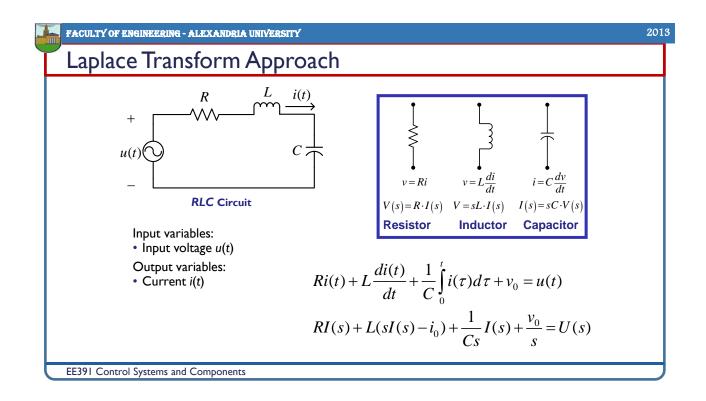
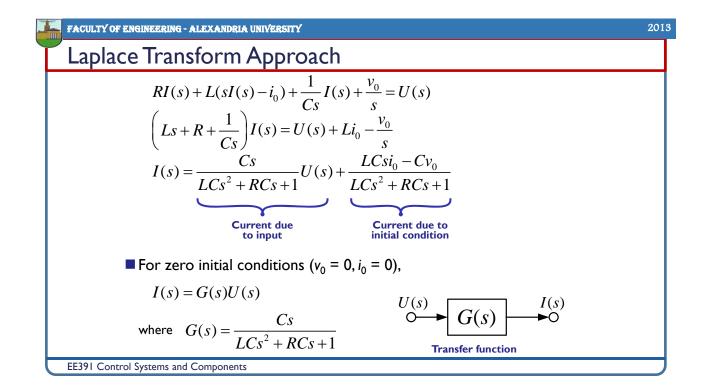
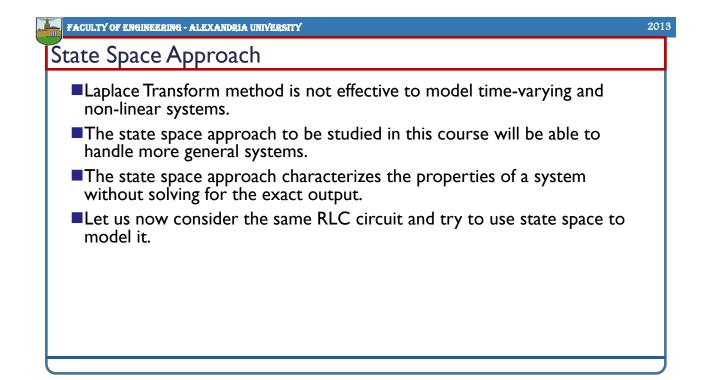


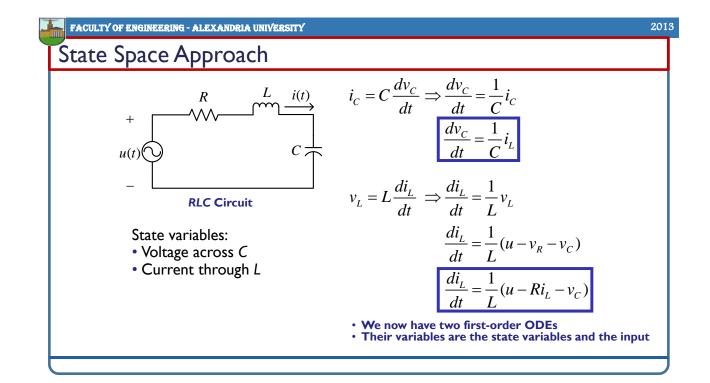
Classical Control and Mode	
Classical Control	Modern Control
• SISO	• MIMO
(Single Input Single Output)	(Multiple Input Multiple Output)
 Low order ODEs 	 High order ODEs, PDEs
 Time-invariant 	 Time-invariant and time variant
 Fixed parameters 	 Changing parameters
• Linear	Linear and non-linear
 Time-response approach 	 Time- and frequency response approach
 Continuous, analog 	 Tends to be discrete, digital
Before 80s	• 80s and after
The difference between classical control different modeling approach used by each other set of the set of t	ol and modern control originates from the ach control.

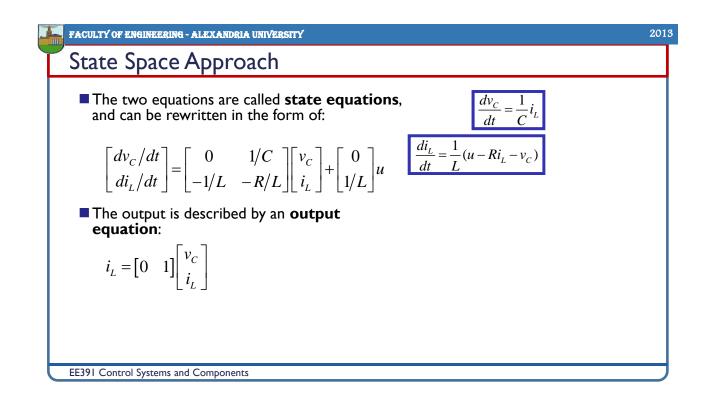
EE391 Control Systems and Components

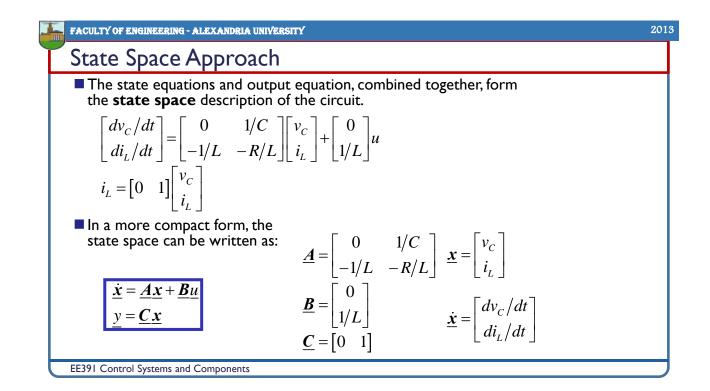


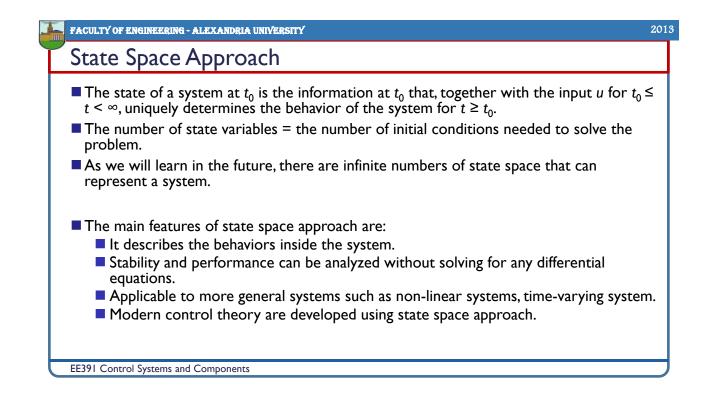




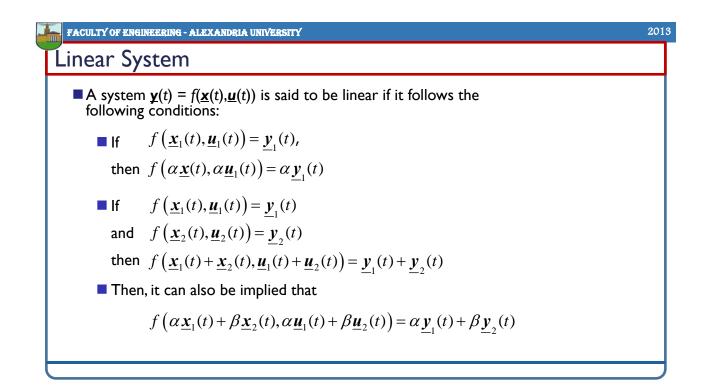




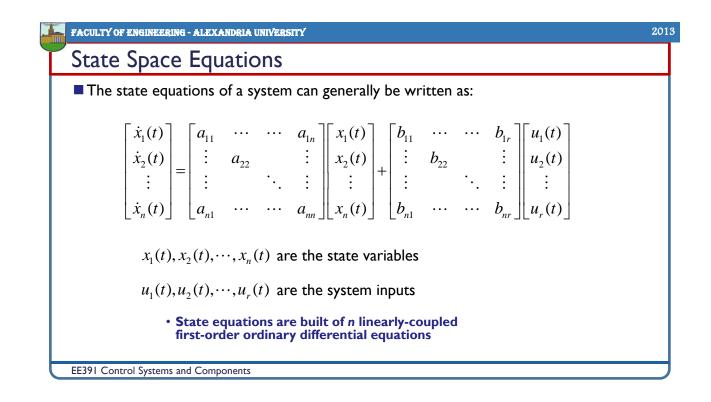


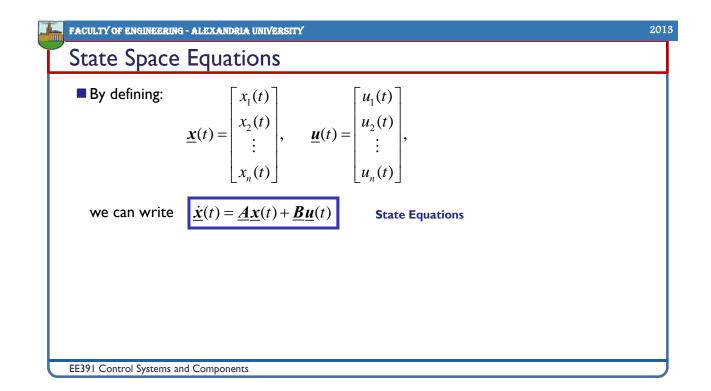


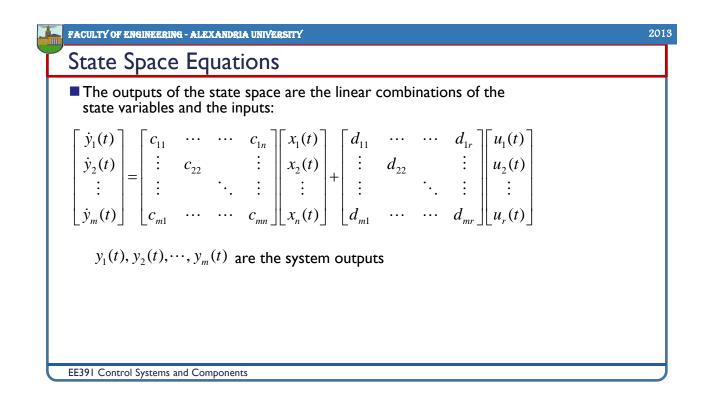
Syst	ems are classified based on:
. ■ 1	The number of inputs and outputs: single-input single-output (SISO), multi-input multi-output (MIMO), MISO, SIMO.
t	Existence of memory: if the current output depends on the current input only, then the system is said to be memoryless, otherwise it has memory \rightarrow purely resistive circuit vs. RLC-circuit.
) – (<i>Causality</i> : a system is called causal or non-anticipatory if the output depends only on the present and past inputs and independent of the future unfed inputs.
	<i>Dimensionality</i> : the dimension of system can be finite (lumped) or infinite (distributed).
	inearity: superposition of inputs yields the superposition of outputs.
	<i>Time-Invariance</i> : the characteristics of a system with the change of time.

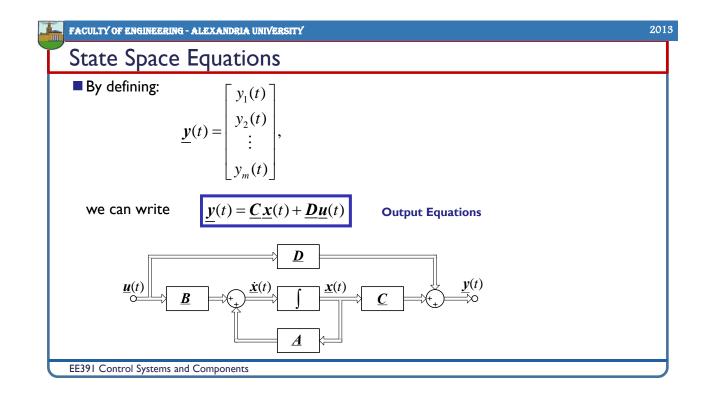


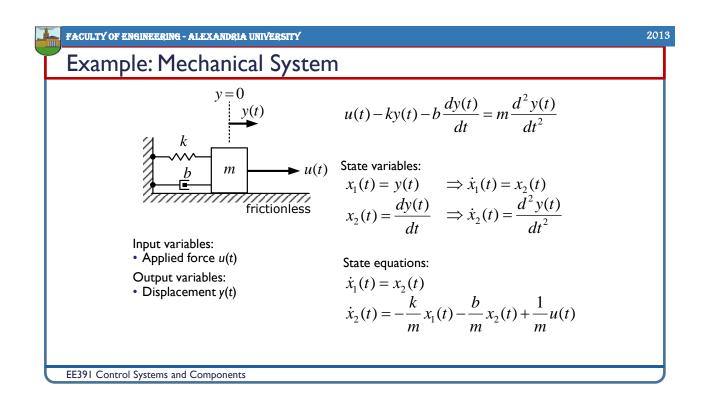
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY 201
Linear Time-Invariant (LTI) System
A system is said to be linear time-invariant if it is linear and its parameters do not change over time.

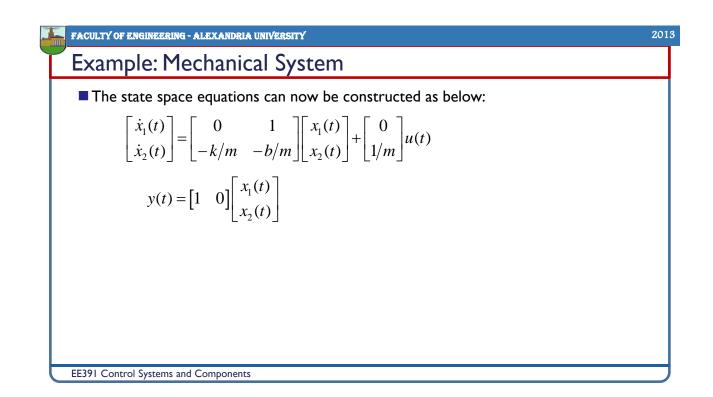


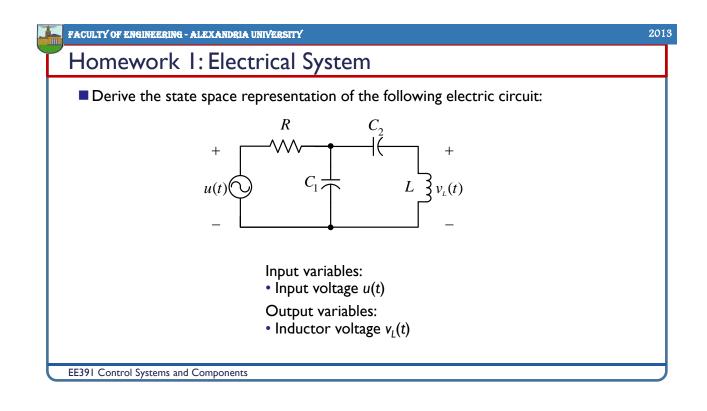


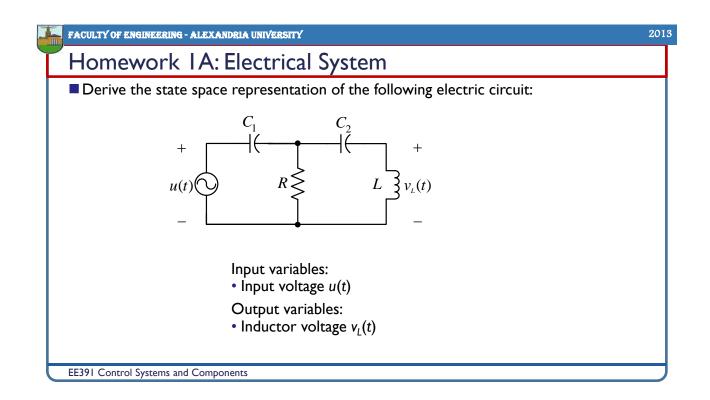


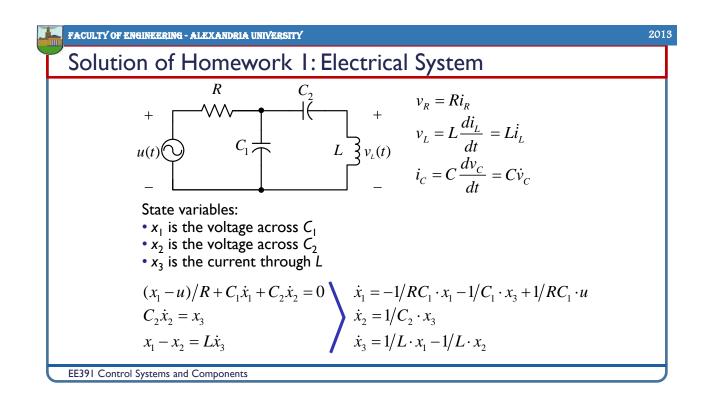




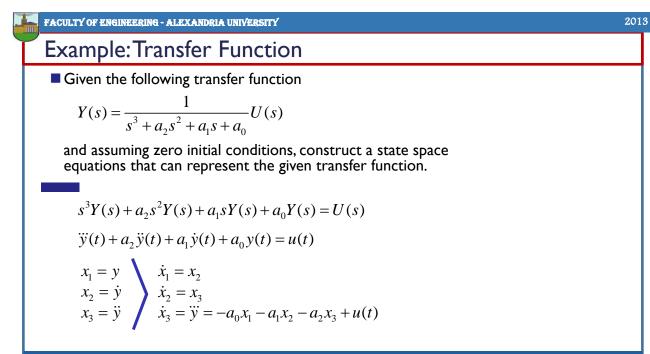




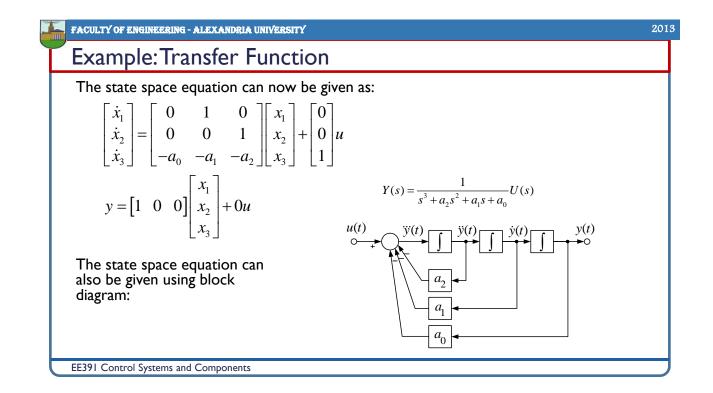


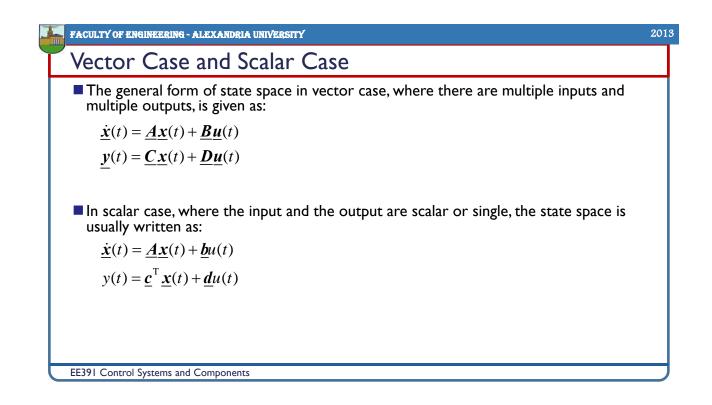


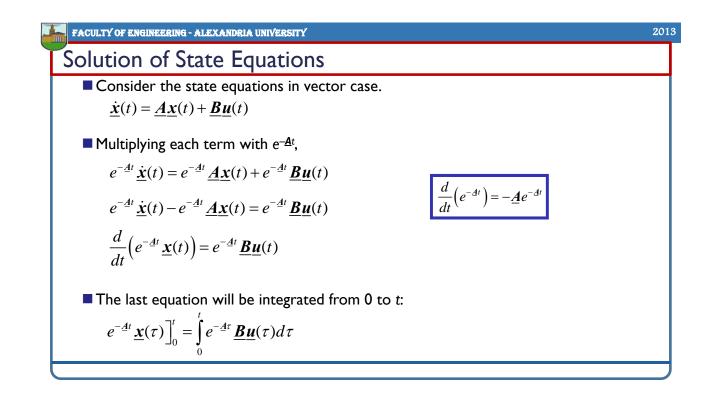
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework I: Electrical System	
The state space equation can now be written as: $\dot{x}_1 = -1/RC_1 \cdot x_1 - 1/C_1 \cdot x_3 + 1/RC_1 \cdot u$ $\dot{x}_2 = 1/C_2 \cdot x_3$ $\dot{x}_3 = 1/L \cdot x_1 - 1/L \cdot x_2$	
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1/RC_1 & 0 & -1/C_1 \\ 0 & 0 & 1/C_2 \\ 1/L & -1/L & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1/RC_1 \\ 0 \\ 0 \end{bmatrix} u$	
$y = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 0 \cdot u$	
EE391 Control Systems and Components	

