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 A mathematical model of a dynamic system is 
defined as a set of equations that represents the 
dynamics of the system accurately

 The dynamics of many systems may be described in 
terms of differential equations obtained from 
physical laws governing a particular system

 In obtaining a mathematical model, we must make a 
compromise between the simplicity of the model 
and the accuracy of the results of the analysis

 In general, in solving a new problem, it is desirable to 
build a simplified model so that we can get a general 
feeling for the solution

Introduction

Sep-14 3
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 Linear Systems
 A system is called linear if the principle of superposition 

applies. 

 The principle of superposition states that the response 
produced by the simultaneous application of two different 
forcing functions is the sum of the two individual responses. 

 Hence, for the linear system, the response to several inputs 
can be calculated by treating one input at a time and adding 
the results.

 Linear Time-Invariant (LTI) Systems and Linear Time-
Varying Systems
 A differential equation is linear if the coefficients are 

constants or functions only of the independent variable

 Systems that are represented by differential equations whose 
coefficients are functions of time are called linear time-
varying systems.

Introduction

Sep-14 4
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 Differential equation 

 Transfer function

 Frequency characteristic

System Model

Sep-14 5
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 Transfer Function:

 The transfer function of an LTI system is defined as the ratio 

of the Laplace transform of the output (response function) 

to the Laplace transform of the input (driving function) 

under the assumption that all initial conditions are zero.

Transfer Function and Impulse Response

Sep-14 6



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 The applicability of the transfer function 

concept is limited to LTI systems

The transfer function is a property of a system itself, 

independent of the magnitude and nature of the 

input or driving function. 

 If the transfer function of a system is known, the 

output or response can be studied for various 

forms of inputs 

 If the transfer function of a system is unknown, it 

may be established experimentally by introducing 

known inputs and studying the output of the system. 

Transfer Function

Sep-14 7
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 For an LTI system the transfer function G(s) is

 Multiplication in the complex domain is equivalent 

to convolution in the time domain

Transfer Function (2)

Sep-14 8
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 Consider the output (response) of a linear time-invariant 
system to a unit-impulse input when the initial conditions 
are zero. 

 Since the Laplace transform of the unit-impulse function 
is unity, the Laplace transform of the system output

 The impulse-response function g(t) is thus the response of 
an LTI system to a unit-impulse input when the initial 
conditions are zero

 It is hence possible to obtain complete information about 
the dynamic characteristics of the system by exciting it 
with an impulse input and measuring the response

Impulse Response

Sep-14 9
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Note: This review is not included in the 

textbook (Slides 10 - 42)

Laplace Transform Review

Sep-14 10
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Solving Differential Equation

Sep-14 11

Example

Solving linear differential equations with constant 

coefficients:

• To find the general solution (involving solving the 

characteristic equation)

• To find a particular solution of the complete

equation (involving constructing the family of a function)
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Laplace Transform

Sep-14 12

s-domain

algebra problems

Solutions of algebra 

problems

Time-domain

ODE problems

Solutions of time-

domain problems

Laplace

Transform

(LT)

Inverse 

LT

Difficult Easy
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Laplace Transform

Sep-14 13

Laplace, Pierre-Simon 

1749-1827

The Laplace transform of a 

function  f(t)  is defined as

where                 is a complex 

variable.

s j  

 
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Examples

Sep-14 14

 Step signal: f(t)=A

0
( ) ( ) stF s f t e dt


  0

stAe dt



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s
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 
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s


• Exponential signal f(t)= ate

( )F s 
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 
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Laplace Transform Table
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f(t) F(s) f(t) F(s)

δ(t) 1

1(t)

t

ate

2 2

w

s w

2 2

s

s w

wte at sin

wte at cos

22)( was

w



22)( was

as



1

s a

1

s

2

1

s

sin wt

cos wt
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Properties of Laplace Transform
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(1) Linearity

1 2 1 2[ ( ) ( )] [ ( )] [ ( )]af t bf t a f t b f t  

(2) Differentiation

 
  

 

( )
( ) (0)

df t
sF s f

dt

  
 

     
 

(1)1 2 ( 1)( )
( ) (0) (0) (0)

n
n n n n

n

d f t
s F s s f s f f

dt

where f(0) is the initial value of f(t).

