

1 1
ˆ

n n na l a   

1 0 0l̂ a a 

2 1 1l̂ a a 

1 1n̂ n nl a a  
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Original System Equivalent System 
in Observer Form

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

ˆ( ) ( )y t t cz

ˆ ˆ( ) ( ) ( )t t u t z Az b

Transformation to Observer Form

Calculate the state 
estimator gain for the 
transformed system

The feedback gain for 
the original system is 

obtained

l̂

( ) ( )t tx Rz

1( ) ( )t tz R x

ˆl Rl
EE391 Control Systems and Components
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Example: State Estimators

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
       


x x

x



Previously in part (b), the desired closed-loop state estimator for the system should have 
eigenvalues at –2 ± j2.
Redo part (b), now by using the transformation to the Observer Form.

Let us go back to the last example.
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0a

( ) det( )a s s I A
2 1

det
1 1

s

s

    
     

2 3 3s s  

Example: State Estimators

1a

 
  
 

C

CA
O

1 1

1 0

a 
  
 

T

1 1

1 2

 
  
 

1 R TO

3 1

1 0

 
  
 
2 1

1 1

  
  
 

1 1

1 2

  
  
 

R

Checking the Observer Form,

1ˆ A R AR

ˆ c cR

0 3

1 3

 
  
 

 0 1
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Example: State Estimators
The desired characteristic 
equation of the state observer is:

( ) ( 2 2)( 2 2)a s s j s j    

2 4 8s s  
0a


1a


1 0 0l̂ a a 

2 1 1l̂ a a 
8 3 5  
4 ( 3) 7   

5ˆ
7

 
  
 

l

For the transformed system

12ˆ
19

 
   

 
l Rl

For the original system

Now, if the desired poles are 
–3 and –4, we can repeat the 
calculation as follows:

( ) ( 3)( 4)a s s s  

2 7 12s s  
0a


1a


1 0 0l̂ a a 

2 1 1l̂ a a 
12 3 9  
7 ( 3) 10   

9ˆ
10

 
  
 

l

For the transformed system

19ˆ
29

 
   

 
l Rl For the original system
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Homework 7

 

1 2 0 1

( ) 1 3 4  ( ) 2  ( )

1 1 9 1

( ) 1 0 1  ( )

t t u t

y t t

   
        
        



x x

x

Consider the following linear system given by:

(a) Using the transformation to the Observer Form, find the gain vector l of the 
closed-loop state estimator if the desired poles are –3 and –4 ± j2.

(b) Recall again the output feedback. In observer form, its effect on the characteristic 
equation of the system can be calculated much easier. By calculation, prove that 
the poles of the system cannot be assigned to any arbitrary location by only 
setting the value of output feedback j.
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Homework 7A

 

6 11 6 1

( ) 1 0 0  ( ) 0  ( )

0 1 0 3

( ) 0 1 1  ( )

t t u t

y t t

      
       
      



x x

x

Consider the following linear system given by:

(a) Calculate the eigenvalues and eigenvectors of the system. Is it stable or unstable?
(b) Using the transformation to the Observer Form, find the gain vector l of the 

closed-loop state estimator if the desired poles are –1 ± j2.5 and –3.
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Homework 7

 

1 2 0 1

( ) 1 3 4  ( ) 2  ( )

1 1 9 1

( ) 1 0 1  ( )

t t u t

y t t

   
        
        



x x

x

Consider the following linear system given by:

(a) Using the transformation to the Observer Form, find the gain vector l of the closed-
loop state estimator if the desired poles are –3 and –4 ± j2.

(b) Recall again the output feedback. In observer form, its effect on the characteristic 
equation of the system can be calculated much easier. By calculation, prove that the 
poles of the system cannot be assigned to any arbitrary location by only setting the 
value of output feedback j.
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Solution of Homework 7

1a

( ) det( )a s s I A
3 213 33 13s s s   

2a

1 0 1

2 3 9

14 22 93

 
    
  

O

33 13 1

13 1 0

1 0 0

 
   
  

T

1

21 17 9

11 3 4

1 0 1


 
   
  

R

0a

0.0361 0.2048 0.4940

0.0843 0.1446 0.1807

0.0361 0.2048 1.4940

  
    
  

R

Checking the Observer Form:
0 0 13

ˆ 1 0 33

0 1 13

 
   
  

A

 ˆ 0 0 1c

46
ˆ 13

0

 
   
  

b
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Solution of Homework 7

The desired characteristic 
equation of the state observer is:

( ) ( 3)( 4 2)( 4 2)a s s s j s j     

3 211 44 60s s s   

0a


1a


1 0 0l̂ a a 

2 1 1l̂ a a 
60 13 47  
44 33 11  

47
ˆ 11

2

 
   
  

l

For the transformed system

1.5422
ˆ 2.7349

3.5422

 
    
  

l Rl

For the original system

2a


3 2 2l̂ a a 
11 13 2   

(a) Find the gain vector l of the 
closed-loop state estimator if the 
desired poles are –3 and 
–4 ± j2.
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Solution of Homework 7

(b) Prove that the poles of the system cannot be placed freely by only 
setting a single variable j of output feedback.

 

0 0 13 46

ˆ ˆ( )  ( )  ( )1 0 33 13

0 1 13 0
ˆ( )  ( )0 0 1

t t u t

y t t

   
       
      



x x

x

• Transformation Result, 
Observer Form

( ) ( ) ( ) ( )t j t r t  x A bc x b

( ) ( )y t t cx • Output Feedback
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Solution of Homework 7
( ) ( ) ( ) ( )t j t r t  x A bc x b

 
0 0 13 46

( ) ( ) ( )1 0 33 13 0 0 1

0 1 13 0

t j t r t

     
          
        

x x b

0 0 13 0 0 46

( ) ( )1 0 33 0 0 13

0 1 13 0 0 0

j t r t

     
          
        

x b

0 0 (13 46 )

( ) ( )1 0 (33 13 )

0 1 13

j

t r tj

  
    
  

x b

3 2( ) 13 (33 13 ) (13 46 )a s s s j s j      

• Only a0 and a1 can be adjusted, both 
dependent to each other

• The poles of the system cannot be placed 
in any wished position
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Feedback of Estimated States

The estimated states will now be used to change the behavior of the system, through 
state feedback.

Consider the n-dimensional single-variable state space equations:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

 If the pair (A,b) is controllable, then the state feedback 
u(t) = r(t) – kx(t) can place the eigenvalues of (A–bk) in any desired positions.
 If the state variables are not available for feedback, then a state estimator with 

arbitrary eigenvalues can be designed for the system, provided that the pair (A,c) is 
observable.
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Feedback of Estimated States

( )r t
Plant

k

( )y t

ˆ( )tx

( )u t
+
–

State 
Estimator

“Controller-Estimator 
Configuration”
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ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t   x A lc x b l

Feedback of Estimated States

We recall again the state equation of the state estimator:

The rate of how the estimated states x(t) approach the actual states x(t) can be 
adjusted by selecting an appropriate value for matrix l.

^ 

Because x(t) is not available in the configuration, it is replaced by x(t) for feedback:^ 

ˆ( ) ( ) ( )u t r t t  k x
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Feedback of Estimated States

Substituting the last equation to the original system and the state estimator, will yield:

ˆ( ) ( ) ( ) ( )t t t r t  x Ax bk x b

 ˆ ˆ( ) ( ) ( ) ( )t t r t y t   x x b lA lc bk

 

( ) ( )
( )

ˆ ( )ˆ ( )
( )

( )
ˆ ( )

t t
r t

tt
t

y t
t

       
               

 
  

 

x A bk x b

lc A lc bk x bx
x

c
x





0

The two equations above can be combined in a new state space equation in the form 
of:
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Feedback of Estimated States

After performing the equivalence transformation, the following state 
equations can be obtained:

 

( ) ( )
( )

( ) ( )
( )

( )
( )

t t
r t

t t
t

y t
t

       
               

 
  

 

x A bk bk x b

e A lc e
x

c
e



 0 0

0

To analyze these closed-loop systems, it is convenient to change the state 
variables by using the following transformation:

( ) ( )

ˆ( ) ( ) ( )

t t

t t t

   
      

x x

e x x

( )

ˆ ( )

t

t

   
       

I x

I I x

0

,P 1 P P
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The eigenvalues of the new system in the “controller-estimator 
configuration” is the union of those of (A–bk) and (A–lc).
This fact means, that the implementation of the state estimator does not 

affect the eigenvalues of the system with state feedback, and vice versa.
The design of state feedback and state estimator are separated from 

each other. This is known as “separation principle” or “separation 
property.”

Feedback of Estimated States
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Feedback of Estimated States

 [Franklin, Powell, Emami-Naeini] recommends that the real parts of the state 
estimator poles be a factor of 2 to 6 deeper in the left-half plane than the real 
parts of the state feedback poles.