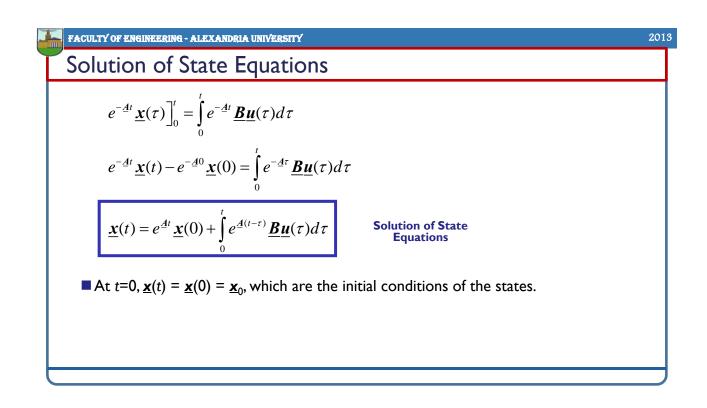


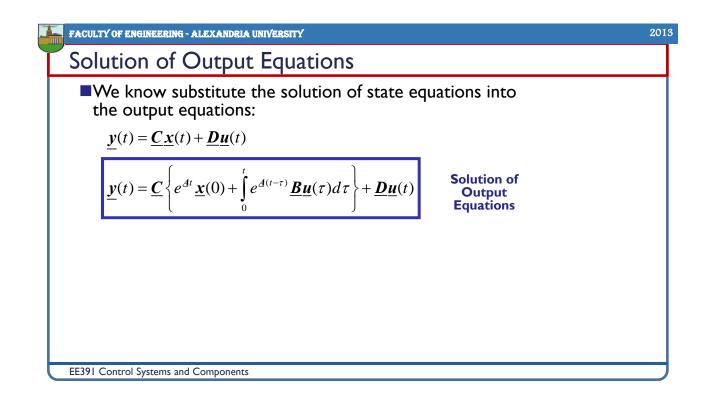
EE391 Control Systems and Components

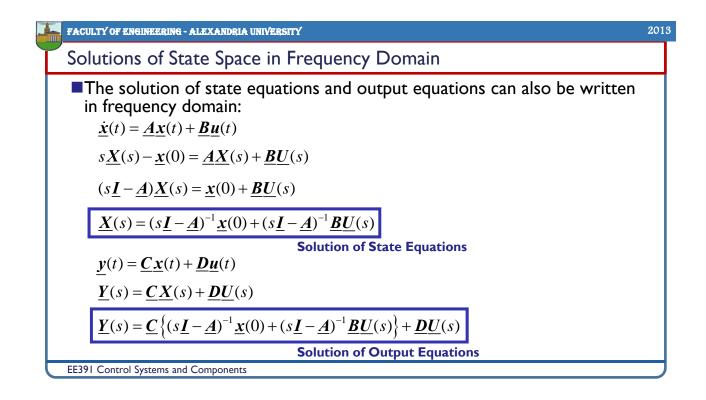


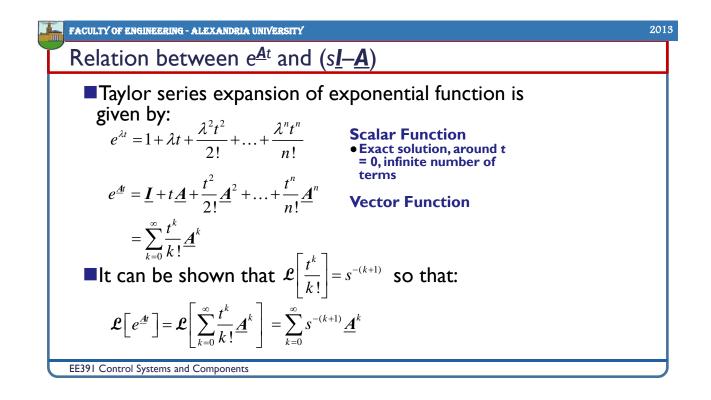


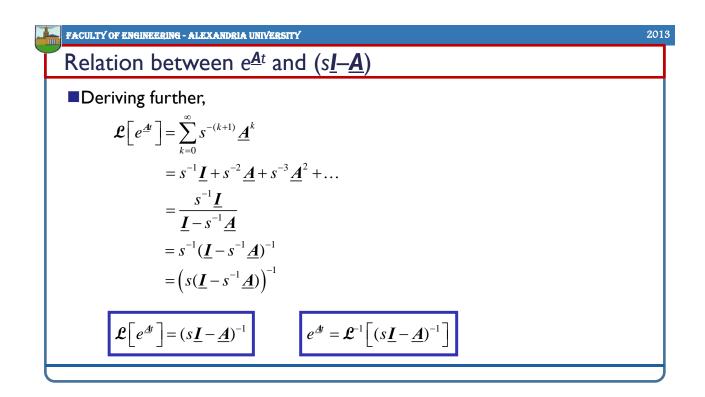




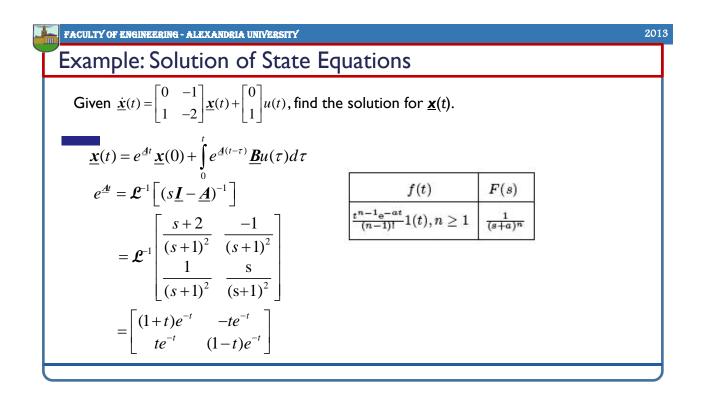




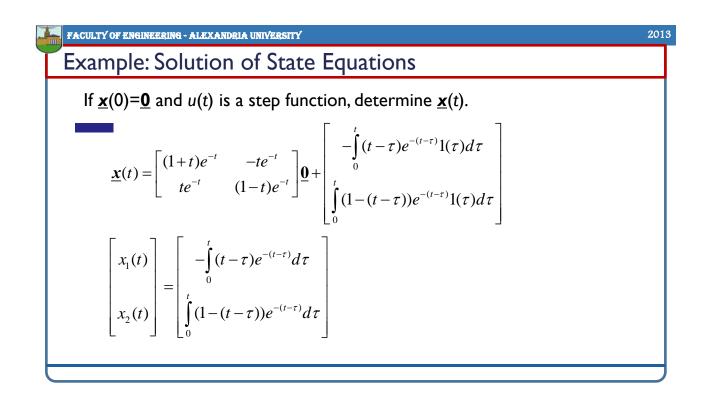


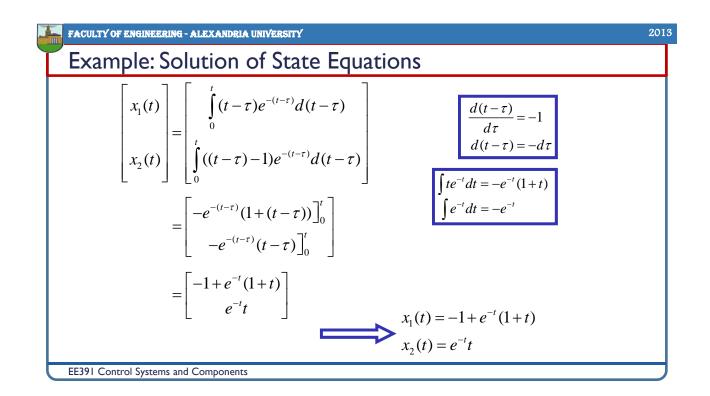


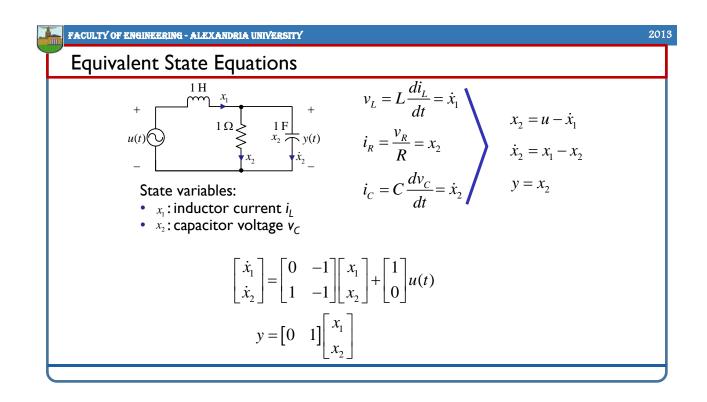
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Example: Solution of State Equations	
Compute $(s\underline{I} - \underline{A})^{-1}$ if $\underline{A} = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix}$.	
$(s\underline{I} - \underline{A}) = \begin{bmatrix} s & 1\\ -1 & s+2 \end{bmatrix}$	
$(s\underline{I} - \underline{A})^{-1} = \frac{1}{(s)(s+2) - (1)(-1)} \begin{bmatrix} s+2 & -1\\ 1 & s \end{bmatrix}$	
$= \begin{bmatrix} \frac{s+2}{s^2+2s+1} & \frac{-1}{s^2+2s+1} \\ \frac{1}{s^2+2s+1} & \frac{s}{s^2+2s+1} \end{bmatrix}$	



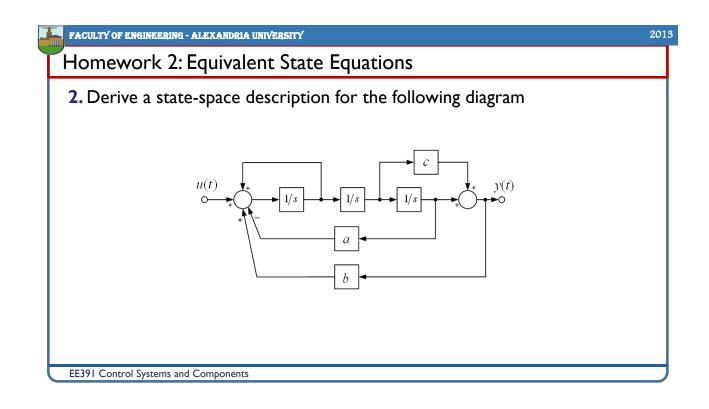
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	201
Example: Solution of State Equations	
Now, we substitute $e^{\underline{A}t}$ to obtain the solution for $\underline{x}(t)$:	
$\underline{\mathbf{x}}(t) = \begin{bmatrix} (1+t)e^{-t} & -te^{-t} \\ te^{-t} & (1-t)e^{-t} \end{bmatrix} \underline{\mathbf{x}}(0) + \\ \int_{0}^{t} \begin{bmatrix} (1+(t-\tau))e^{-(t-\tau)} & -(t-\tau)e^{-(t-\tau)} \\ (t-\tau)e^{-(t-\tau)} & (1-(t-\tau))e^{-(t-\tau)} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(\tau) d\tau$	
$= \begin{bmatrix} (1+t)e^{-t} & -te^{-t} \\ te^{-t} & (1-t)e^{-t} \end{bmatrix} \underline{x}(0) + \begin{bmatrix} -\int_{0}^{t} (t-\tau)e^{-(t-\tau)}u(\tau)d\tau \\ \int_{0}^{t} (1-(t-\tau))e^{-(t-\tau)}u(\tau)d\tau \end{bmatrix}$	

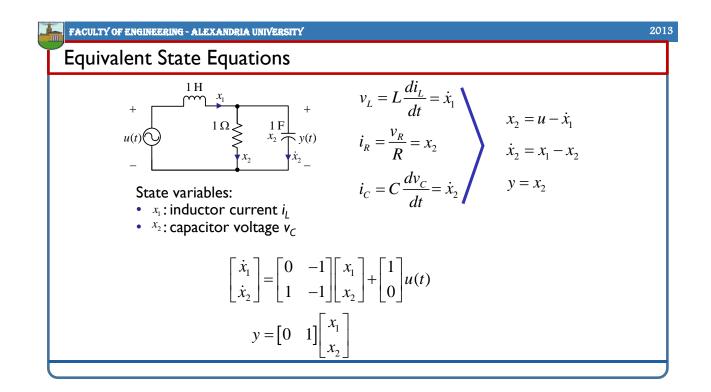


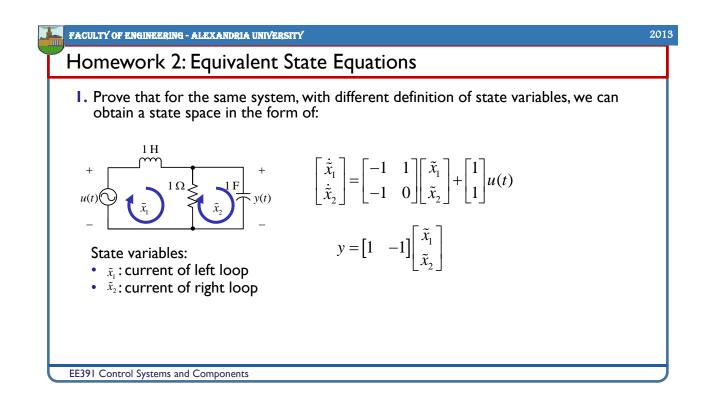




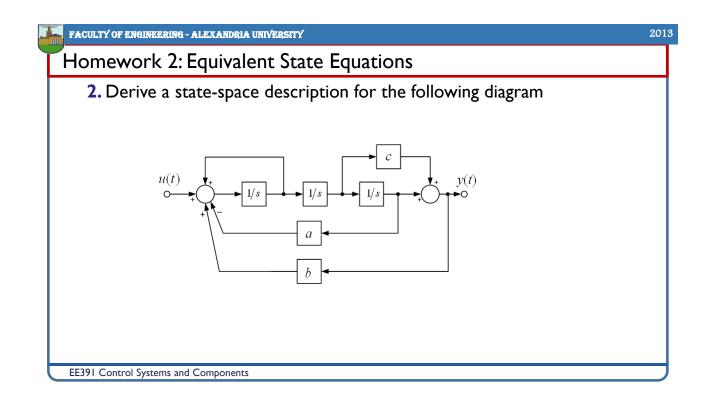


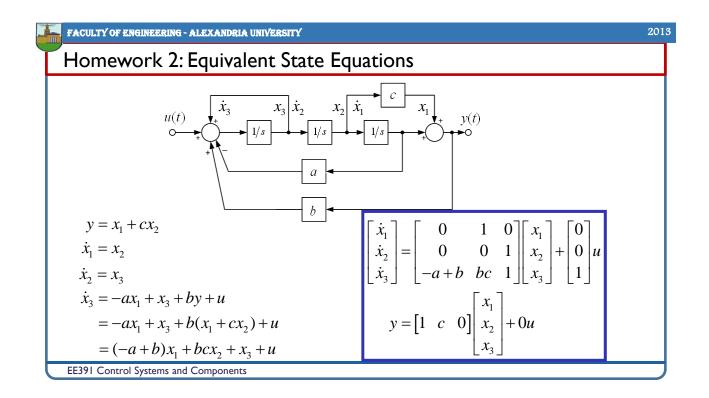


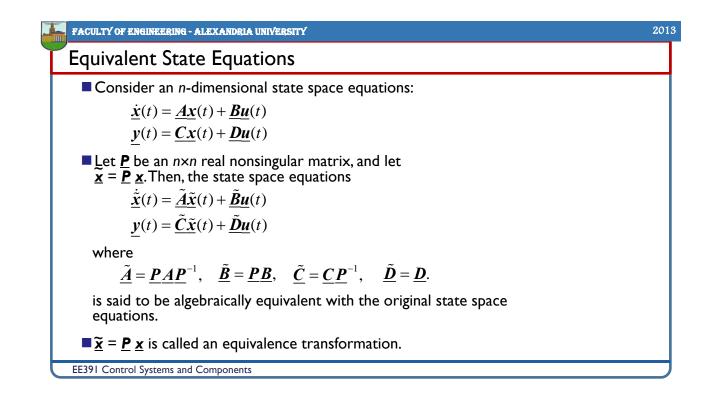




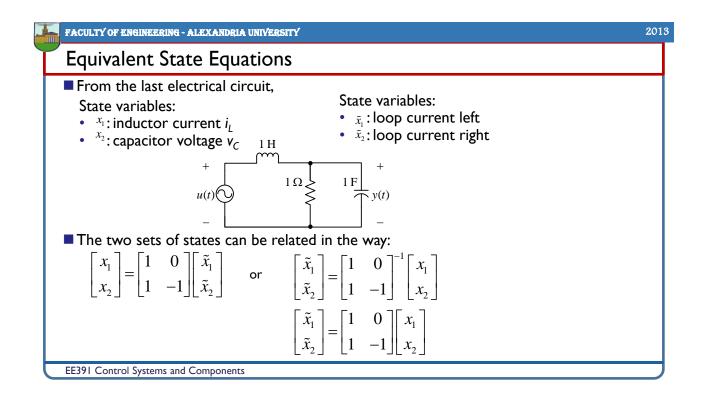
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY		2013
Homework 2: Equivalent State	e Equations	
$\begin{array}{c} 1 \text{ H} \\ + & \tilde{x}_1 - & 1 \text{ F} \\ u(t) & \tilde{x}_1 & \tilde{x}_2 & - \\ - & & & & - \end{array}$	$-u + \dot{\tilde{x}}_1 + (\tilde{x}_1 - \tilde{x}_2) = 0$ $\dot{\tilde{x}}_1 = u - \tilde{x}_1 + \tilde{x}_2$ $v_C = \tilde{x}_1 - \tilde{x}_2 = y$	
 State variables: x ₁: loop current left x ₂: loop current right 	$i_C = C \frac{dv_C}{dt}$	
$\begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$	$\begin{aligned} \tilde{x}_2 &= \dot{\tilde{x}}_1 - \dot{\tilde{x}}_2 \\ &= (u - \tilde{x}_1 + \tilde{x}_2) - \dot{\tilde{x}}_2 \\ \dot{\tilde{x}}_2 &= u - \tilde{x}_1 \end{aligned}$	
$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$ EE391 Control Systems and Components		