Using Integration 

By Parts method 

to prove 
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Properties of Laplace Transform (2)
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(3) Integration

   
  0

( )
( )

t F s
f d

s

 


  
    

1 2

1 2 1
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( )

nt t t
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F s
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s

Using Integration 

By Parts method 

to prove ）
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Properties of Laplace Transform (3)

Sep-14 18

(5) Initial-value Theorem

（4）Final-value Theorem

)(lim)(lim
0

ssFtf
st 



)(lim)(lim
0

ssFtf
st 



The final-value theorem 

relates the steady-state 

behavior of f(t) to the 

behavior of sF(s) in the 

neighborhood of s=0



Faculty of Engineering - Alexandria University 2013

Properties of Laplace Transform (4)

Sep-14 19

(6)Shifting Theorem：

a. shift in time (real domain)

[ ( )]f t  

[ ( )]ate f t 

b. shift in complex domain 

(7) Real convolution (Complex multiplication) 

Theorem

1 2 1 2

0

[ ( ) ( ) ] ( ) ( )

t

f t f d F s F s    

( )se F s 

( )F s a
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Inverse Laplace Transform
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Definition：Inverse Laplace transform, denoted by                     
is given by

where C is a real constant。

1[ ( )]F s

1 1
( ) [ ( )] ( ) ( 0)

2

C j

st

C j

f t F s F s e ds t
j

 



 

  
 

Note: The inverse Laplace transform operation involving 

rational functions can be carried out using Laplace transform 

table and partial-fraction expansion.
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Partial Fraction Expansion
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1

0 1 1

1

1 1

( )
( ) ( )

( )









   
  

   

m m

m m

n n

n n

b s b s b s bN s
F s m n

D s s a s a s a

1 2               ( ) ( ) ... ( )nf t f t f t   

If F(s) is broken up into components

1 2( ) ( ) ( ) ( )nF s F s F s F s   

If the inverse Laplace transforms of components are 

readily available, then

       1 1 1 1

1 2( ) ( ) ( ) ( )nF s F s F s F s      
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Poles and Zeros
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 Poles

A complex number s0 is said to be a pole of a 

complex variable function F(s) if F(s0)=∞.

Examples:

( 1)( 2)

( 3)( 4)

s s
s s
 

 
zeros: 1, -2 poles: -3, -4;

2

1

2 2

s

s s



  poles: -1+j, -1-j; zeros: -1

• Zeros

– A complex number s0 is said to be a zero of a complex 

variable function F(s) if F(s0)=0.
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Case 1: F(s)  has simple real poles
1

0 1 1

1

1 1

( )
( )

( )









   
 

   

m m

m m

n n

n n

b s b s b s bN s
F s

D s s a s a s a

where ( 1,2, , ) are  eigenvalues of ( ) 0, and

( )
( )

( )


 

 
  
 

i

i

i i

s p

p i n D s

N s
c s p

D s

( )f t  1 2

1 2 ... np tp t p t

nc e c e c e
   

Parameters pk give shape and numbers ck give magnitudes.

1 2

1 2

   
  

n

n

cc c

s p s p s p

Partial-Fraction Expansion 

Inverse LT

Sep-14 23
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2 31 1 1
( )

6 15 10

     t t tf t e e e

1 1 1 1 1 1
( )

6 1 15 2 10 3
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  
F s
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1
( )

( 1)( 2)( 3)
F s
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

  

Example 1
31 2

1 2 3
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s s s
  

  

2

2 ( 2
1 1

( 1)( 2)( 3) 5
)

1


 
   

  



s

c
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s

3

3

1 1

( 1)( 2) 0
3)
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(

3 1


 
   

  



s

c
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s
s

1

1

1 1

( 1)( 2)
1)

( 3) 6
(



 
    

   


 s

c
s s

s
s

Partial-Fraction Expansion 
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Case 2: F(s) has simple complex-conjugate poles