Estimator 
poles deeper 

to the left

Faster decay of 
estimation error

Larger magnitude 
of estimator gain

Saturation and 
unpredictable non-

linear effects

High sensitivity to 
noise and disturbance
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Reference Input in State Feedback

The state feedback has been proven to be able to place the poles of closed-loop 
system in arbitrary locations, and therefore can be used to design the transient 
response of a system.
However, the steady-state response is still neglected until now, and the system will 

almost surely have a nonzero error to a step input.

( ) ( ) ( )u t r t t  k x
Reference Value

Now, two ways to incorporate the tracing of reference input while using state 
feedback will be introduced:
Pre-scaling/ Pre-amplifying
 Integral Control
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Tracing of Reference Input: Pre-Scaling

Consider again the n-dimensional state space equations:

( ) ( )y t t cx

( ) ( ) ( )t t u t x Ax b

 In steady-state condition, these equations reduce to:

ss ss( ) ( )y t t cx
ss ss( ) ( )t u t Ax b0

 If the desired value of the states and the required process input to reach them are 
xr(t) and ur(t), then the new feedback formula should be:

 rr( ) ( ) ( ) ( )u t u t t t  k x x

If x(t) → xr(t), then u(t) → ur(t)
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Tracing of Reference Input: Pre-Scaling

Let us now define:

ss ( ) ( )t r tx N

ss ( ) ( )u t Mr t

The equations in steady-state condition can now be written as:

1 0 M

     
     

     

A b N

c

0
or

1

0 1M


     

     
     

N A b

c

0

Now, comparing the values from the above equations and the desired values, we obtain:

ss ( ) ( )y t r t

ss r( ) ( )t tx x

ss r( ) ( )u t u t

• How? Why?
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Tracing of Reference Input: Pre-Scaling
After finding N and M, the required input to the system, u(t), that guarantees zero 

steady-state error to a step input can be calculated as:

 rr( ) ( ) ( ) ( )u t u t t t  k x x

 ( ) ( ) ( ) ( )u t Mr t t r t  k x N

  ( ) ( )M r t t  kN k x

E • New scalar gain for r(t) 

( )r t

k

( )y t

( )tx

( )u t
M kN
Pre-scaling 

gain
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Example: Pre-Scaling

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
       


x x

x



For the desired eigenvalues of –1 and –2, it is already calculated that the required 
feedback gain is k = [4 1].
Now, it is desired that the output y(t) should follow 
r(t) = 1.5(t). Calculate the gain E for the reference value r(t) 

Referring again to the state-space equation that has been used before, 
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Example: Pre-Scaling

1
2 1 1 0

1 1 2 0

1 1 0 1
M


   

                   

N

1

0 1M


     

     
     

N A b

c

0

0.25

1.25

0.75

 
   
  

0.25
,

1.25

 
   

 
N 0.75M  

 E M  kN   0.25
0.75 4 1

1.25

   
    

  
0.5 
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Example: Pre-Scaling

Step Response Without 
Reference Gain E

Step Response With 
Reference Gain E

• The previous steady-state value of the system is y(∞) = –3, see left scope.
• The reference gain (E = –0.5) invert y(∞) to the desired value of r(t) = 1.5(t), see 

right scope.
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Tracing of Reference Input: Integral Control
The integral control is included by augmenting the state vector x(t) with the desired 

dynamics, such that the states of the system is increased, but still with the same form of:

( ) ( )y t t cx
( ) ( ) ( )t t u t x Ax b

The feedback is set to contain the integral of the error, e = r–y, as well as the state of 
the system, x(t).
We add the existing state with an extra integral state xint, given by the following 

equation:

int ( ) ( ) ( )x t r t t  cx ( )e t

int

0

( ) ( )x t e t dt


 
This implies that

EE391 Control Systems and Components

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 2013

Tracing of Reference Input: Integral Control

The augmented state space equations become

int int0 0 1x x
u r

         
           

         0 0





c

x A x b

int int( ) ( ) ( )u t t k x t  k x

with the feedback law –to incorporate the feedback k gain and integrator gain kint– is 
chosen as

  int
int

x
k

 
   

 
k

x

( )r t

k

( )y t

( )tx

( )u t
1
s intk
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Tracing of Reference Input: Integral Control

The characteristic equation of the augmented system is now given as

int

0
( ) deta s s

k

   
      

c
I

b A bk

Substituting u(t) to the augmented state space equations,

 int int
int

0 0 1x x
k r

           
            