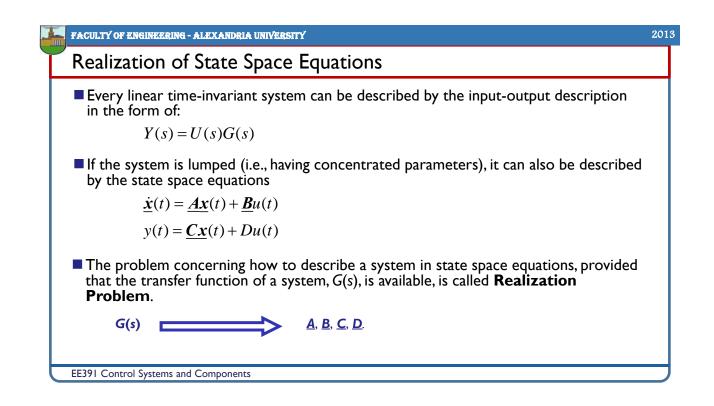


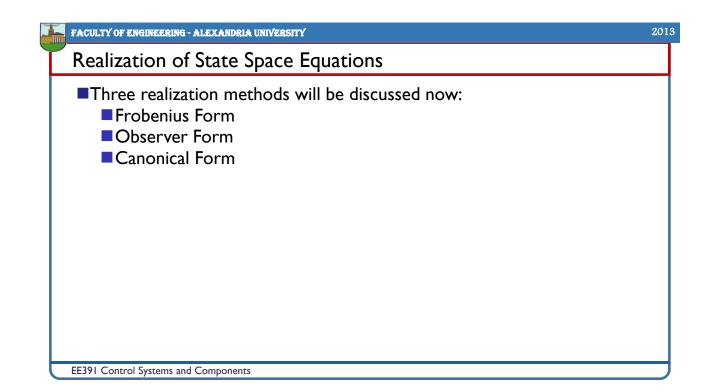


FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Equivalent State Equations	
Proof: Substituting $\underline{x}(t) = \underline{P}^{-1} \underline{\tilde{x}}(t)$	
$\underline{\boldsymbol{P}}^{-1}\dot{\underline{\boldsymbol{x}}}(t) = \underline{\boldsymbol{A}}\underline{\boldsymbol{P}}^{-1}\underline{\boldsymbol{x}}(t) + \underline{\boldsymbol{B}}\underline{\boldsymbol{u}}(t)$	
$\dot{\underline{\mathbf{x}}}(t) = \underbrace{\underline{P}\underline{A}\underline{P}}_{\underline{A}}^{-1}\underbrace{\mathbf{x}}(t) + \underbrace{\underline{P}\underline{B}\underline{u}}(t)$ $\underbrace{\underline{\tilde{A}}}_{\underline{\tilde{A}}} \qquad \underbrace{\underline{\tilde{B}}}_{\underline{\tilde{B}}}$	
$\underline{\underline{y}}(t) = \underline{\underline{C}} \underline{\underline{P}}^{-1} \underline{\underline{x}}(t) + \underline{\underline{D}} \underline{\underline{u}}(t)$ $\underline{\underline{C}} \qquad \underline{\underline{D}}$	
EE391 Control Systems and Components	



FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Transfer Function and Transfer Matrix	
Consider a state space equations for SISO systems: $\underline{\dot{x}}(t) = \underline{Ax}(t) + \underline{B}u(t)$ $y(t) = \underline{Cx}(t) + Du(t)$	
Using Laplace transform, we will obtain: $s\underline{X}(s) - \underline{x}(0) = \underline{AX}(s) + \underline{B}U(s)$	
$Y(s) = \underline{CX}(s) + DU(s)$ For zero initial conditions, $\underline{x}(0) = \underline{0}$,	
$\underline{X}(s) = (s\underline{I} - \underline{A})^{-1}\underline{B}U(s)$	
$Y(s) = \left(\underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D\right)U(s)$	
$G(s) = \frac{Y(s)}{U(s)} = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D$ Transfer Function	
EE391 Control Systems and Components	\supset





2013

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

Frobenius Form

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

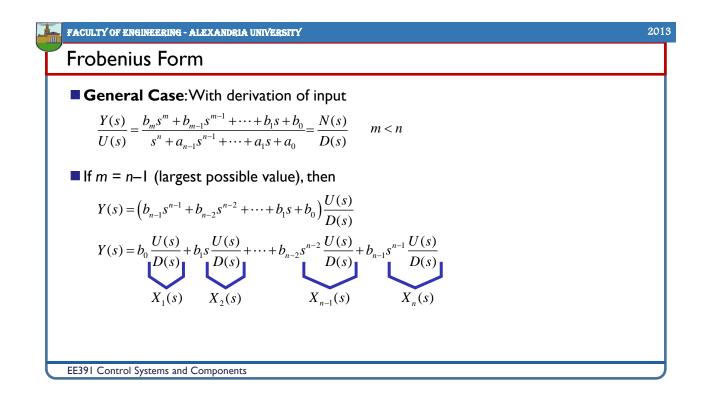
$$\frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t) = b_{m} \frac{d^{m} u(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \dots + b_{1} \frac{du(t)}{dt} + b_{0} u(t)$$

Special Case: No derivation of input

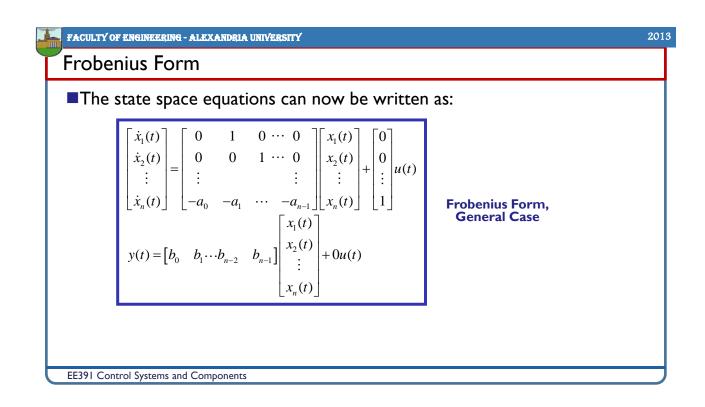
$$\frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t) = b_{0} u(t)$$

EE391 Control Systems and Components

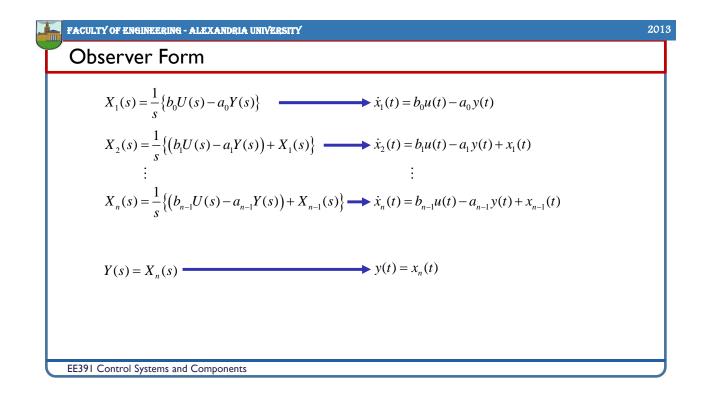
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	201
Frobenius Form	
We now define: $x_1(t) = y(t)$ $x_2(t) = \dot{y}(t) = \dot{x}_1(t)$ $x_3(t) = \ddot{y}(t) = \dot{x}_2(t)$ \vdots $x_n(t) = y^{(n-1)}(t) = \dot{x}_{n-1}(t)$	
$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ b_{0} \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + 0u(t)$	Frobenius Form, Special Case



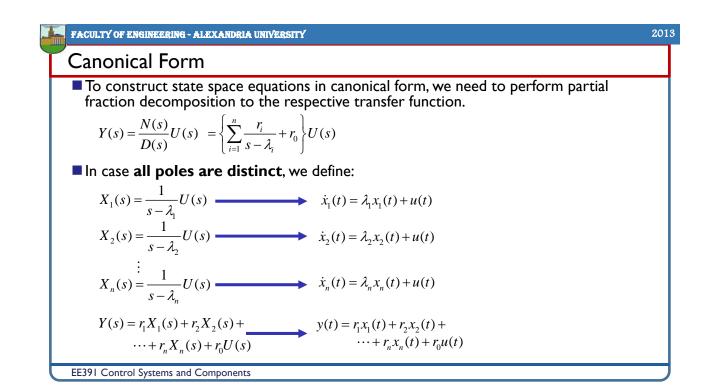
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Frobenius Form	
If $m = n-1$ (largest possible value), then $x_{1}(t) = \mathcal{L}^{-1}[X_{1}(s)]$ $x_{2}(t) = \dot{x}_{1}(t)$ \vdots $x_{n-1}(t) = \dot{x}_{n-2}(t)$ $x_{n}(t) = \dot{x}_{n-1}(t)$ But $X_{1}(s) = \frac{U(s)}{D(s)} = \frac{U(s)}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}}$	
$s^{n}X_{1}(s) + a_{n-1}s^{n-1}X_{1}(s) + \dots + a_{2}s^{2}X_{1}(s) + a_{1}sX_{1}(s) + a_{0}X_{1}(s) = U(s)$	
$s^{n}X_{1}(s) = U(s) - a_{n-1}s^{n-1}X_{1}(s) - \dots - a_{2}s^{2}X_{1}(s) - a_{1}sX_{1}(s) - a_{0}X_{1}(s)$	
$x_{1}^{(n)}(t) = u(t) - a_{n-1}x_{1}^{(n-1)}(t) - \dots - a_{2}\ddot{x}_{1}(t) - a_{1}\dot{x}_{1}(t) - a_{0}x_{1}(t)$ $\dot{x}_{n}(t) = u(t) - a_{n-1}x_{n}(t) - \dots - a_{2}x_{3}(t) - a_{1}x_{2}(t) - a_{0}x_{1}(t)$	
EE391 Control Systems and Components	

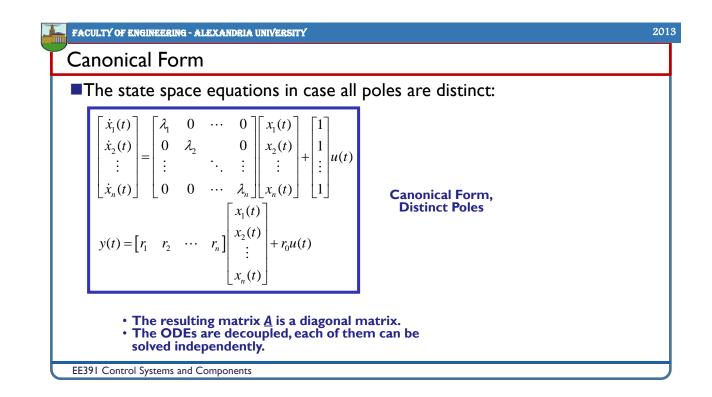


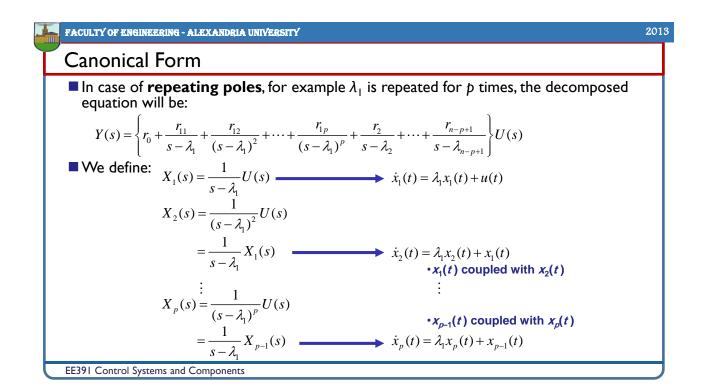
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Observer Form	
$\frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}, n = m+1$	
$s^{n}Y(s) + a_{n-1}s^{n-1}Y(s) + \dots + a_{1}sY(s) + a_{0}Y(s) = b_{n-1}s^{n-1}U(s) + b_{n-2}s^{n-2}U(s) + \dots + b_{1}sU(s) + b_{0}U(s)$	
$Y(s) + a_{n-1} \frac{Y(s)}{s} + \dots + a_1 \frac{Y(s)}{s^{n-1}} + a_0 \frac{Y(s)}{s^n} = b_{n-1} \frac{U(s)}{s} + b_{n-2} \frac{U(s)}{s^2} + \dots + b_1 \frac{U(s)}{s^{n-1}} + b_0 \frac{U(s)}{s^n}$	
$Y(s) = \frac{1}{s} \left\{ \left(b_{n-1}U(s) - a_{n-1}Y(s) \right) + \frac{1}{s} \left\{ \left(b_{n-2}U(s) - a_{n-2}Y(s) \right) + \frac{1}{s} \left(\cdots \right) + 1$	
$\frac{\frac{1}{s}\left\{b_{0}U(s)-a_{0}Y(s)\right\}}{X_{1}(s)}\left\{\cdots\right\}$	
EE391 Control Systems and Components	



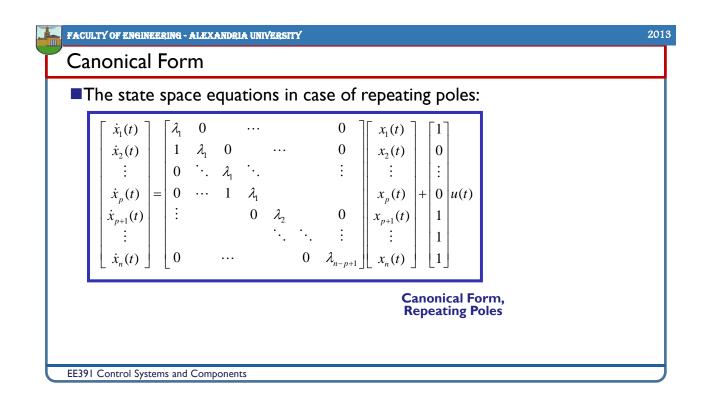
$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & -a_{0} \\ 1 & 0 & \cdots & -a_{1} \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{n-1} \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + 0u(t)$	Observer Form
---	---------------

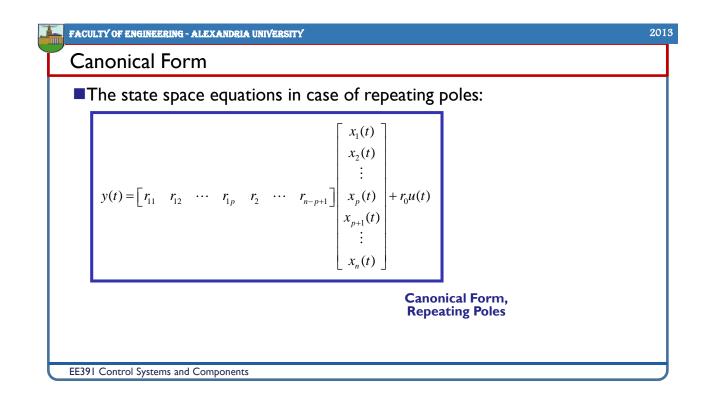


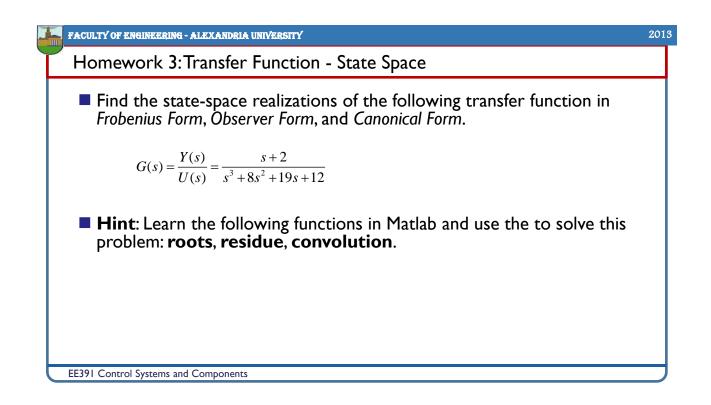


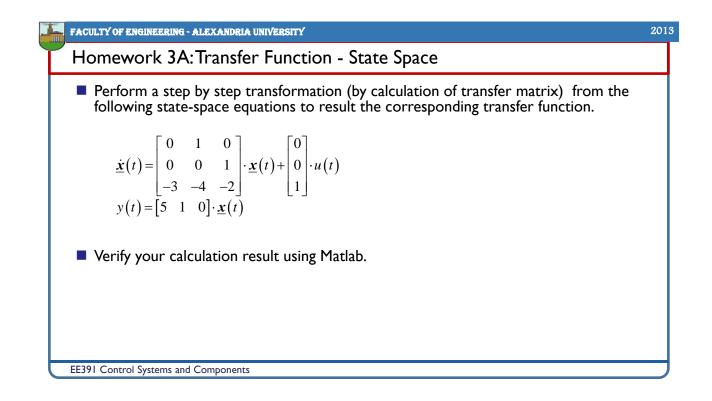


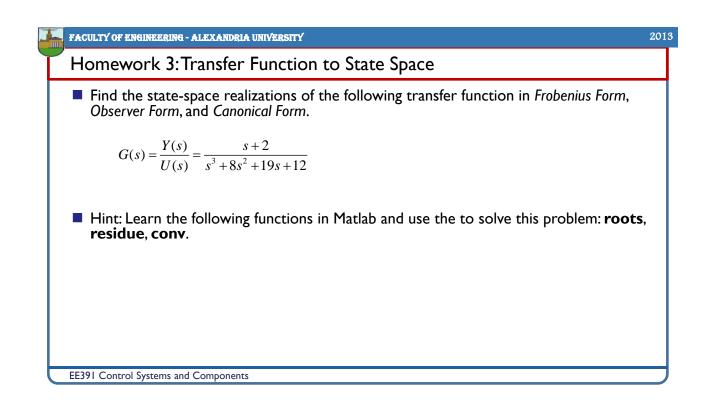
5 72	$ \dot{x}_{p+1}(t) = \lambda_2 x_{p+1}(t) + u(t) $	
$\vdots \\ X_n(s) = \frac{1}{s - \lambda_{n-p+1}} U(s)$	$\vdots \dot{x}_n(t) = \lambda_{n-p+1} x_n(t) + u(t)$	
$\mathbf{V}(\mathbf{a}) = \mathbf{r} \mathbf{V}(\mathbf{a}) + \mathbf{r} \mathbf{V}(\mathbf{a})$	→ $y(t) = r_{11}x_1(t) + r_{12}x_2(t) +$ $\cdots + r_{1p}x_p(t) + r_2x_{p+1}(t) +$ $\cdots + r_{n-p+1}x_n(t) + r_0u(t)$	



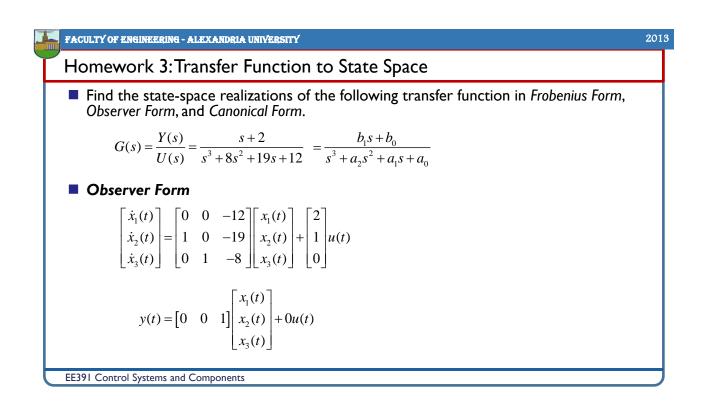




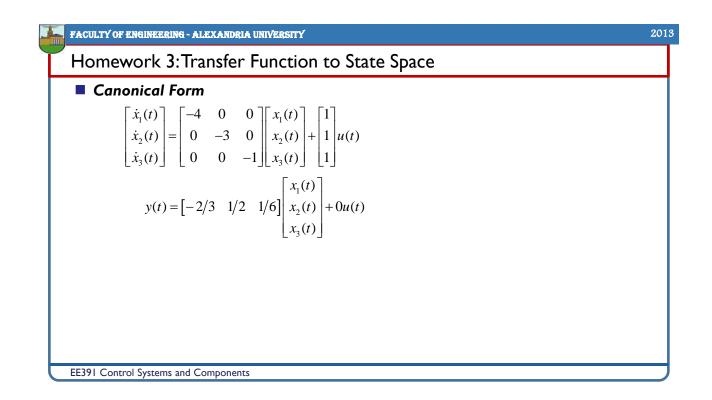


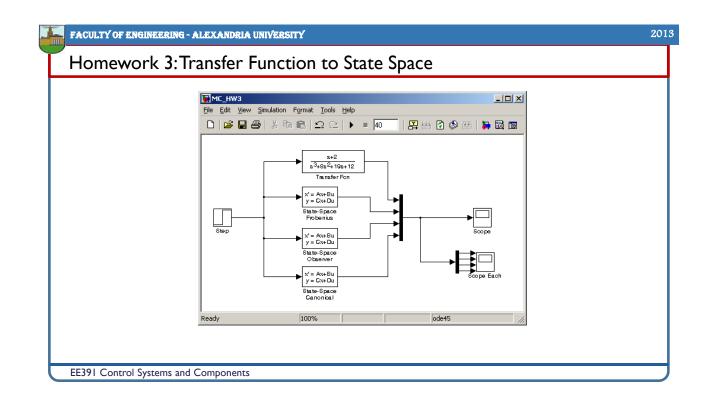


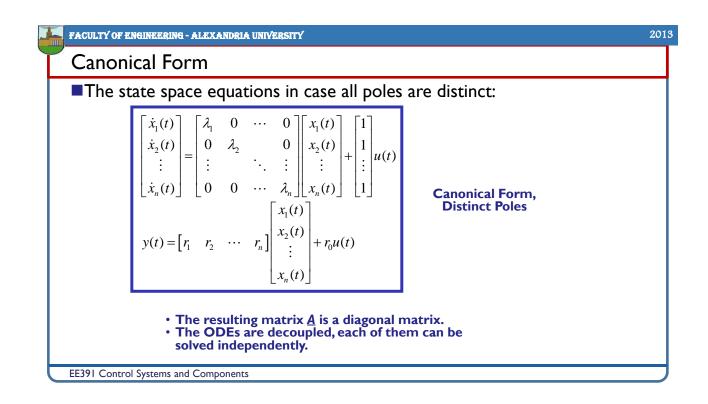
Homework 3: Transfer Function to State Space • Find the state-space realizations of the following transfer function in Frobenius Form, observer Form, and Canonical Form. $G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3+8s^2+19s+12} = \frac{b_1s+b_0}{s^3+a_2s^2+a_1s+a_0}$ • Frobenius Form $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + 0u(t)$	FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20
Observer Form, and Canonical Form. $G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3+8s^2+19s+12} = \frac{b_1s+b_0}{s^3+a_2s^2+a_1s+a_0}$ Frobenius Form $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$	Homework 3: Transfer Function to State Space	
Frobenius Form $\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$	Find the state-space realizations of the following transfer function in Frobenius Form, Observer Form, and Canonical Form.	
$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$	$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^3+8s^2+19s+12} = \frac{b_1s+b_0}{s^3+a_2s^2+a_1s+a_0}$	
	Frobenius Form	
$y(t) = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + 0u(t)$	$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$	
	$y(t) = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + 0u(t)$	
EE391 Control Systems and Components		