Example 2

2 2cos 3 si( ) n   tte ety t t

2

5
( )

4 5


 

 

s
Y s

s s 2

5

( 2) 1

s

s




  2

2 3

( 2) 1

s

s

 


 

2 2

2

( 2) 1

3

( 2) 1



 





 s

s

s

Laplace transform

Partial-Fraction Expansion 

Inverse Laplace transform

Applying initial conditions
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1

1

11 1

( ) ( )



       
    

n l l l

n l i i

l l

i

c b bc b

s p s p s p s p s p

Case 3: F(s) has multiple-order poles

1 2

( ) ( )
( )

( ) ( )( ) ) )( (


   


l

in r

N s N s
F s

D s s s sp pp p s

1
The coefficients , ,  of simple poles can be calculated as Case 1;n lc c



The coefficients corresponding to the multi-order poles are 

determined as

Simple poles Multi-order poles

Sep-14 26

1

1 ( ) ( ,) ( ) ( ), ,




 
          

 
 l l

i i
s p

s pi

l l

d
s p s p

d
F s

s
b F s b

1

1

1( ) ( )
,

( ) (

1 1
( ) ( )

! ( 1)! )





 

      
       

      



i

m l
l l

i i

s p s

l m

p

N s N s
b b

D s D

d d
s p s p

m d ds ss l
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Example 3

3

1
( )

( 1)



Y s

s s

31 2 1

3 2
( )

( 1) ( 1) 1
   

  

bc b b
Y s

s s s s

Laplace transform:
3 2 2( ) (0) ( 3 ( ) 3 (0) 3 (0

3 ( )

)

3

0

1

) (0

0

)

( ) ( )

 





 





s Y s s y sy

sY s y Y s

sy Y s sy y

s

Applying initial conditions:

Partial-Fraction Expansion 

s= -1 is a 3rd

order pole

Sep-14 27
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1 3

0

1
1

( 1)


 


s

c s
s s

3 2

2 13 1
1

1 1
[ ( 1) ] [ ( )] ( ) 1

( 1)



 


 
       

 
s s

s

d d
b s s

ds s s ds s

3

3 13

1
[ ( 1) ] 1

( 1)
sb s

s s
   


3

1

1

1
(2 ) 1

2! s

b s



  

Determining coefficients:

3 2

1 1 1 1
( )

( 1) ( 1) 1
    

  
Y s

s s s s

Inverse Laplace transform:

21
( ) 1

2

     t t ty t t e te e
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1. Laplace Transform

L= laplace(f)

2. Inverse Laplace Transform

F= ilaplace(L)

Matlab Application

Sep-14 29

>> syms t

>> L=laplace(t)

L=

1/s^2

>> L=laplace(sin(t))

L=

1/(s^2+1)

>> F=ilaplace(L)

F=

sin(t)
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( ) ( 1) ( ) ( 1) (1)

1 0 1 0( ) ( ) ( )  ( ) ( ) ( ) ( )n n m m

n m my t a y t a y t b u t b u t bu t b u t 

        

Transfer Function

Sep-14 30

LTI 

system
Input

u(t)

Output

y(t)

Consider a linear system described by differential equation

 
 

1

1 1 0

 

1 0

 

1

1

( )
( )

( )

...( )

( ) ...

zero initial conditio

m m

m m

n n

n

n

output y t
TF G s

input u t

b s b s b s bY s

U s s a s a s a









 

   
 

   

L

L

Assume all initial conditions are zero, we get the transfer 

function(TF) of the system as 
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Example 1.  Find the transfer function of the RLC

1) Writing the differential equation of the system according to 

physical law:

R L

C
u(t) uc(t)i(t)Input Output

2) Assuming all initial conditions are zero and applying Laplace 

transform

3) Calculating the transfer function         as ( )G s

2

( ) 1
( )

( ) 1

cU s
G s

U s LCs RCs
 

 

( ) ( ) ( ) ( )C C CLCu t RCu t u t u t  

2 ( ) ( ) ( ) ( )c c cLCs U s RCsU s U s U s  

Solution:

Sep-14 31
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 Find the transfer function of the following 

system :

Exercise

Sep-14 32

2

2

( ) ( )
5 4 ( ) ( )

d y t dy t
y t u t

dt dt
  



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

Transfer Function of Typical Components

Sep-14 33

Component ODE TF

( )v t ( )i t

R ( ) ( )v t Ri t
( )

( )
( )

V s
G s R

I s
 

( )v t
( )i t

L

( )
( )

di t
v t L

dt


( )
( )

( )

V s
G s sL

I s
 

( )v t ( )i t

C 0

1
( ) ( )

t

v t i d
C

  
( ) 1

( )
( )

V s
G s

I s sC
 
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 The transfer function is defined only for a linear 

time-invariant system, not for nonlinear system

 All initial conditions of the system are set to 

zero

 The transfer function is independent of the 

input of the system

 The transfer function  G(s) is the Laplace 

transform of the unit impulse response g(t)

Properties of Transfer Functions

Sep-14 34
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How poles and zeros relate to system response

• Why we strive to obtain TF models?

• Why control engineers prefer to use TF models?

• How to use a TF model to analyze and design control 

systems?

• we start from the relationship between the locations 

of zeros and poles of TF and the output responses of 

a system

Sep-14 35
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Position of poles and zeros

-a

j

i0

( )
A

X s
s a




Transfer function

( ) atx t Ae

Time-domain impulse 

response

0

Sep-14 36
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Position of poles and zeros

Transfer function Time-domain impulse 

response
1 1

2 2
( )

( )

A s B
X s

s a b




  ( ) sin( )atx t Ae bt  

0
-a

j

i

b

0
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Position of poles and zeros

Transfer function Time-domain impulse 

response
1 1

2 2
( )

A s B
X s

s b





( ) sin( )x t A bt  

0

j

i

b

0
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Position of poles and zeros

Transfer function Time-domain impulse 

response

( )
A

X s
s a




( ) atx t Ae

-a

j

i0
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Position of poles and zeros

Transfer function Time-domain impulse 

response
1 1

2 2
( )

( )

A s B
X s

s a b




  ( ) sin( )atx t Ae bt  

-a

j

i

b

0

0
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Summary of Pole Position & System Dynamics
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Note: stability of linear single-input, single-output systems 

is completely governed by the roots of the characteristics 

equation.

Characteristic equation

1

1 1 0 0n n

ns a s a s a

    

• obtained by setting the denominator polynomial of the 

transfer function to zero 

Sep-14 42
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Transfer Function (TF) models in Matlab

Sep-14 43

Suppose a linear SISO system with input u(t), output y(t), the

transfer function of the system is

01

1

1

01

1

1

...

...

)(

)(
)(

asasas

bsbsbsb

sU

SY
sG

n

n

n

m

m

m

m














 01 ,...,, bbbnum mm 

 01,...,,1 aaden n

Descending 

power of s

TF in polynomial form

>> Sys = tf（num，den）
>> [num, den] = tfdata (sys)
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TF in zero-pole form

>> sys = zpk（z, p, k）
>> [z, p,k] = tfdata (sys)

Transform TS from zero-pole form into 

polynomial form 

>> [z, p, k] = tf2zp(num, den)
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 What is the definition of “transfer function”?

 When defining the transfer function, what 

happens to initial conditions of the system?

 Does a nonlinear system have a transfer 

function?

 How does a transfer function of a LTI system 

relate to its impulse response?

 Define the characteristic equation of a linear 

system in terms of the transfer function

Review Questions
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 A control system may consist of a number of 

components

 To show the functions performed by each component, 

in control engineering, we commonly use a diagram 

called the block diagram

 A block diagram of a system is a pictorial 

representation of the functions performed by each 

component and of the flow of signals

 A block diagram has the advantage of indicating more 

realistically the signal flows of the actual system

Automatic Control Systems
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 In a block diagram all system variables are linked to 

each other through functional blocks

 The transfer functions of the components are usually 

entered in the corresponding blocks

 Blocks are connected by arrows to indicate the 

direction of the flow of signals

Block Diagrams

Sep-14 47

Element of a block diagram
Note: The dimension of the 

output signal from the block is 

the dimension of the input signal 

multiplied by the dimension of 

the transfer function in the block
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 The advantage of the block diagram representation is 

the simplicity of forming the overall block diagram for 

the entire system by connecting the blocks of the 

components according to the signal flow

 A block diagram contains information concerning 

dynamic behavior, but it does not include any 

information on the physical construction of the 

system

 A number of different block diagrams can be drawn 

for a system

Block Diagrams(2)
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The transfer function relationship 