          0 0





c
k

x A b x

int int

int

0 1x x
r

k

      
               0





c

b A bkx x

with the possibility to place the poles by means of k and kint.
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Example: Integral Control

 

2 1 1
( ) ( ) ( )

1 1 2

( ) ( )1 1

t t u t

y t t

   
       


x x

x



with the desired eigenvalues of –1 and –2, and r(t) = 1.5(t). 
The integrator increases the order of the system by one to become a third-order system. 
The third eigenvalues is assumed to be–3.
The augmented state-space equations is given by:

The scheme should now be implemented on the state-space equations that has been used 
before, 

int int
int 1 2

int 1 2

0 1 1
1

2 1

2 1 2 1 2

x x
k k k r

k k k

  
                          

0



x x

int int

int

0 1x x
r

k

      
               0





c

b A bkx x
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Example: Integral Control

int 1 2

int 1 2

1 1

( ) det (2 ) (1 )

2 1 2 (1 2 )

s

a s k s k k

k k s k

  
        
      

int 1 2

int 1 2

0 1 1

( ) det 2 1

2 1 2 1 2

a s s k k k

k k k

    
        
       

I

3 2
1 2 1 2 int int( 2 3) ( 5 3 3) 4s k k s k k k s k        

( 1)( 2)( 3)s s s   

1 2 int10, 0.5, 1.5k k k    

3 26 11 6s s s   
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Example: Integral Control
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Example: Integral Control

Third pole at s = –3

1 2 int10, 0.5, 1.5k k k   
Third pole at s = –0.5

1 2 int5, 0.75, 0.25k k k  

• What conclusion can be taken?
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Homework 8

Refer to the last example.
(a) Calculate the transfer function G(s) of the system.
(b) Calculate the steady-state value of the system to a unit step input, using the Final 

Value Theorem of Laplace Transform.
(c) Determine the gain K so that the steady-state response of KG(s) has zero error to 
a unit step input.
(d) Find out the relation between the transfer function gain K and the reference gain E.
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Homework 8A

(a) Pre-scaling method, by calculating the gain E.
(b) Integral control method, by calculate the gain [kint k]. 

Hint: Assume the additional pole to be –1 and do not move the original poles of 
the system.

(c) Implement the original system, the system at (a) and the system at (b) in one 
Matlab Simulink file and compare the outputs.

Hint: For the matrix calculations, you may use Matlab. Write down or print the 
result on your homework papers. 

 

1 2 0 1

( ) 1 3 4  ( ) 2  ( )

1 1 9 1

( ) 1 0 1  ( )

t t u t

y t t

   
        
        



x x

x

It is desired that the following linear system has zero steady state error to a unit step 
input. Find the solution by using:
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Homework 8
Refer to the last example.
(a) Calculate the transfer function G(s) of the system.
(b) Calculate the steady-state value of the system to a step input, using the Final Value 

Theorem of Laplace Transform.
(c) Determine the gain K so that the steady-state response of KG(s) has zero error to 
a step input.
(d) Find out the relation between the transfer function gain K and the reference gain E.
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1 ( )
( ) ( )

( )

Y s
G s s

U s
   c I A bk b

Solution of Homework 8
(a) Calculate the transfer function of the system in s-Domain.

   
1

0 2 1 1 1
4 11 1

0 1 1 2 2

s

s


        

                  

 
1

2 0 1
1 1

9 1 2

s

s

   
       

2

3 4
( )

3 2

s
G s

s s




 

 
2

1 0 1
1 1

9 2 2

3 2

s

s

s s

   
       

 

 
1

0 2 1 4 1 1
1 1

0 1 1 8 2 2

s

s


        

                  
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Solution of Homework 8
(b) Calculate the steady-state value of the step response of the system, using the Final 

Value Theorem of Laplace Transform.

0 0
( ) lim ( ) lim ( ) lim ( ) ( )

t s s
y y t s Y s s G s U s

  
     

20

3 4 1
lim

3 2s

s
s

s s s


  

 
4

2




2 
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Solution of Homework 8

(c) Determine the gain K so that the steady-state response of KG(s) has zero error to a 
step input.

0
( ) lim ( ) ( ) 2

s
y s G s U s


    

0
( ) lim ( ) ( ) ( ) 1( )

s
y s KG s U s u t


     

0.5K  

(d) Find out the relation between the transfer function gain K and the 
reference gain E.

K E

0

0

a
K

b

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