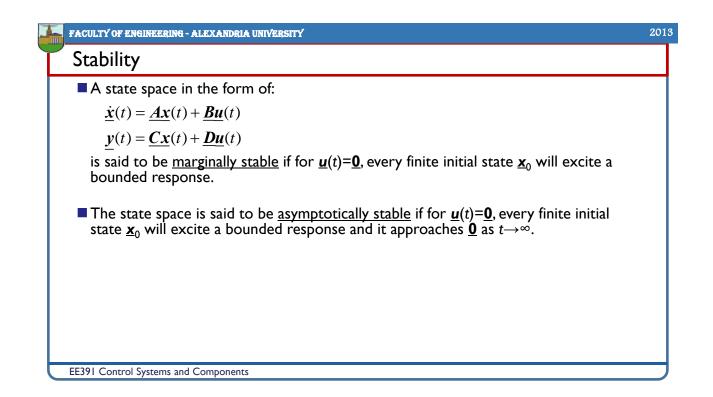
CULTY OF ENGINEERING	- ALEXANDRIA UNIVERSITY
Homework 3:	Transfer Function to State Space
	-space realizations of the following transfer function in Frobenius Form, , and Canonical Form.
$G(s) = \frac{Y(s)}{U(s)}$	$\frac{s}{s} = \frac{s+2}{s^3+8s^2+19s+12} = \frac{b_1s+b_0}{s^3+a_2s^2+a_1s+a_0}$
Using Matlab	function, [R,P,K] = residue(NUM,DEN),
$\frac{s+2}{s^3+8s^2+19s+1}$	$\frac{12}{12} = \frac{-2/3}{s+4} + \frac{1/2}{s+3} + \frac{1/6}{s+1}$
	$=\frac{r_1}{s-\lambda_1}+\frac{r_2}{s-\lambda_2}+\frac{r_3}{s-\lambda_3}$
391 Control Systems ar	d Components

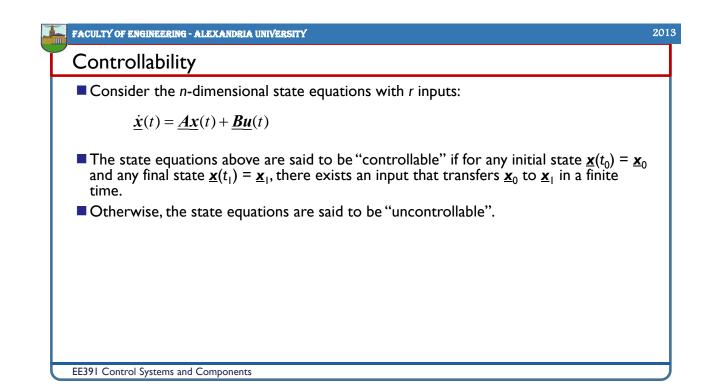


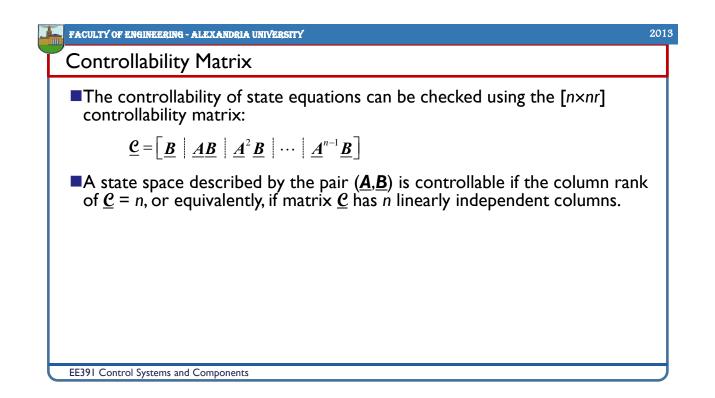


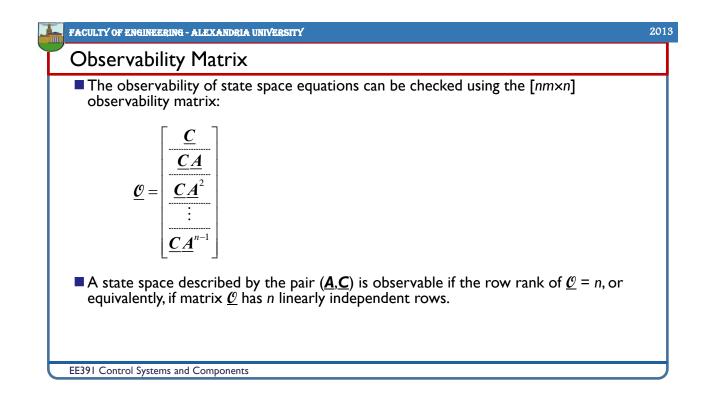


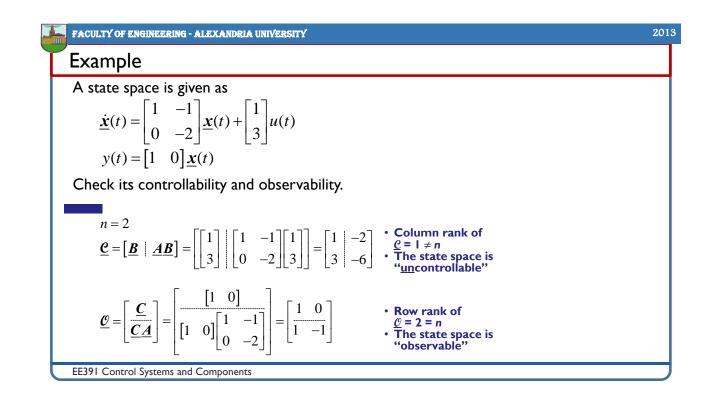
	veral ways to define the stability of a system. One of them is "BIBO but Bounded Output) Stability".
A system is s also.	aid to be BIBO stable if every bounded input excites a bounded output
Bounded inp	ut means, there exists a constant u_m such that
	$ u(t) < u_{\rm m} < \infty$, for all $t \ge 0$
Thus, a SISO and only if	system, described by a transfer function $G(s)$ is said to be BIBO stable if every pole of $G(s)$ has a negative real part.
Other way st plane of s.	rated, a SISO system $G(s)$ is stable if every pole of $G(s)$ lies on the left hal

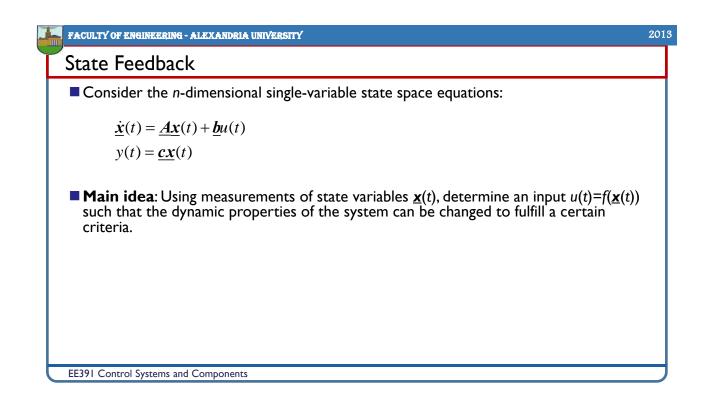


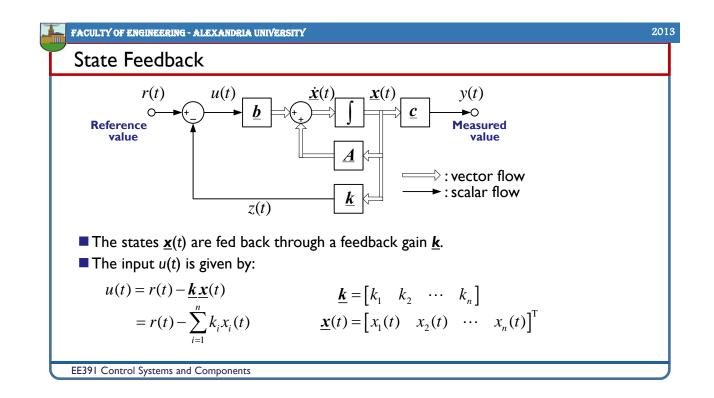


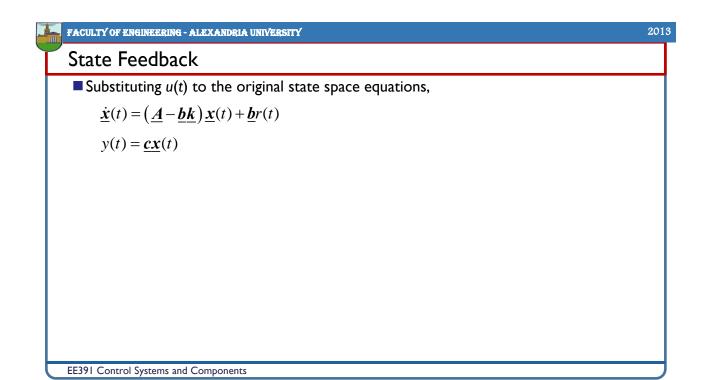


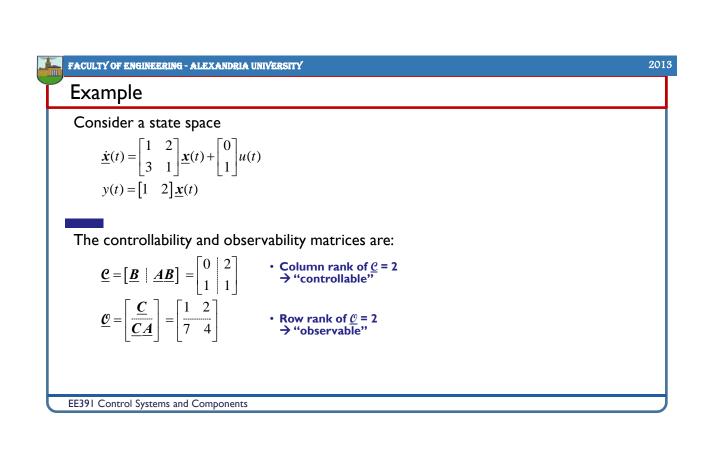


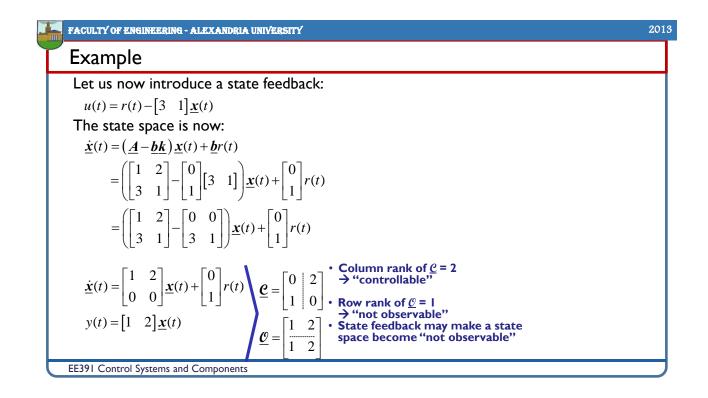




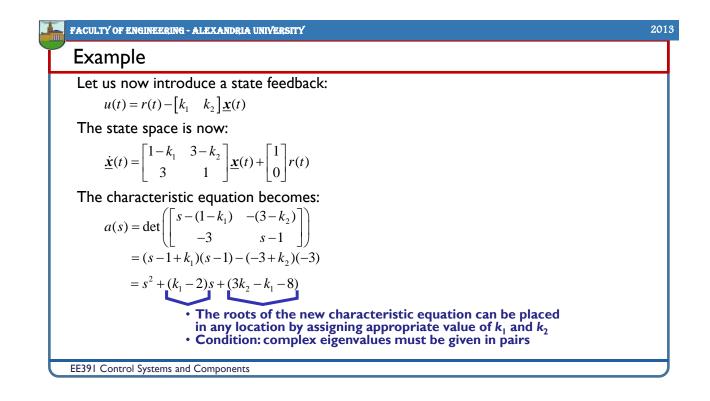




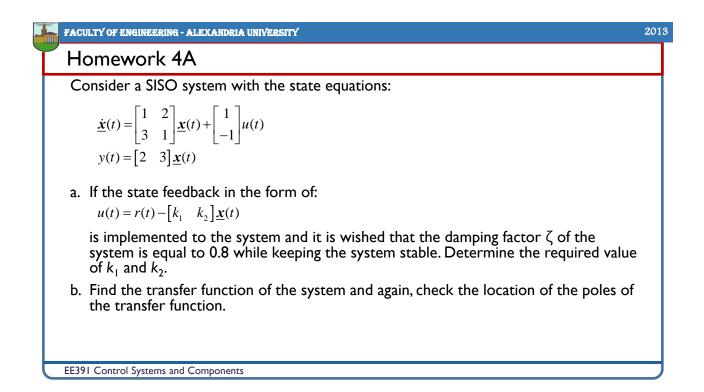




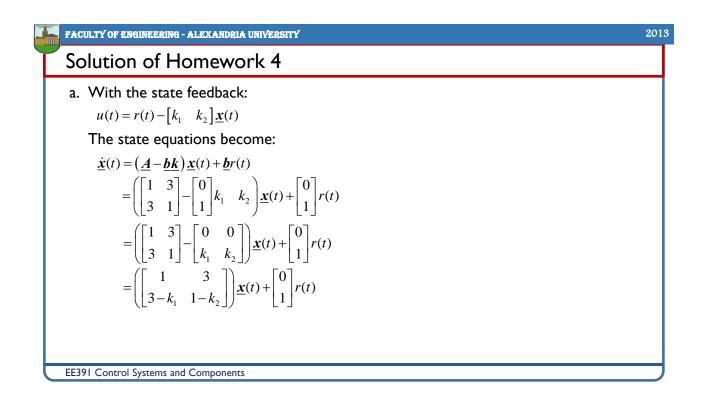
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Example	
Consider a SISO system with the following state equations:	
$\underline{\dot{\mathbf{x}}}(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$	
The transfer function of the system is: $G(s) = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + D$	
The characteristic equation, or the denominator of $G(s)$, is given by:	
$a(s) = \det(s\underline{I} - \underline{A})$	
$= \det \left(\begin{bmatrix} s-1 & -3 \\ -3 & s-1 \end{bmatrix} \right)$	
$=(s-1)^2-(-3)(-3)$	
$=s^2-2s-8$	
= $(s-4)(s+2)$ • λ = 4, positive • Unstable eigenvalues or unstable pole	
EE391 Control Systems and Components	



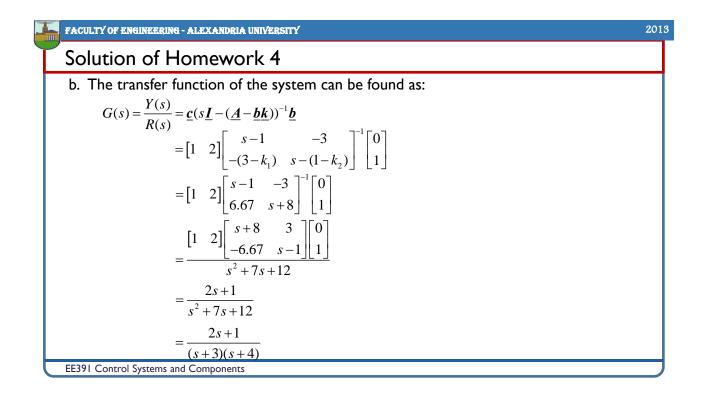
Homework 4 Again, consider a SISO system with the state equations: $\underline{\dot{x}}(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}(t)$ a. If the state feedback in the form of: $u(t) = r(t) - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \underline{x}(t)$ is implemented to the system and it is wished that the poles of the system will be -3 and -4, determine the value of k_1 and k_2 . b. Find the transfer function of the system and again, check the location of the poles of the transfer function.	FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20
$\underline{\dot{x}}(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}(t)$ a. If the state feedback in the form of: $u(t) = r(t) - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \underline{x}(t)$ is implemented to the system and it is wished that the poles of the system will be -3 and -4, determine the value of k_1 and k_2 . b. Find the transfer function of the system and again, check the location	Homework 4	
 y(t) = [1 2] <u>x</u>(t) a. If the state feedback in the form of: u(t) = r(t) - [k₁ k₂] <u>x</u>(t) is implemented to the system and it is wished that the poles of the system will be -3 and -4, determine the value of k₁ and k₂. b. Find the transfer function of the system and again, check the location 	Again, consider a SISO system with the state equations:	
 a. If the state feedback in the form of: u(t) = r(t) - [k₁ k₂]<u>x(t)</u> is implemented to the system and it is wished that the poles of the system will be -3 and -4, determine the value of k₁ and k₂. b. Find the transfer function of the system and again, check the location 		
 u(t) = r(t) - [k₁ k₂]<u>x(t)</u> is implemented to the system and it is wished that the poles of the system will be -3 and -4, determine the value of k₁ and k₂. b. Find the transfer function of the system and again, check the location 		
system will be –3 and –4, determine the value of k_1 and k_2 . b. Find the transfer function of the system and again, check the location		
b. Find the transfer function of the system and again, check the location of the poles of the transfer function.	is implemented to the system and it is wished that the poles of the system will be -3 and -4 , determine the value of k_1 and k_2 .	
	b. Find the transfer function of the system and again, check the location of the poles of the transfer function.	
	b. Find the transfer function of the system and again, check the location	



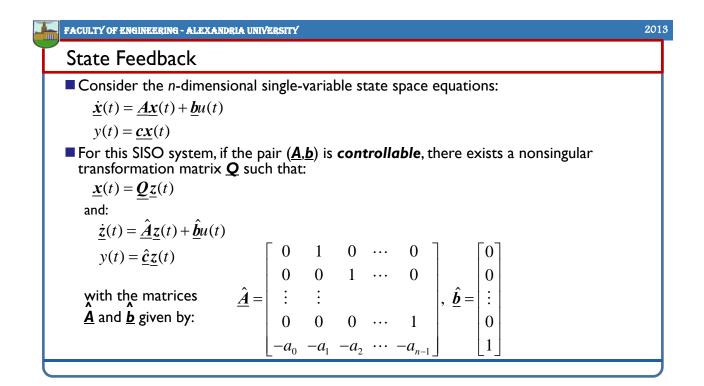
A	gain, consider a SISO system with the state equations:
- 1	$\underline{\dot{x}}(t) = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$
	$y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}(t)$
a.	If the state feedback in the form of:
	$u(t) = r(t) - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \underline{\mathbf{x}}(t)$
	is implemented to the system and it is wished that the poles of the system will be -3 and -4 , determine the value of k_1 and k_2 .
b.	Find the transfer function of the system and again, check the location of the poles of the transfer function.