Block Diagram Representation
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( ) ( ) ( )Y s G s U s

can be graphically denoted through a block diagram. 

G(s)
U(s) Y(s)
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1. Connection in series

Equivalent Transform of Block Diagram

Sep-14 50

G(s)
U(s) Y(s)

( ) ?G s 

X(s)
G1(s) G2(s)

U(s) Y(s)

1 2

( )
( ) ( ) ( )

( )

Y s
G s G s G s

U s
  
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2. Connection in parallel

G(s)
U(s) Y(s)

1 2

( )
( ) ( ) ( )

( )

Y s
G s G s G s

U s
  

U(s)

G2(s)

G1(s)
Y1(s)

Y2(s)



Y(S)

( ) ?G s 
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3. Negative feedback

M(s)
R(s) Y(s)

( ) ( ) ( )

( ) ( ) ( ) ( )

Y s U s G s

U s R s Y s H s




 

the for( w) again of 
( )

1

rd path

( ) ( ) 1 gai the loopn of 

G s
M s

G s H s
 

 

 ( ) ( ) ( ) ( ) ( )Y s R s Y s H s G s 

Y(s)
G(s)

H(s)

U(s)R(s)
_

Transfer function of a negative feedback system:
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 Obtaining Cascaded, Parallel, and Feedback (Closed-

Loop) Transfer Functions with MATLAB

 Suppose that there are two components G1(s)andG2(s)

 MATLAB has convenient commands to obtain the 

cascaded, parallel, and feedback (closed-loop) transfer 

functions.

 Example:

Matlab Application
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 To obtain the transfer functions 
of the cascaded system, parallel 
system, or feedback (closed-
loop) system

 The following commands may 
be used

 Check Matlab Program 2-1 in 
the textbook

Matlab Application (2)

Sep-14 54

[num, den] = series(num1,den1,num2,den2)

[num, den] = parallel(num1,den1,num2,den2)

[num, den] = feedback(num1,den1,num2,den2)
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 An automatic controller compares the actual value 

of the plant output with the reference input (desired 

value), determines the deviation, and produces a 

control signal that will reduce the deviation to zero 

or to a small value.

Automatic Controllers
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1. Two-position or on–off controllers

2. Proportional controllers

3. Integral controllers

4. Proportional-plus-integral controllers

5. Proportional-plus-derivative controllers

6. Proportional-plus-integral-plus-derivative 

controllers

Classifications of Industrial Controllers
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 In a two-position control system, the actuating element 

has only two fixed positions, which are, in many cases, 

simply on and off, e.g. Liquid-level control system

 Let the output signal from the controller be u(t)and the 

actuating error signal be e(t)

Two-Position or On–Off Control Action

Sep-14 57

Block diagram of an on–off controller
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 For a controller with proportional control action, 

the relationship between the output of the 

controller u(t)and the actuating error signal e(t)is

Where Kp is termed the proportional gain

 Whatever the actual mechanism may be and 

whatever the form of the operating power, the 

proportional controller is essentially an amplifier 

with an adjustable gain

Proportional Control Action

Sep-14 58



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

 In a controller with integral control action, the value 

of the controller output u(t)is changed at a rate 

proportional to the actuating error signal e(t)

where Ki is an adjustable constant

Integral Control Action
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 Proportional-Plus-Integral Control Action

 Proportional-Plus-Derivative Control Action

 Proportional-Plus-Integral-Plus-Derivative Control Action

Other Control Actions

Sep-14 60

Block diagram of a proportional-plus-

integral-plus-derivative controller
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 Figure shows a closed-loop system subjected to a 
disturbance

 We can use superposition of LTI systems to obtain the 
output

For R(s)=0

For D(s)=0

Closed-Loop System Subjected to a Disturbance
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 The response to both inputs is

 Consider now the case where |G1(s)H(s)|>>1 and 

|G1(s)G2(s)H(s)|>>1. 

 In this case, the closed-loop transfer function CD(s)/D(s) 

becomes almost zero, and the effect of the disturbance is 

suppressed. This is an advantage of the closed-loop system

 The closed-loop transfer function CR(s)/R(s) approaches 

1/H(s) as the gain of G1(s)G2(s)H(s) increases

 This means that if |G1(s)G2(s)H(s)|>>1, then the closed-loop 

transfer function CR(s)/R(s) becomes independent of G1(s)

and G2(s) and inversely proportional to H(s)

Closed-Loop System Subjected to a Disturbance

Sep-14 62



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

1. Write the equations that describe the dynamic 

behavior of each component

2. Take the Laplace transforms of these equations, 

assuming zero initial conditions

3. Represent each Laplace-transformed equation 

individually in block form

4. Assemble the elements into a complete block 

diagram.

Procedures for Drawing a Block Diagram
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Example 

 Consider the RC 

circuit shown in Figure

,

 The equations for this 

circuit are
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 Any number of cascaded blocks can be replaced by a 
single block, the transfer function of which is simply 
the product of the individual transfer functions

 Blocks can be connected in series only if the output 
of one block is not affected by the next following 
block  (no feedback)

 A complicated block diagram involving many 
feedback loops can be simplified by a step-by-step 
rearrangement

 Simplification of the block diagram by 
rearrangements considerably reduces the labor 
needed for subsequent mathematical analysis

Block Diagram Reduction
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 Simplify this

diagram

Solution:

 By moving the summing point of the negative feedback loop 

containing H2 outside the positive feedback loop containing H1, 

we obtain 

Example
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 Eliminating the positive feedback loop

 The elimination of the loop containing H2/G1 gives

 Finally, eliminating the feedback loop results in

Example (2)
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 Notice that the numerator of the closed-loop 

transfer function C(s)/R(s) is the product of the 

transfer functions of the feed-forward path. 

 The denominator of C(s)/R(s) is equal to

The positive feedback loop yields a negative term in the 

denominator

Example (3)
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Note: This part is not included in the textbook 

(Slides 69 - 76)

Signal Flow Graph

Sep-14 69
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SFG was introduced by S.J. Mason for the cause-and-

effect representation of linear systems.

Signal Flow Graph (SFG) 

Sep-14 70

1. Each signal is represented by a node.

2. Each transfer function is represented by a branch.

G(s)
U(s) Y(s)

G(s)

H(s)

U(s)R(s)
_

Y(s)

G(s)

U(s) Y(s)

G(s)
U(s) Y(s)R(s)

-H(s)

1
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 Note: A signal flow graph and a block diagram contain 

exactly the same information (there is no advantage to 

one over the other; there is only personal preference)

Block Diagram and Signal-Flow Graph
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Mason’s Rule
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1

( ) 1
( )

( )

N

k k

k

Y s
M s M

U s 

  



k
M Path gain of the kth forward path





1 ( all individual loop gains)

( gain products of all possible three loops that do not touch)

( gain products of all possible two loops that do not touch)




kValue of ∆ for that part of the block diagram 

that does not touch the kth forward path



N Total number of forward paths between  output Y(s)

and input U(s)
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Example 1 Find the transfer function for the following block diagram

Solution:

Forward path     Path gain and the determinates are

1 1

1
1 ( )(1)M b

s

 
  

 

2 2

1 1
1 ( )(1)M b

s s

  
   

  

3 3

1 1 1
1 ( )(1)M b

s s s

   
    

   

31 2

2 3
1 0

aa a

s s s

 
       

 

1

2

3

1 0

1 0

1 0

  

  

  

1236

12346

123456

b1

1/s

a3

b2

b3

a2

a1

1/s 1/s+

_

_
_

+

+ + Y(s)