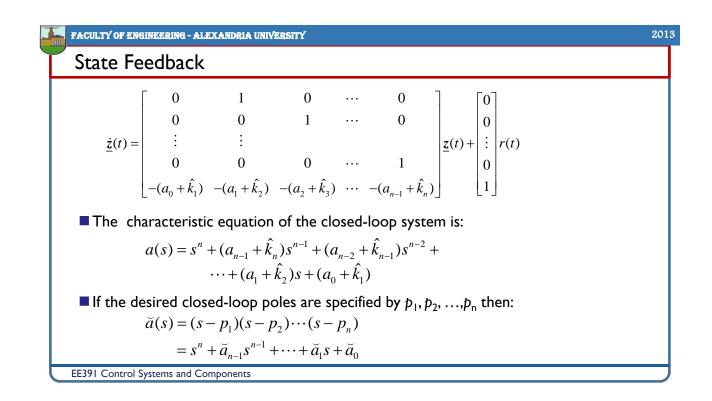
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework 4	
The characteristic equation is:	
$a(s) = \det(s\underline{I} - (\underline{A} - \underline{b}\underline{k}))$	
$= \det \left(\begin{bmatrix} s-1 & -3 \\ -(3-k_1) & s-(1-k_2) \end{bmatrix} \right)$	
$= (s-1)(s-1+k_2) - (-3)(-(3-k_1))$	
$= s^{2} + (k_{2} - 2)s + (3k_{1} - k_{2} - 8)$	
The wished poles are –3 and –4, corresponding with the wished characteristic equation of:	
$\ddot{a}(s) = (s+3)(s+4)$ = $s^2 + 7s + 12$	
Comparing $a(s)$ and $a(s)$, we obtain:	
$(k_2 - 2) \equiv 7 \qquad \Longrightarrow k_2 = 9$	
$(3k_1 - k_2 - 8) \equiv 12 \Rightarrow k_1 = \frac{1}{29}/3 = \underline{9.67}$	
EE391 Control Systems and Components	



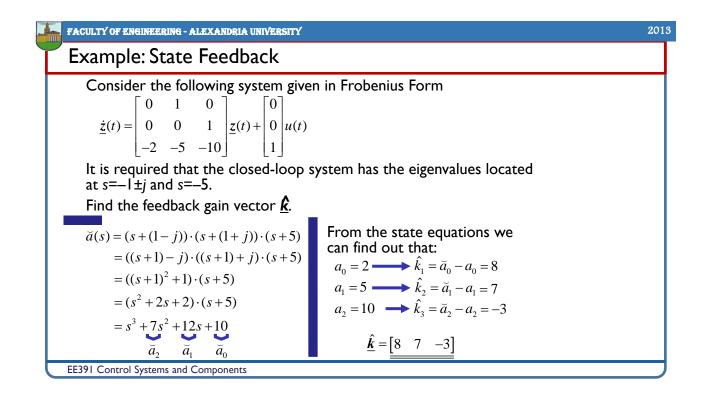
	Homework 4	
Using Matla	b, the following function can be utilized:	
	→MATLAB	
	File Edit Debug Desktop Window Help Image: Second Sec	
	Shortcuts Z How to Add Z What's New	
	>> A=[1 3;-6.6667 -8]; B=[0;1]; C=[1 2]; D=0; >> [NUM,DEN]=ss2tf(A,B,C,D)	
	NUM =	
	0 2.0000 1.0000	
	DEN =	
	1.0000 7.0000 12.0001	
	>>>	



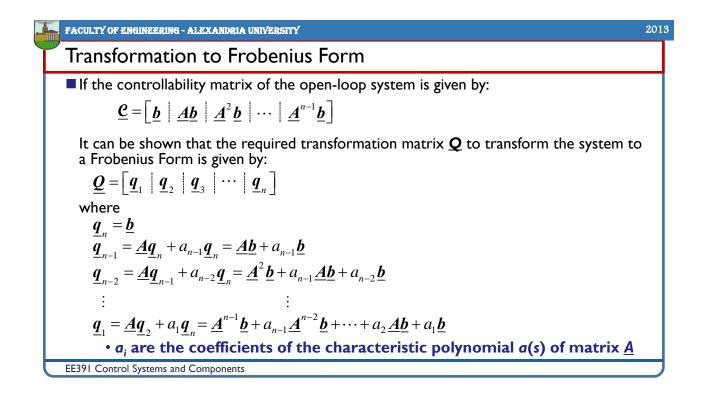
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	201
State Feedback	
The coefficients a_i are the coefficients of the characteristic equation of <u>A</u> , that is:	
$a(s) = \det(s\underline{I} - \underline{A}) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$	
The state feedback for the transformed system is given by: $u(t) = r(t) - \underline{\hat{k}}\underline{z}(t)$	
with: $\underline{\hat{k}} = \begin{bmatrix} \hat{k}_1 & \hat{k}_2 & \cdots & \hat{k}_n \end{bmatrix}$	
Substituting $u(t)$ into the transformed system:	
$\underline{\dot{z}}(t) = \underline{\hat{A}}\underline{z}(t) + \underline{\hat{b}}(r(t) - \underline{\hat{k}}\underline{z}(t))$	
$\underline{\dot{z}}(t) = \left(\underline{\hat{A}} - \underline{\hat{b}}\underline{\hat{k}}\right)\underline{z}(t) + \underline{\hat{b}}r(t)$	
EE391 Control Systems and Components	

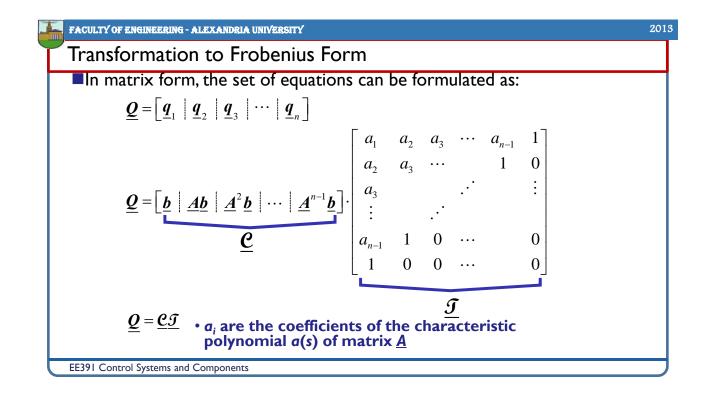


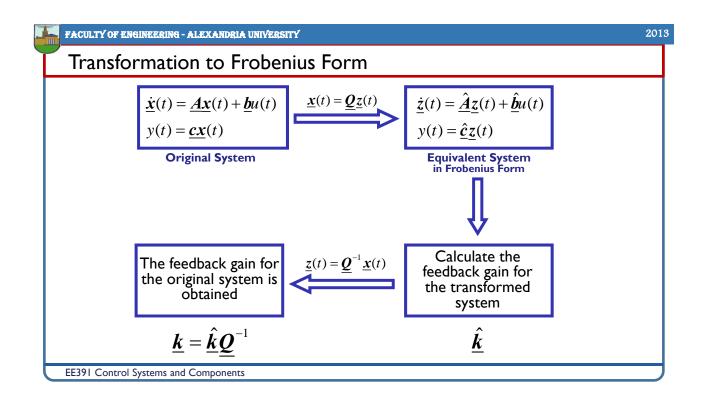
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
State Feedback	
By comparing the coefficients of the previous two polynomials, it i that in order to obtain the desired characteristic equation, the fee gain must satisfy:	s clear, dback
$a_0 + \hat{k}_1 = \breve{a}_0 \longrightarrow \hat{k}_1 = \breve{a}_0 - a_0$	
$a_1 + \hat{k}_2 = \breve{a}_1 \qquad \qquad$	
$a_{n-1} + \hat{k}_n = \breve{a}_{n-1} \longrightarrow \hat{k}_n = \breve{a}_{n-1} - a_{n-1}$	
EE391 Control Systems and Components	



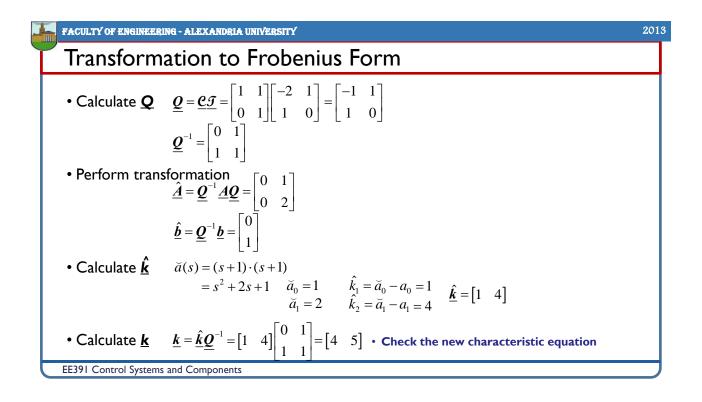
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20
Transformation to Frobenius Form	
 By performing the procedure presented previously, we are be able to place the poles of a controllable SISO system in any location so easily. The condition: The system is written in Frobenius Form. 	
In order to be able to apply this procedure to any controllable SISO systems easily, we need to transform the systems to Frobenius Form first	t.
■That means, we need to know the nonsingular transformation matrix Q .	
EE391 Control Systems and Components	





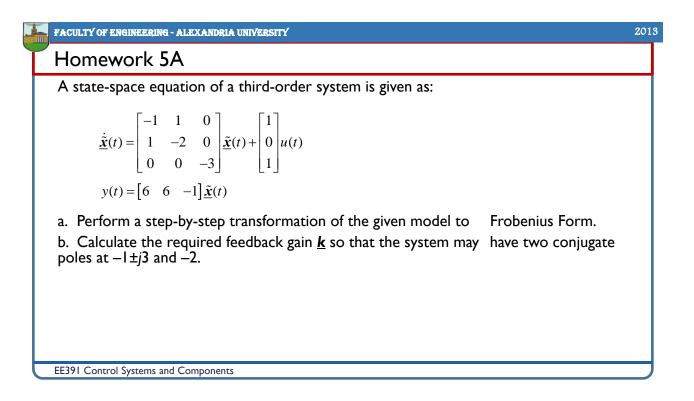


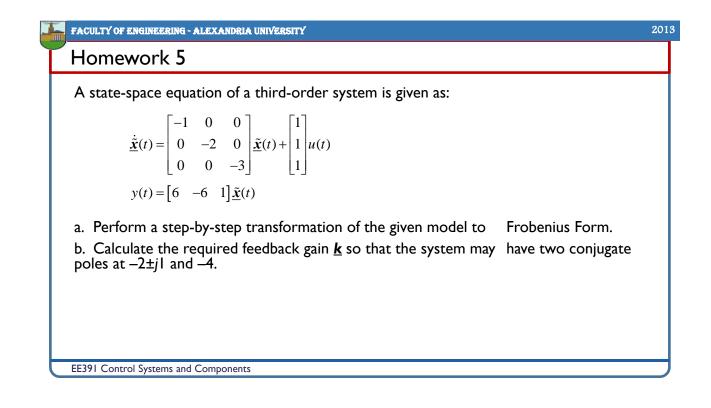
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Example: Transformation	
Two poles at -1 are wished for the following system:	
$\underline{\dot{\mathbf{x}}}(t) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \underline{\mathbf{x}}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$	
Calculate the required <u>k</u> .	
• Find the characteristic $a(s) = \det(s\underline{I} - \underline{A}) = \det\left(\begin{bmatrix} s-1 & -1 \\ -1 & s-1 \end{bmatrix}\right)$ = $(s-1)(s-1) - (-1)(-1)$ = $s(s-2)$ • unstable	
$= s^2 - 2s \qquad a_0 = 0$ $\begin{bmatrix} 1 & 1 \end{bmatrix} \qquad a_1 = -2$	
• Calculate $\underline{\mathcal{C}} \underline{\mathcal{I}}$ $\underline{\mathcal{C}} = [\underline{b} \mid \underline{A}\underline{b}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $a_1^{\circ} = -2$	
$\underline{\mathcal{I}} = \begin{bmatrix} a_1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$	
EE391 Control Systems and Components	

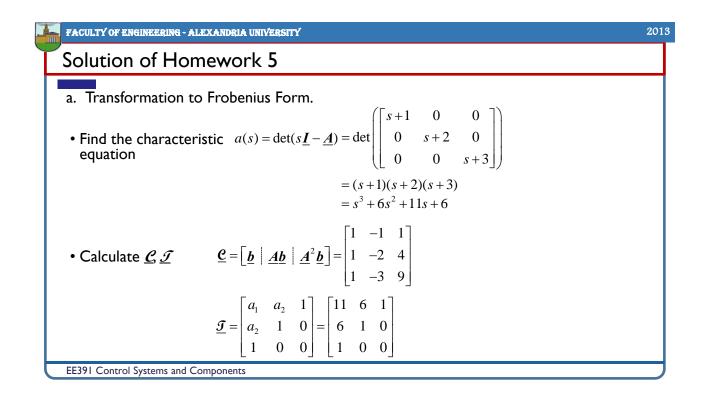


A state	e-space equation of a third-order system is given as:
	$\dot{\underline{x}}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \underline{\tilde{x}}(t) + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 6 & -6 & 1 \end{bmatrix} \underline{\tilde{x}}(t)$
	orm a step-by-step transformation of the given model to penius Form.
	culate the required feedback gain \underline{k} so that the system may have two ate poles at $-2\pm i1$ and -4 .

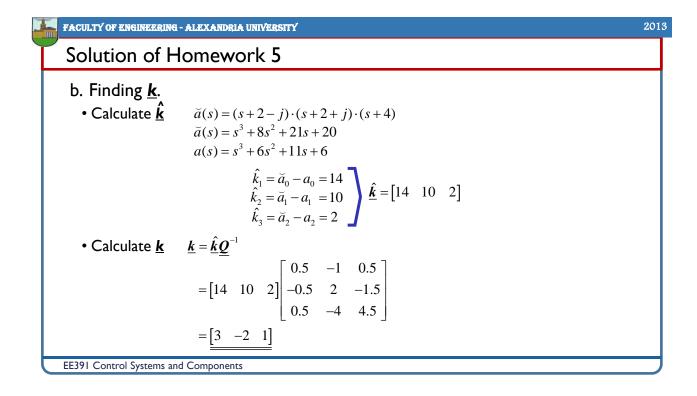
EE391 Control Systems and Components



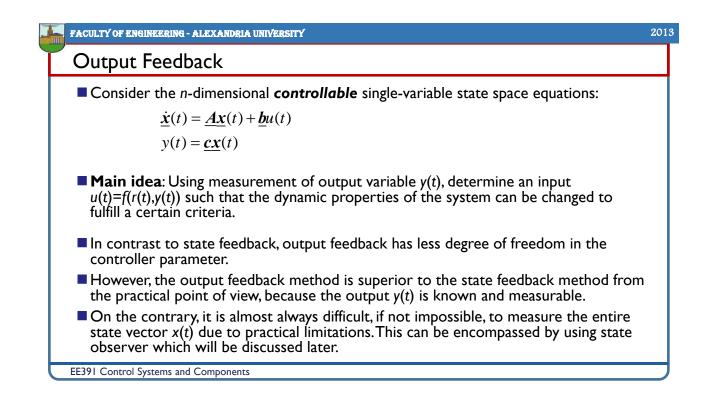


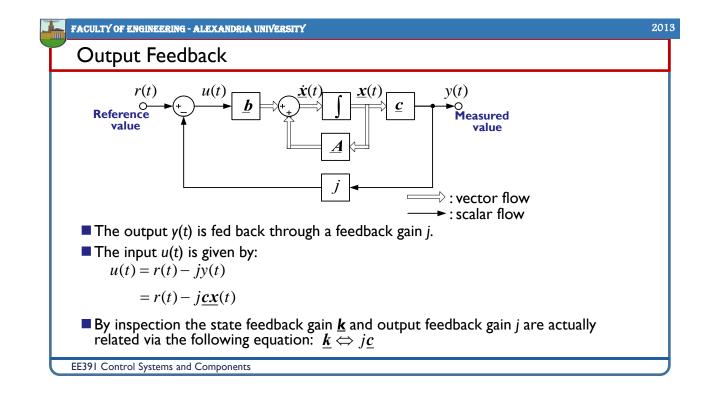


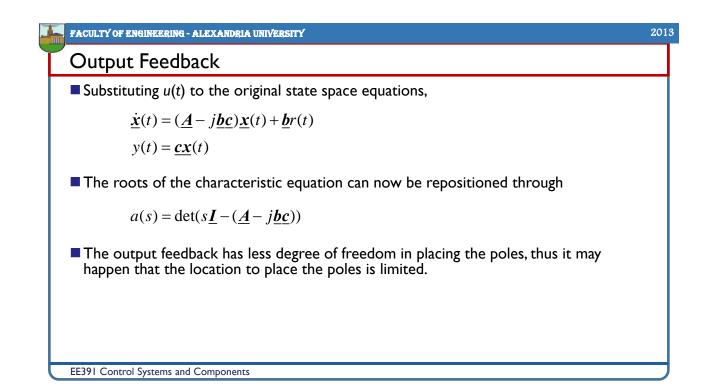
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework 5	
• Calculate \mathbf{Q} $\underline{\mathbf{Q}} = \underline{\mathbf{C}}\underline{\mathbf{J}} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & -3 & 9 \end{bmatrix} \begin{bmatrix} 11 & 6 & 1 \\ 6 & 1 & \theta \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6 & 5 & 1 \\ 3 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix}$	
$\underline{\boldsymbol{\mathcal{Q}}}^{-1} = \begin{bmatrix} 0.5 & -1 & 0.5 \\ -0.5 & 2 & -1.5 \\ 0.5 & -4 & 4.5 \end{bmatrix}$	
• Perform transformation $ \hat{\underline{A}} = \underline{\underline{Q}}^{-1} \underline{\underline{A}} \underline{\underline{Q}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} $	
$\hat{\underline{\boldsymbol{b}}} = \underline{\boldsymbol{Q}}^{-1}\underline{\boldsymbol{b}} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \text{Transformation accomplished}$	
EE391 Control Systems and Components	

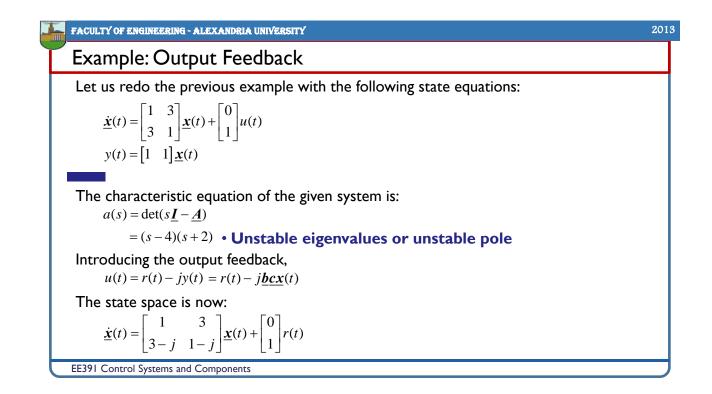


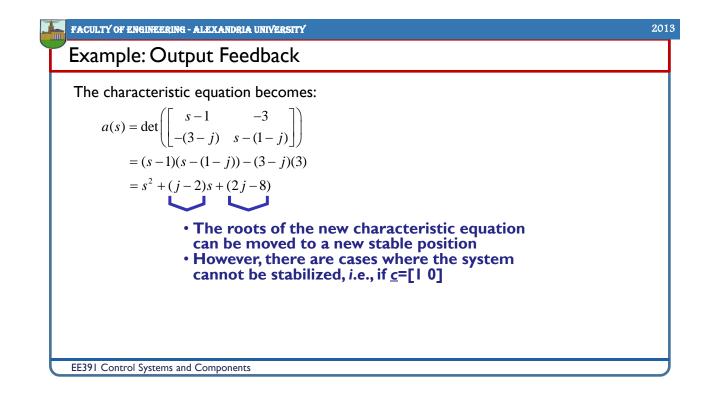
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework 5	
c. Direct calculation of <u>k</u> without transformation. $a(s) = det(s\underline{I} - (\underline{A} - \underline{b}\underline{k}))$	
$= \det \left(s \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \right) \right)$	
$= \det \left(s \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -(1+k_1) & -k_2 & -k_3 \\ -k_1 & -(2+k_2) & -k_3 \\ -k_1 & -k_2 & -(3+k_3) \end{bmatrix} \right)$	
$= \det \left(\begin{bmatrix} s + (1+k_1) & k_2 & k_3 \\ k_1 & s + (2+k_2) & k_3 \\ k_1 & k_2 & s + (3+k_3) \end{bmatrix} \right) \cdot \text{Complicated to be done}$	
EE391 Control Systems and Components	

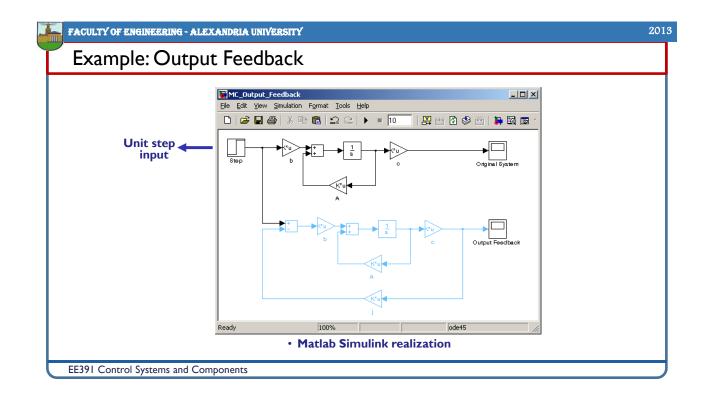




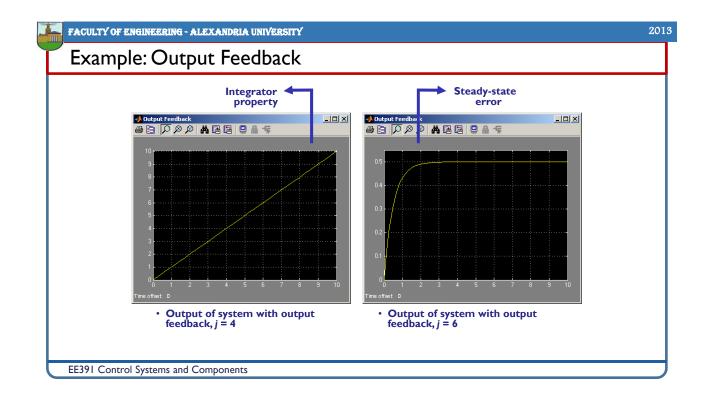


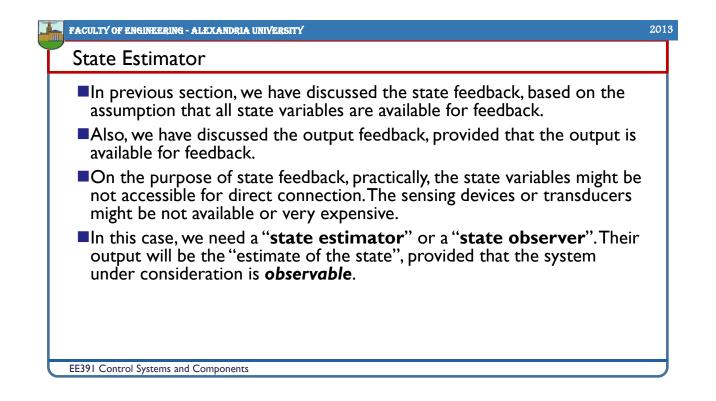




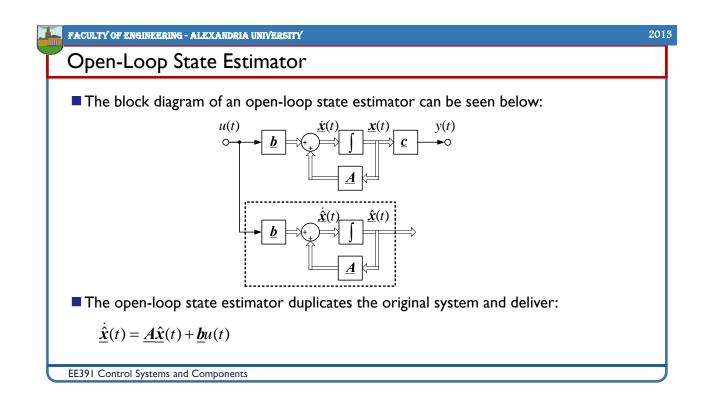


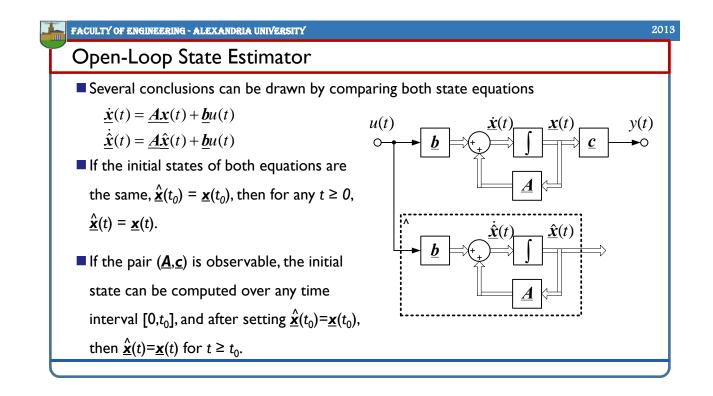


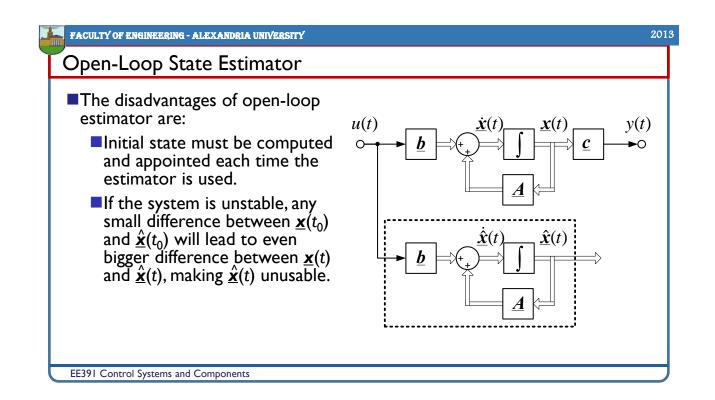


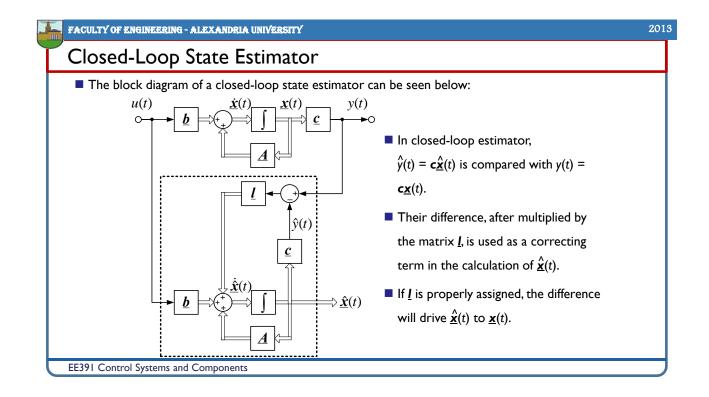


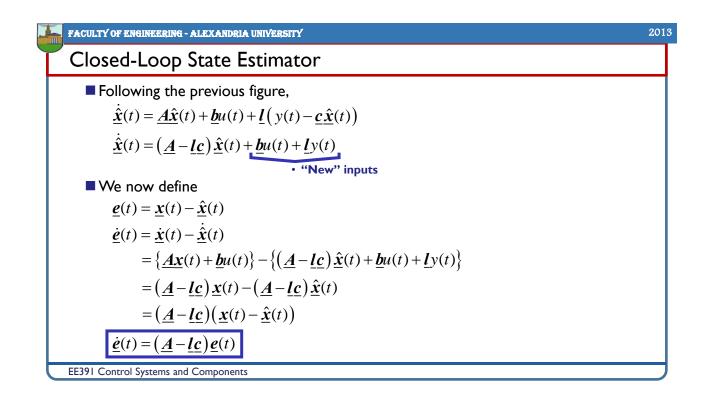
State Estimator	
Consider the <i>n</i> -dimensional single-variable state space equations:	
$\dot{\mathbf{x}}(t) = \underline{A}\mathbf{x}(t) + \underline{b}u(t)$	
$y(t) = \underline{cx}(t)$	
where \underline{A} , \underline{b} , \underline{c} are given, $u(t)$ and $y(t)$ are available, and the states $\underline{x}(t)$ are not available.	
Problem : How to estimate $\underline{\mathbf{x}}(t)$?	

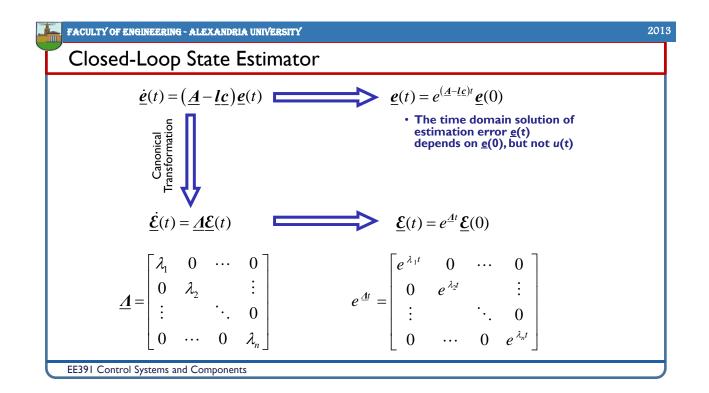


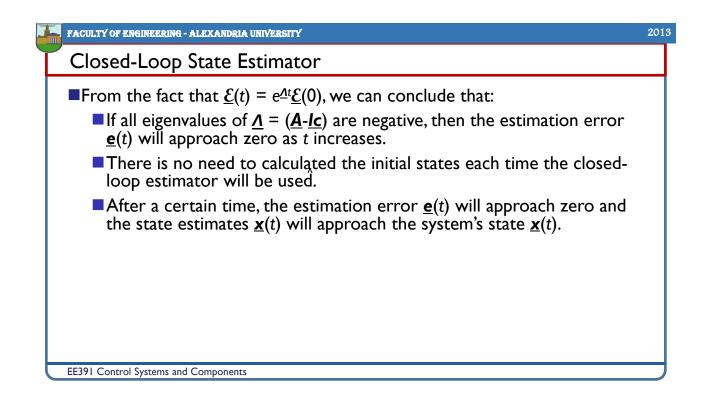


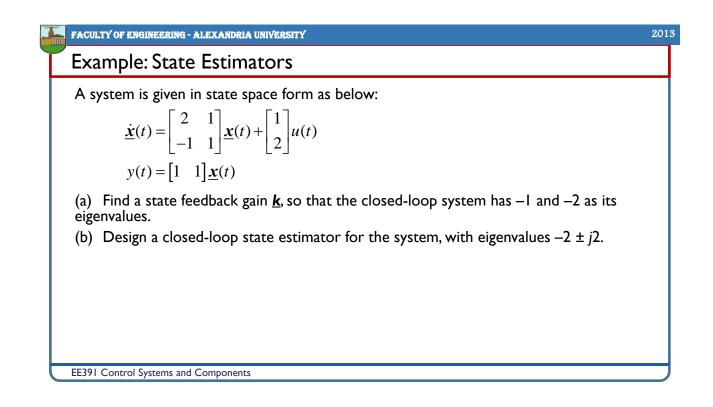


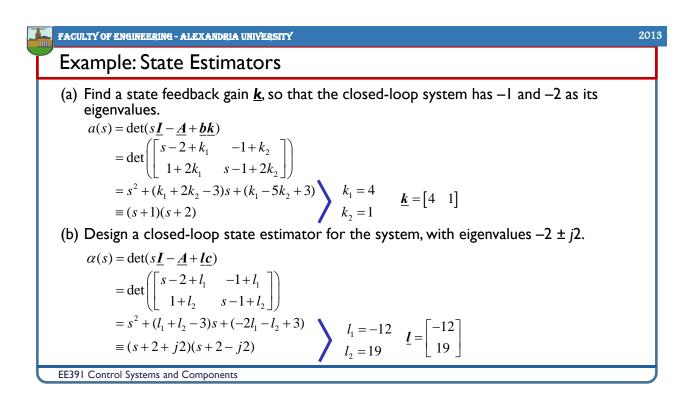


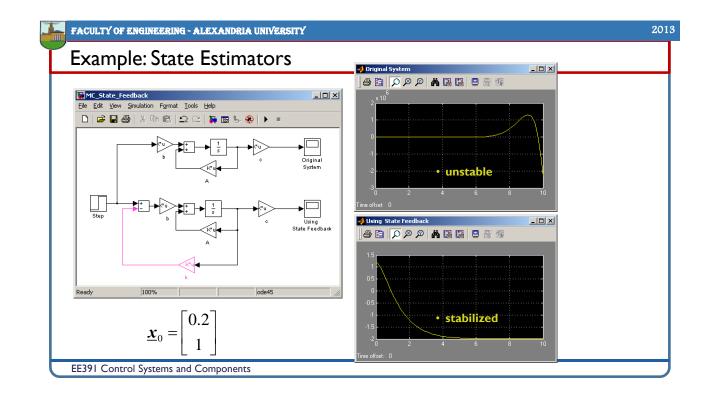


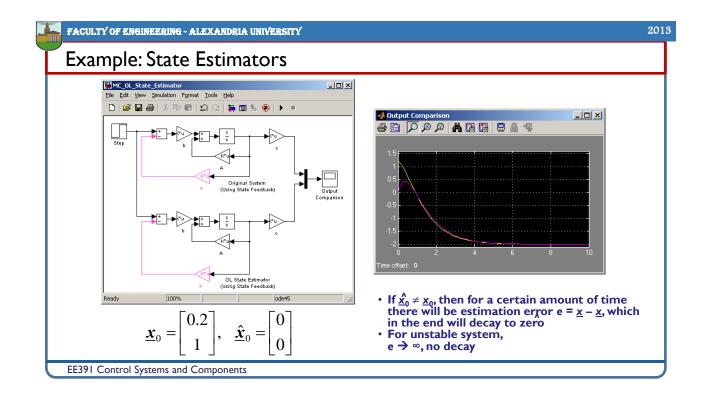


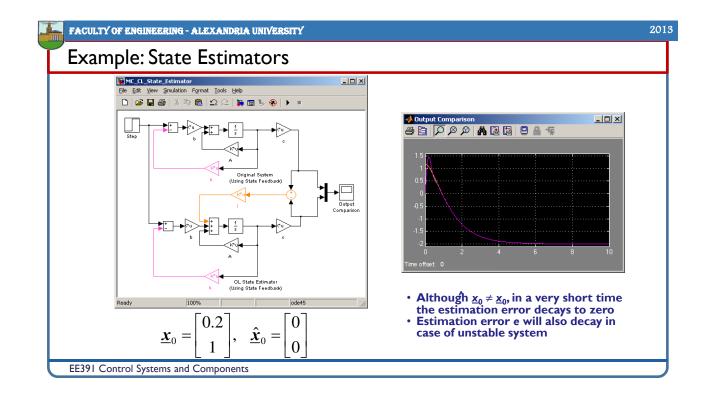




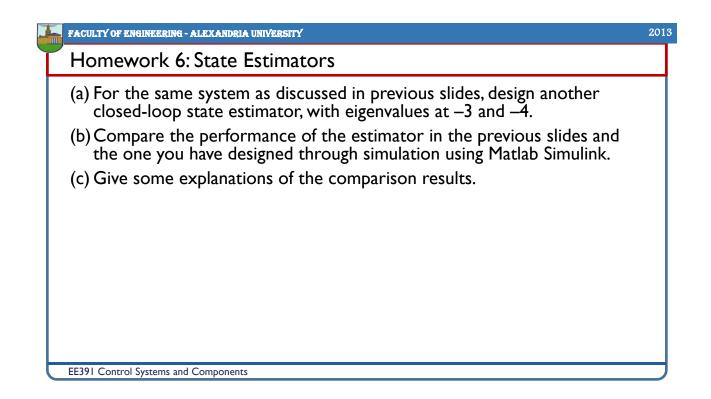








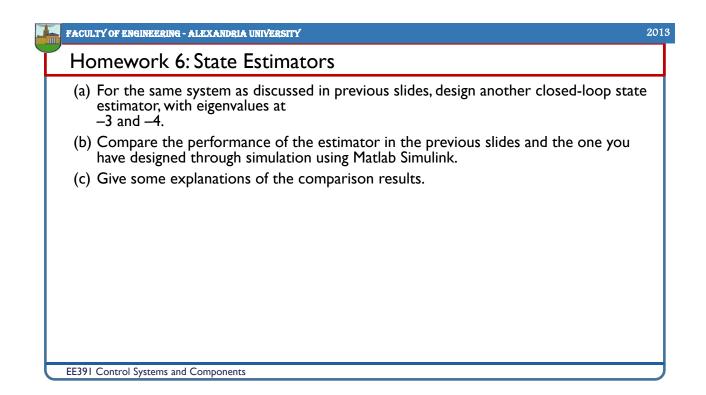
2013

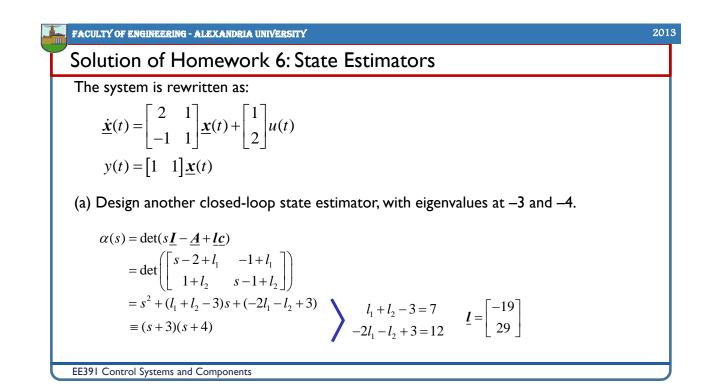


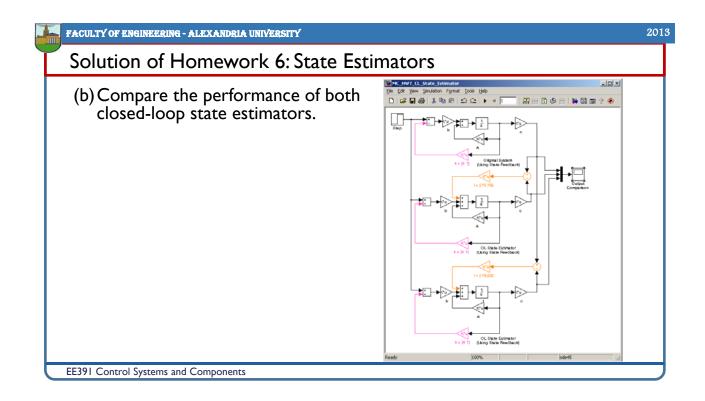
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

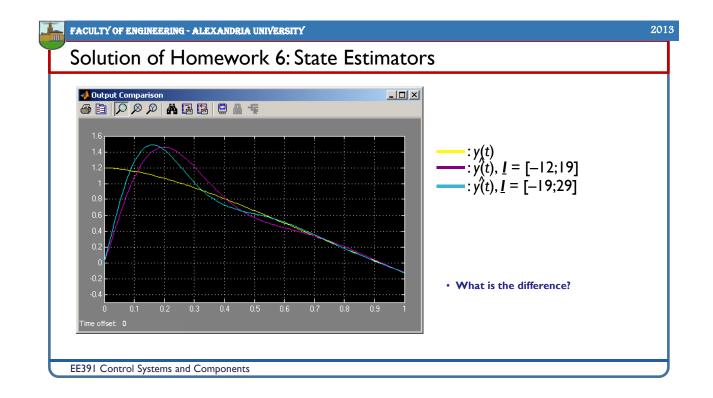
Homework 6A: State Estimators

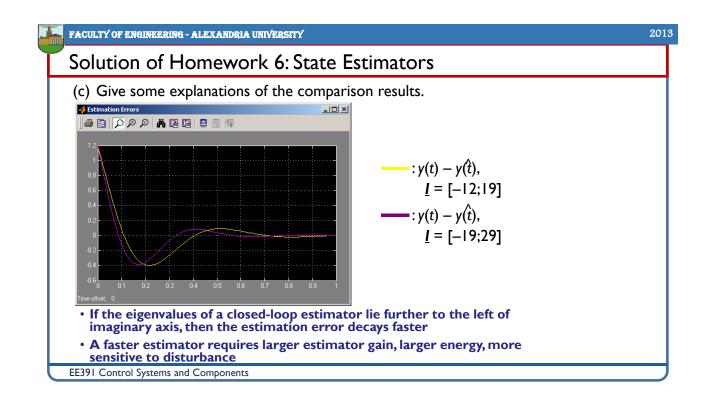
- (a) For the same system as discussed in previous slides, design another closed-loop state estimator, with eigenvalues at $-0.5 \pm j$ I. This means, the eigenvalues of the estimator is to the right of those of the system, which is -1 and -2.
- (b) Compare the performance of the estimator in the previous slides and the one you have designed through simulation using Matlab Simulink.
- (c) Give some explanations of the comparison results.



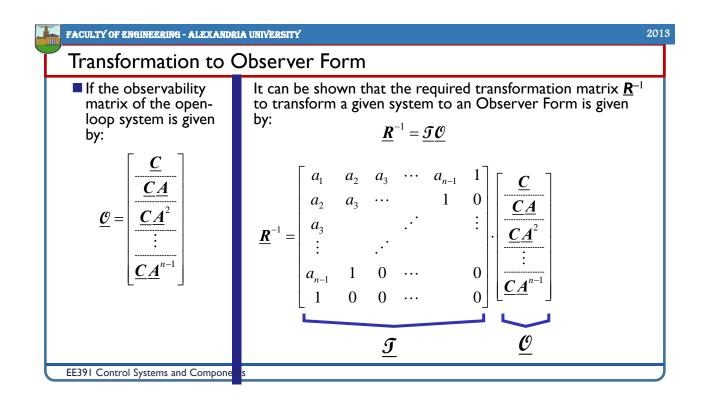




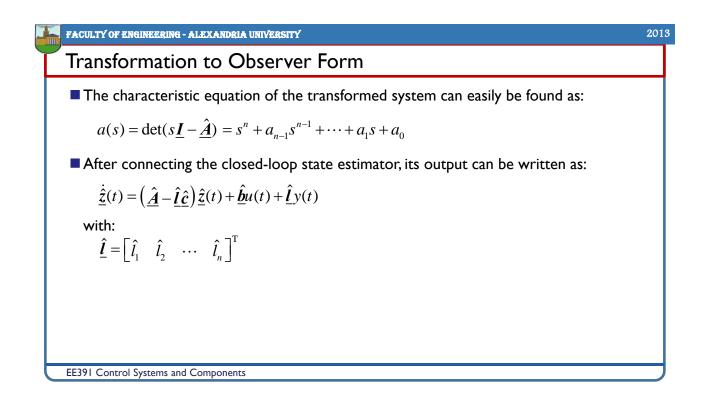




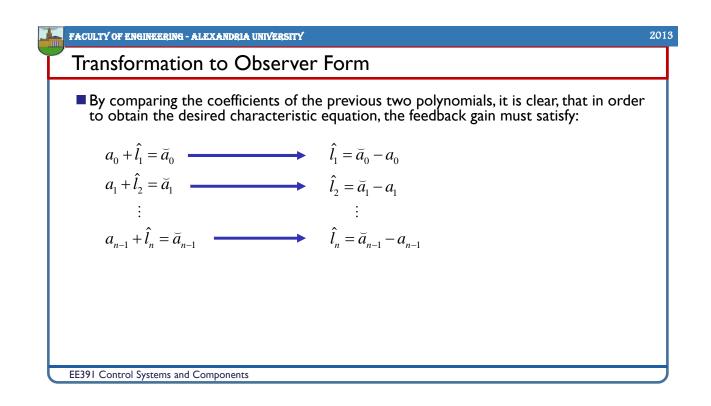
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	
Transformation to Observer Form	
The calculation of state estimator gain <u>l</u> can only be done for observable SISO systems.	
The procedure presented previously can be performed easily if the system is written Observer Form.	in
The original system needs to be transformed using a nonsingular transformation matrix <u>R</u> .	

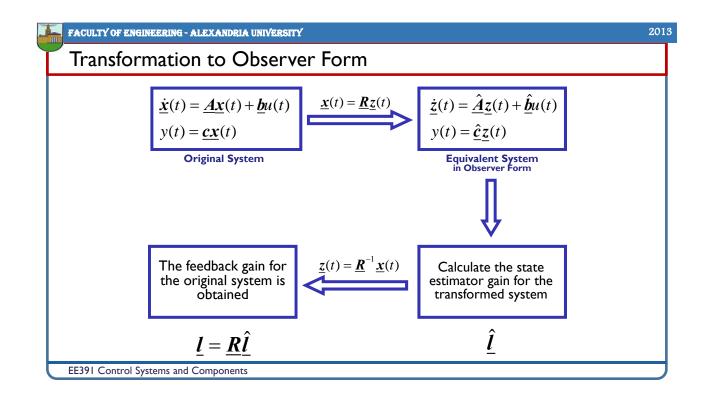


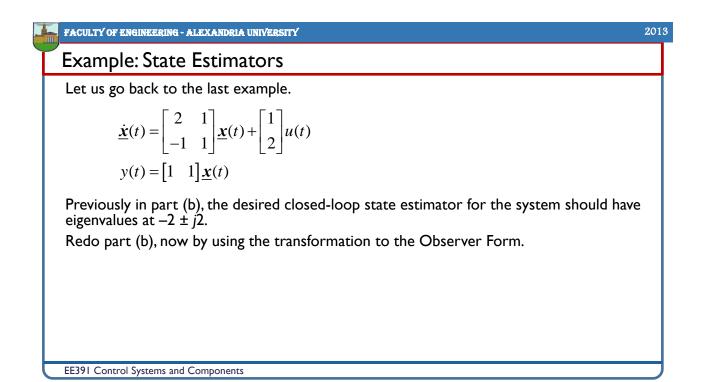
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Transformation to Observer Form	
■ With the pair (<u>A,c</u>) being observable, the transformation follows the equation:	
$\underline{x}(t) = \underline{R}\underline{z}(t) \qquad \hat{\underline{A}} \qquad \hat{\underline{b}} \\ \text{so that:} \qquad \begin{bmatrix} \dot{z}_{1}(t) \\ \dot{z}_{2}(t) \\ \vdots \\ \dot{z}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & -a_{0} \\ 1 & 0 & \cdots & -a_{1} \\ \vdots & \ddots & & \vdots \\ 0 & 0 & 1 & -a_{n-1} \end{bmatrix} \begin{bmatrix} z_{1}(t) \\ z_{2}(t) \\ \vdots \\ z_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{n-1} \end{bmatrix} u(t)$	
$ \underbrace{\hat{c}}_{y(t) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}} \begin{bmatrix} z_1(t) \\ z_2(t) \\ \vdots \\ z_n(t) \end{bmatrix} \qquad $	
EE391 Control Systems and Components	



FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Transformation to Observer Form	
Further matrix operations yield:	
$\dot{\underline{z}}(t) = \begin{bmatrix} 0 & 0 & \cdots & -(a_0 + \hat{l}_1) \\ 1 & 0 & \cdots & -(a_1 + \hat{l}_2) \\ \vdots & \ddots & & \vdots \\ 0 & 0 & 1 & -(a_{n-1} + \hat{l}_n) \end{bmatrix} \dot{\underline{z}}(t) + \dot{\underline{b}}u(t) + \dot{\underline{l}}y(t)$	
The characteristic equation of the closed-loop estimator is now: $a(s) = s^{n} + (a_{n-1} + \hat{l}_{n})s^{n-1} + (a_{n-2} + \hat{l}_{n-1})s^{n-2} + \dots + (a_{1} + \hat{l}_{2})s + (a_{0} + \hat{l}_{1})$ If the desired poles of the closed-loop estimator are specified by $p_{1}, p_{2},, p_{n}$ then:	
$\vec{a}(s) = (s - p_1)(s - p_2) \cdots (s - p_n)$ $= s^n + \vec{a}_{n-1}s^{n-1} + \cdots + \vec{a}_1s + \vec{a}_0$ EE391 Control Systems and Components	



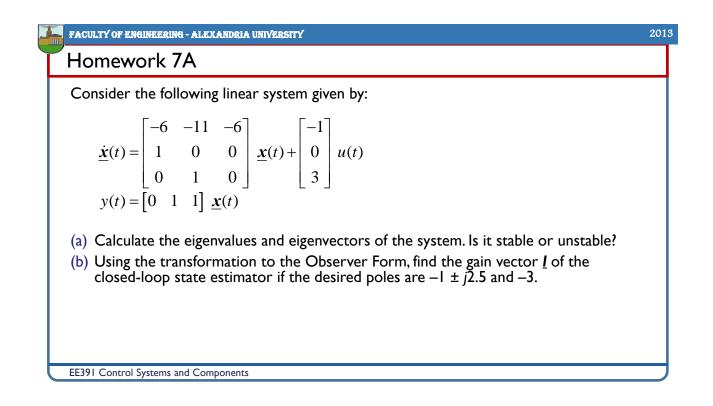


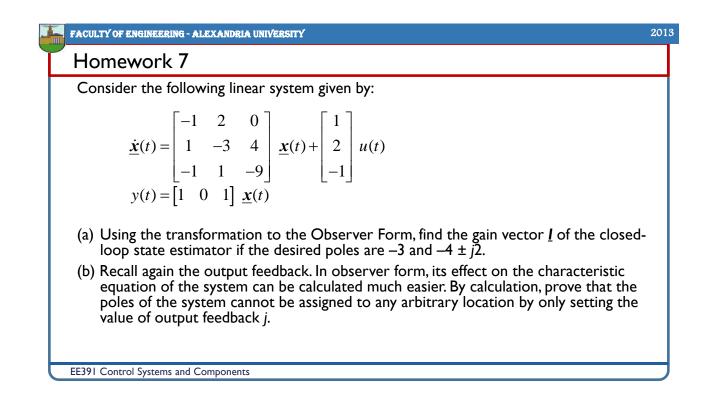


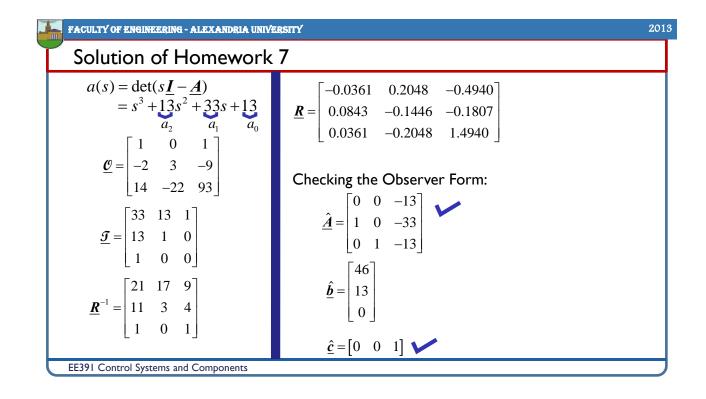
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY		2013
Example: State Estimators		
$a(s) = \det(s\underline{I} - \underline{A})$ $= \det\left(\begin{bmatrix} s-2 & -1 \\ 1 & s-1 \end{bmatrix}\right)$ $= s^{2} - 3s + 3$ $\underline{\mathcal{O}} = \begin{bmatrix} \underline{C} \\ \underline{C}\underline{A} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $\underline{\mathcal{G}} = \begin{bmatrix} a_{1} & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ $\underline{\mathcal{G}} = \begin{bmatrix} a_{1} & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix}$	$\underline{R} = \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix}$ Checking the Observer Form, $\underline{\hat{A}} = \underline{R}^{-1} \underline{A} \underline{R} = \begin{bmatrix} 0 & -3 \\ 1 & 3 \end{bmatrix}$ $\underline{\hat{c}} = \underline{c} \underline{R} = \begin{bmatrix} 0 & 1 \end{bmatrix}$	
EE391 Control Systems and Components		

FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Example: State Estimators	
The desired characteristic equation of the state observer is: $\vec{a}(s) = (s+2+j2)(s+2-j2)$ $= s^{2} + 4s + 8$ $\vec{a}_{1} = \vec{a}_{0} - a_{0} = 8 - 3 = 5$ $\hat{l}_{2} = \vec{a}_{1} - a_{1} = 4 - (-3) = 7$ $\hat{l} = \begin{bmatrix} 5\\7 \end{bmatrix}$ For the transformed system $\underline{l} = \underline{R}\hat{l} = \begin{bmatrix} -12\\19 \end{bmatrix}$ For the original system	Now, if the desired poles are -3 and -4, we can repeat the calculation as follows: $\vec{a}(s) = (s+3)(s+4)$ $= s^2 + 7s + 12$ $\vec{a}_1 = \vec{a}_0 - a_0 = 12 - 3 = 9$ $\hat{l}_2 = \vec{a}_1 - a_1 = 7 - (-3) = 10$ $\hat{l} = \begin{bmatrix} 9\\10 \end{bmatrix}$ For the transformed system $\vec{l} = \underline{R}\hat{l} = \begin{bmatrix} -19\\29 \end{bmatrix}$ For the original system
EE391 Control Systems and Components	

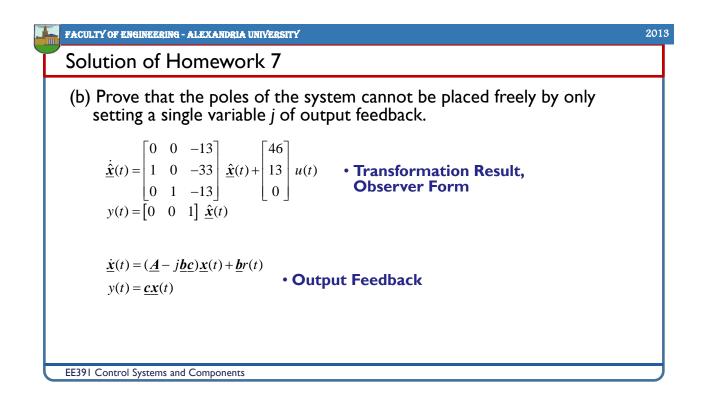
Homework 7 Consider the following linear system given by: $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$
$\begin{bmatrix} -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
$ \underline{\dot{x}}(t) = \begin{bmatrix} -1 & 2 & 0 \\ 1 & -3 & 4 \\ -1 & 1 & -9 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} u(t) $ $ y(t) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \underline{x}(t) $
(a) Using the transformation to the Observer Form, find the gain vector <u>I</u> of the closed-loop state estimator if the desired poles are -3 and $-4 \pm i^2$.
(b) Recall again the output feedback. In observer form, its effect on the characteristic equation of the system can be calculated much easier. By calculation, prove that the poles of the system cannot be assigned to any arbitrary location by only setting the value of output feedback <i>j</i> .



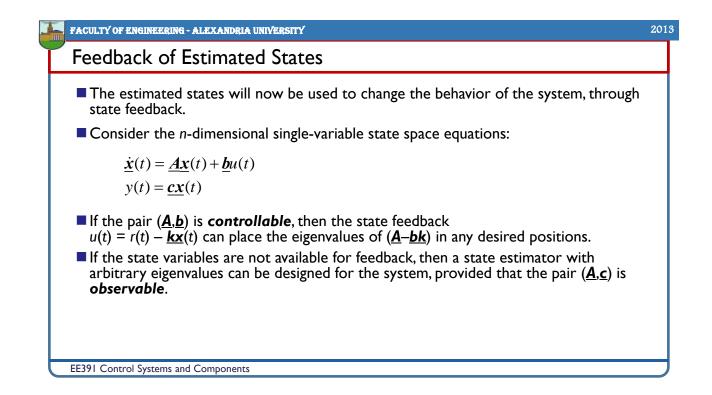


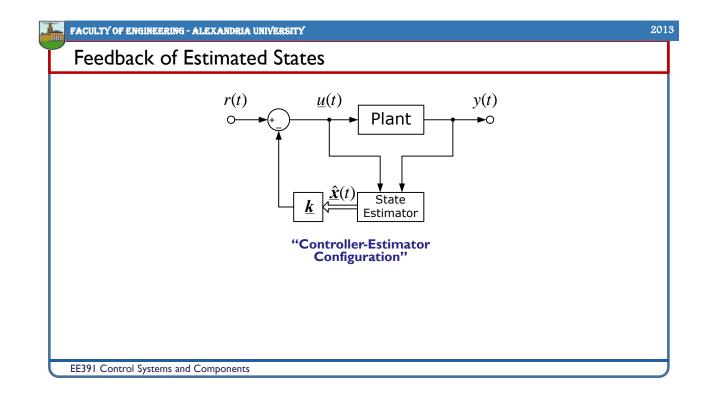


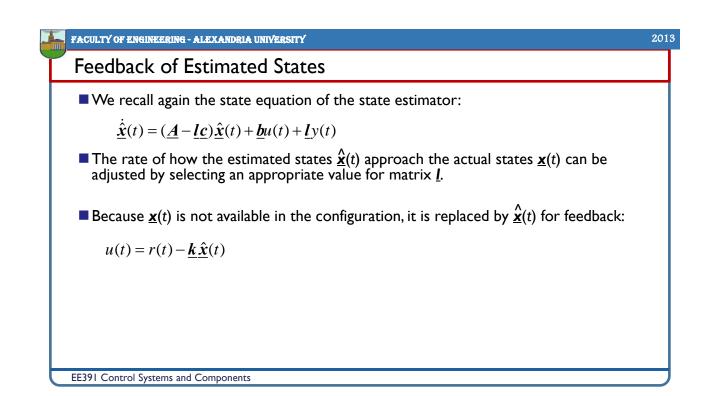
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework 7	
 (a) Find the gain vector <u>I</u> of the closed-loop state estimator if the desired poles are -3 and -4 ± j2. 	$\hat{\underline{l}} = \begin{bmatrix} 47\\11\\-2 \end{bmatrix}$
The desired characteristic equation of the state observer is:	For the transformed system
$\vec{a}(s) = (s+3)(s+4+j2)(s+4-j2)$ $= s^3 + 11s^2 + 44s + 60$ $\vec{a}_2 \vec{a}_1 \vec{a}_0$	$\underline{\boldsymbol{l}} = \underline{\boldsymbol{R}}\hat{\underline{\boldsymbol{l}}} = \begin{bmatrix} 1.5422\\2.7349\\-3.5422 \end{bmatrix}$
$\hat{l}_1 = \breve{a}_0 - a_0 = 60 - 13 = 47$ $\hat{l}_2 = \breve{a}_1 - a_1 = 44 - 33 = 11$	For the original system
$\hat{l}_3 = \breve{a}_2 - a_2 = 11 - 13 = -2$	
EE391 Control Systems and Components	



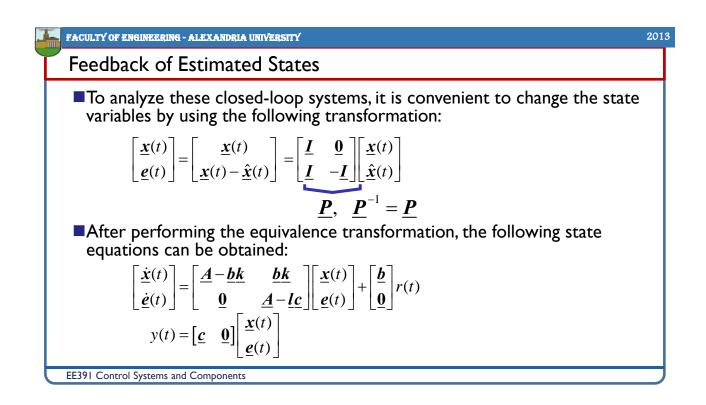
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Solution of Homework 7	
$\underline{\dot{x}}(t) = (\underline{A} - j\underline{b}\underline{c})\underline{x}(t) + \underline{b}r(t)$	
$\underline{\dot{x}}(t) = \left(\begin{bmatrix} 0 & 0 & -13 \\ 1 & 0 & -33 \\ 0 & 1 & -13 \end{bmatrix} - j \begin{bmatrix} 46 \\ 13 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \right) \underline{x}(t) + \underline{b}r(t)$	
$= \left(\begin{bmatrix} 0 & 0 & -13 \\ 1 & 0 & -33 \\ 0 & 1 & -13 \end{bmatrix} - j \begin{bmatrix} 0 & 0 & 46 \\ 0 & 0 & 13 \\ 0 & 0 & 0 \end{bmatrix} \right) \underline{\mathbf{x}}(t) + \underline{\mathbf{b}}r(t)$	
$= \begin{bmatrix} 0 & 0 & -(13+46j) \\ 1 & 0 & -(33+13j) \\ 0 & 1 & -13 \end{bmatrix} \underline{x}(t) + \underline{b}r(t) \bullet \text{ Only } a_0 \text{ and } a_1 \text{ can be adjusted, both dependent to each other} \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	
EE391 Control Systems and Components	\square



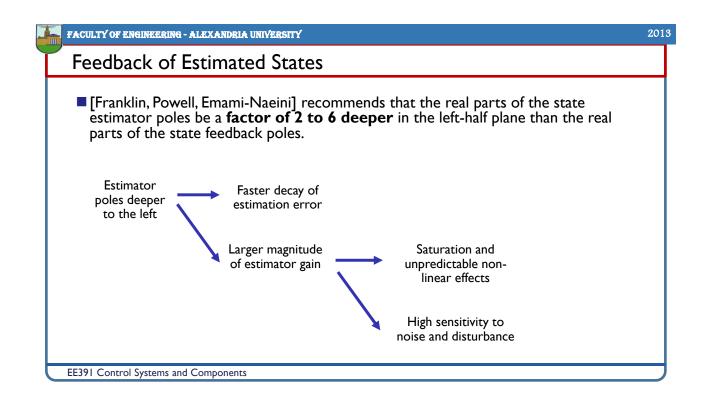


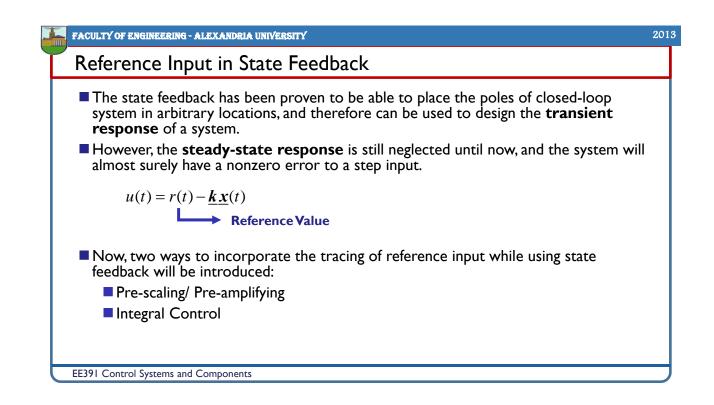


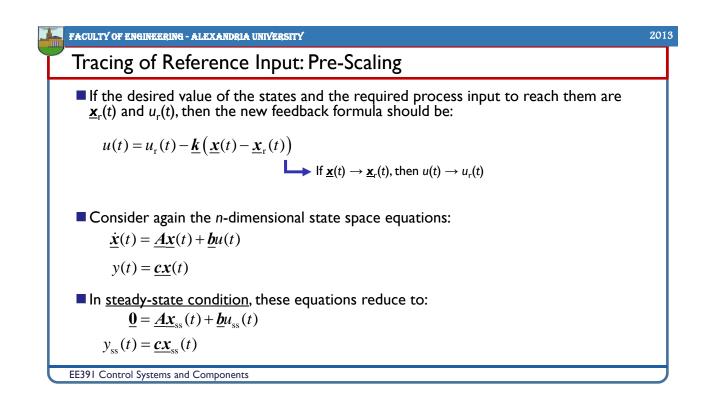
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20
Feedback of Estimated States	
Substituting the last equation to the original system and the state estimator, will yield	:
$\underline{\dot{x}}(t) = \underline{Ax}(t) - \underline{b}\underline{k}\underline{\hat{x}}(t) + \underline{b}r(t)$	
$\dot{\hat{\boldsymbol{x}}}(t) = \left(\underline{\boldsymbol{A}} - \underline{\boldsymbol{l}}\underline{\boldsymbol{c}} - \underline{\boldsymbol{b}}\underline{\boldsymbol{k}}\right)\hat{\boldsymbol{x}}(t) + \underline{\boldsymbol{b}}\boldsymbol{r}(t) + \underline{\boldsymbol{l}}\boldsymbol{y}(t)$	
The two equations above can be combined in a new state space equation in the form of:	i
$\begin{bmatrix} \dot{\underline{x}}(t) \\ \dot{\underline{x}}(t) \end{bmatrix} = \begin{bmatrix} \underline{A} & -\underline{b}\underline{k} \\ \underline{l}\underline{c} & \underline{A} - \underline{l}\underline{c} - \underline{b}\underline{k} \end{bmatrix} \begin{bmatrix} \underline{x}(t) \\ \dot{\underline{x}}(t) \end{bmatrix} + \begin{bmatrix} \underline{b} \\ \underline{b} \end{bmatrix} r(t)$	
$y(t) = \begin{bmatrix} \underline{c} & \underline{0} \end{bmatrix} \begin{bmatrix} \underline{x}(t) \\ \underline{\hat{x}}(t) \end{bmatrix}$	
EE391 Control Systems and Components	

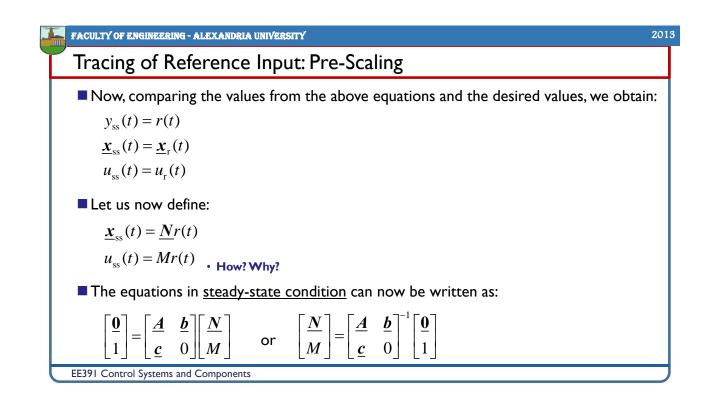


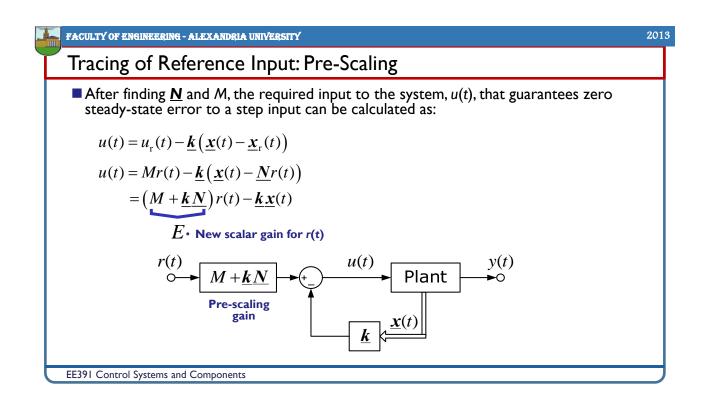
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	2013
Feedback of Estimated States	
The eigenvalues of the new system in the "controller-estimator configuration" is the union of those of (<u>A</u> - <u>bk</u>) and (<u>A</u> - <u>lc</u>).	
This fact means, that the implementation of the state estimator does not affect the eigenvalues of the system with state feedback, and vice versa.	
The design of state feedback and state estimator are separated from each other. This is known as "separation principle" or "separation property."	
EE391 Control Systems and Components	



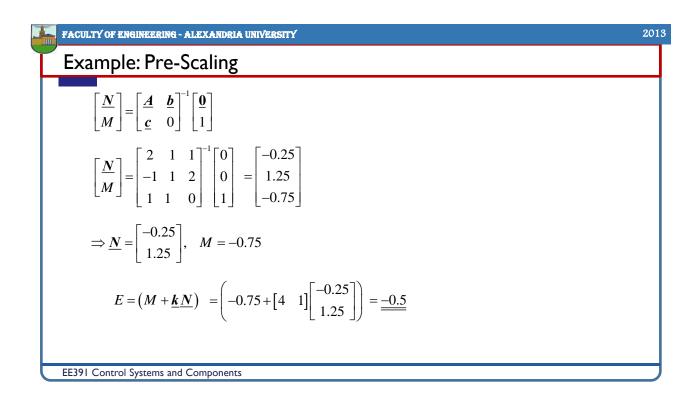


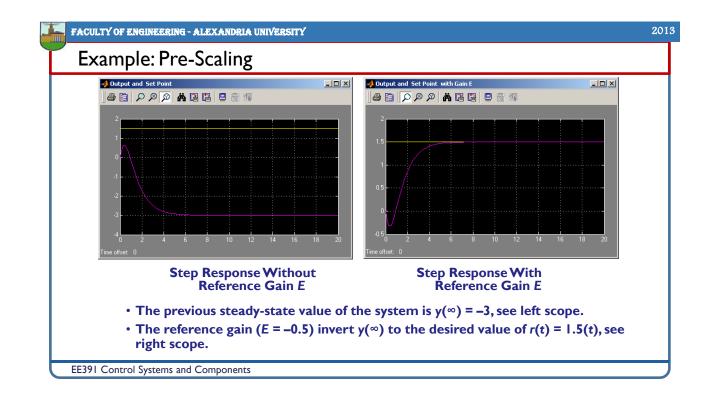


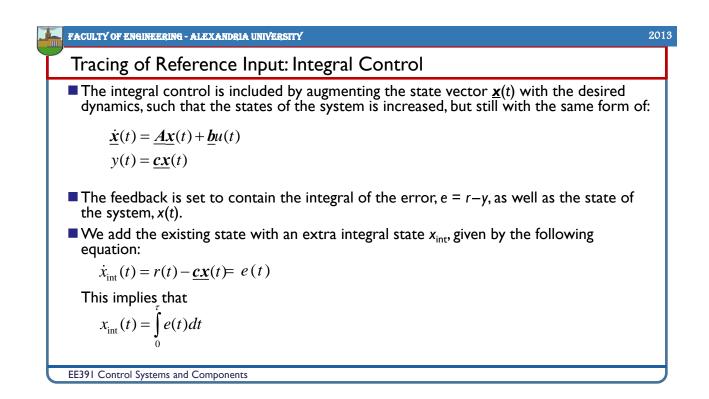


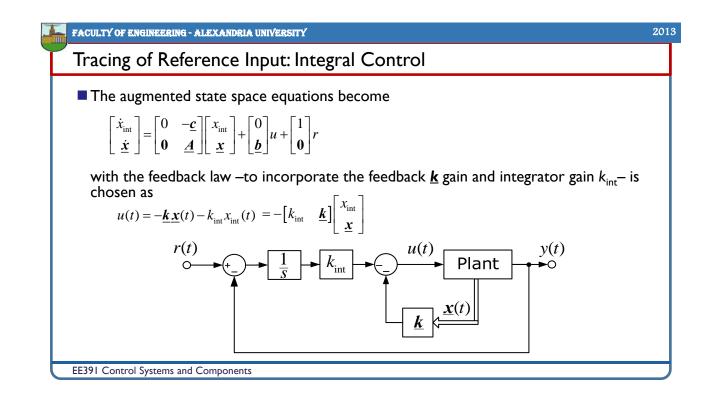


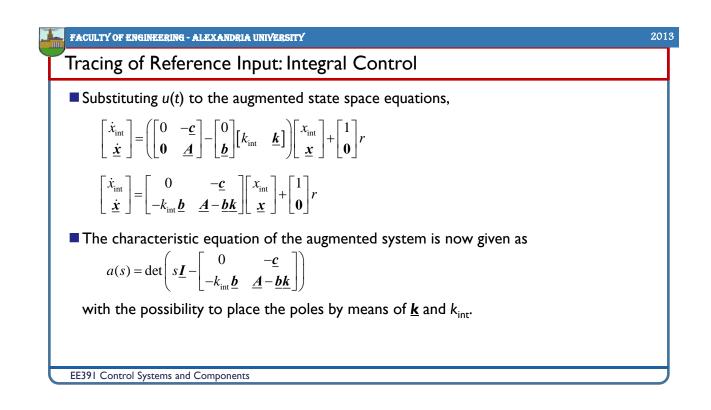
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20 1
Example: Pre-Scaling	
Referring again to the state-space equation that has been used before,	
$\underline{\dot{x}}(t) = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$	
$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \underline{\mathbf{x}}(t)$	
For the desired eigenvalues of -1 and -2 , it is already calculated that the required feedback gain is $\underline{k} = [4 \ 1]$.	
Now, it is desired that the output $y(t)$ should follow $r(t) = 1.5(t)$. Calculate the gain <i>E</i> for the reference value $r(t)$	
EE391 Control Systems and Components	



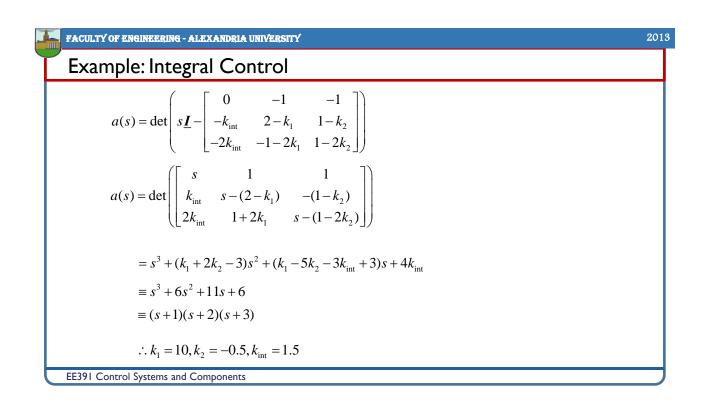


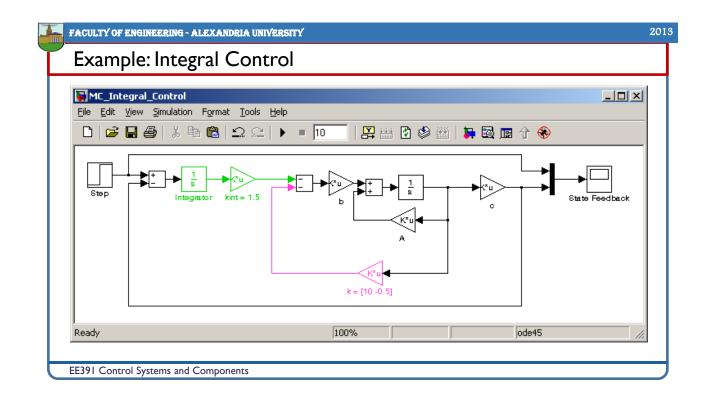


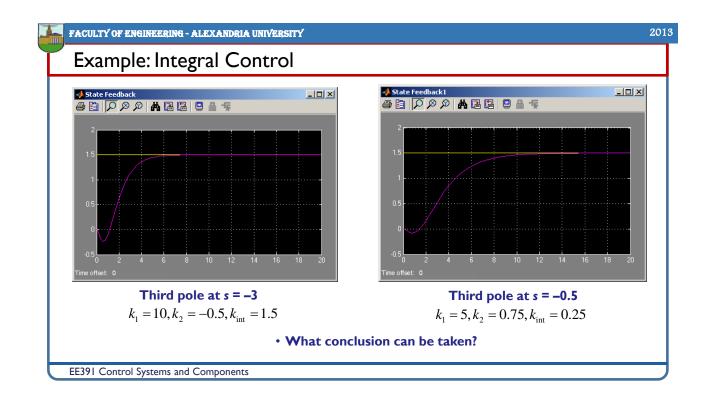




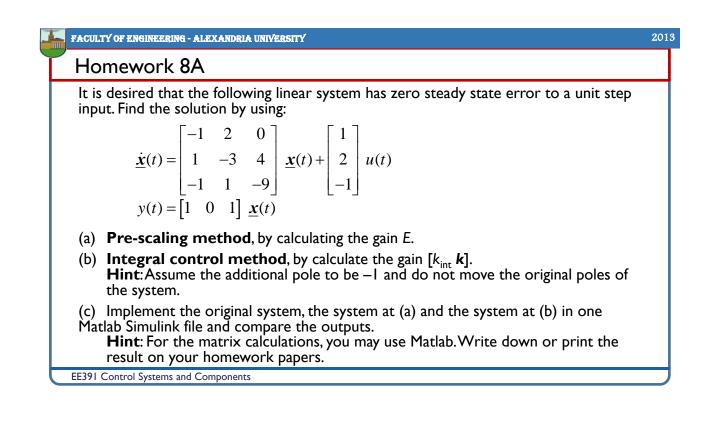
FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	201
Example: Integral Control	
The scheme should now be implemented on the state-space equations that has been used before, $\underline{\dot{x}}(t) = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \underline{x}(t)$	
with the desired eigenvalues of -1 and -2 , and $r(t) = 1.5(t)$. The integrator increases the order of the system by one to become a third-order system. The third eigenvalues is assumed to be-3.	
The augmented state-space equations is given by: $\begin{bmatrix} \dot{x}_{int} \\ \underline{\dot{x}} \end{bmatrix} = \begin{bmatrix} 0 & -\underline{c} \\ -k_{int} \underline{b} & \underline{A} - \underline{b} \underline{k} \end{bmatrix} \begin{bmatrix} x_{int} \\ \underline{x} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$ $\begin{bmatrix} 0 & -1 & -1 \end{bmatrix}$	
$\begin{bmatrix} \dot{x}_{\text{int}} \\ \underline{\dot{x}} \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -k_{\text{int}} & 2-k_1 & 1-k_2 \\ -2k_{\text{int}} & -1-2k_1 & 1-2k_2 \end{bmatrix} \begin{bmatrix} x_{\text{int}} \\ \underline{x} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$ EE391 Control Systems and Components	



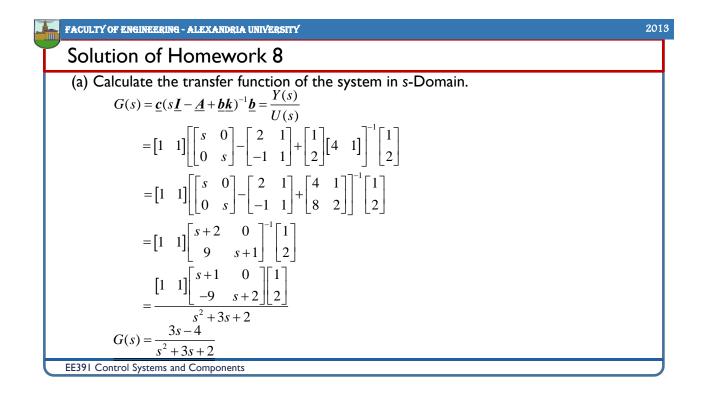




FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	20
Homework 8	
Refer to the last example.	
(a) Calculate the transfer function $G(s)$ of the system.	
(b) Calculate the steady-state value of the system to a unit step input, using the Final Value Theorem of Laplace Transform.	
(c) Determine the gain K so that the steady-state response of $K \cdot G(s)$ has zero error to a unit step input.)
(d) Find out the relation between the transfer function gain K and the reference gain E	
EE391 Control Systems and Components	



Ref	er to the last example.
(a)	Calculate the transfer function $G(s)$ of the system.
(b)	Calculate the steady-state value of the system to a step input, using the Final Value Theorem of Laplace Transform.
(c) a st	Determine the gain K so that the steady-state response of $K \cdot G(s)$ has zero error to zep input.
(d)	Find out the relation between the transfer function gain K and the reference gain E



FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY	
Solution of Homework 8	
(b) Calculate the steady-state value of the step response of the system, using the Final Value Theorem of Laplace Transform.	
$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{s \to 0} s \cdot Y(s) = \lim_{s \to 0} s \cdot G(s)U(s)$	
$= \lim_{s \to 0} s \cdot \frac{3s - 4}{s^2 + 3s + 2} \cdot \frac{1}{s}$	
$=\frac{-4}{2}$	
= <u>-2</u>	
EE391 Control Systems and Components	