U(s)
① ② ③ ④ ⑤

⑥
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Example 1

b1

1/s

a3

b2

b3

a2

a1

1/s 1/s+

_

_
_

+

+ + Y(s)

U(s)
① ② ③ ④ ⑤

⑥

Find the transfer function for the following block diagram

Solution:

1

2

1 2 3

3 2

1 2 3

( )
( )

( )

N
k k

k

MY s
M s

U s

b s b s b

s a s a s a




 



 


  



Applying Mason’s rule, we find the transfer function to be

Sep-14 82



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University Control Systems and Components    2013

Example 2 Find the transfer function for the following SFG

Solution:
Forward path     Path gain

and the determinates are

1 1 2 3           123456      M H H H

2 4              1256     M H

      Loop path     Path gain

1 1 5                 232      l H H

2 2 6                 343      l H H

3 3 7                 454      l H H

4 4 7 6 5             25432      l H H H H

 1 2 3 4 1 31 ( )l l l l l l      

1

2 2 6

1 0

1 H H

  

  

( )U s ( )Y s

5H

1 1H

4H

6H

7H

2H

3H 1
① ② ③ ④ ⑤ ⑥
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1

1 2 3 4 4 2 6

1 5 2 6 3 7 4 7 6 5 1 5 3

( )
( )

( )

1

N
k k

k

MY s
M s

U s

H H H H H H H

H H H H H H H H H H H H H H




 



 


    



Solution:

Applying Mason’s rule, we find the transfer function to be

Example 2 Find the transfer function for the following SFG

( )U s ( )Y s

5H

1 1H

4H

6H

7H

2H

3H 1
① ② ③ ④ ⑤ ⑥
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 The modern trend in engineering systems is toward greater 

complexity

 Complex systems may have multiple inputs and multiple 

outputs (MIMO) and may be nonlinear and/or time varying

 Because of the increase in system complexity, and easy 

access to large scale computers, modern control theory has 

been developed since around 1960

 This new approach is based on the concept of state

 Modern control theory is essentially time-domain approach

 Modern control theory addresses MIMO, nonlinear, time 

varying control problems with non-zero initial conditions in 

addition to classical problems

MODELING IN STATE SPACE
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 A linear combination of n variables, xi, for i=1 to n, is 

given by the following sum, S:

 A set of variables is said to be linearly independent if 

none of the variables can be written as a linear 

combination of the others

 Formally, variables xi, for i=1 to n, are said to be 

linearly independent if their linear combination, S, 

equals zero only if every Ki=0 and no xi=0 for all t≥0

 A system variable is any variable that responds to an 

input or initial conditions in a system

State-Space Terminology
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 State variables are the smallest set of linearly 

independent system variables such that the values of 

the members of the set at time t0 along with known 

forcing functions completely determine the value of 

all system variables for all t ≥ t0

 State vector is the vector whose elements are the 

state variables

 State-space is the n-dimensional space whose axes 

are the state variables

State-Space Terminology (2)
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 State equations are a set of n simultaneous, first-

order differential equations with n variables, where 

the n variables to be solved are the state variables

 Output equation is the algebraic equation that 

expresses the output variables of a system as linear 

combinations of the state variables and the inputs.

State-Space Terminology (3)
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 An LTI system is represented in state-space by the following 
equations:

x(t) = state vector

 𝑥(𝑡) = derivative of the state vector with respect to time

y(t) = output vector

u(t) = input or control vector

A = system matrix

B = input matrix

C = output matrix

D = feedforward or direct transmission matrix

State-Space Representation
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Block diagram of the system in state-space.
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 The external force u(t)is the input to 
the system, and the displacement y(t) 
of the mass is the output

 The system equation is

 This system is of second order. This 
means that the system involves two 
integrators. 

 Let us define state variables x1(t) and 
x2(t) as

Example
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 Then we obtain

 The output equation is

Example (2)
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 In a vector-matrix form, the state and output 

equations can be written as

 ,

 They are in the standard form

Example (3)
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 We can draw the block diagram of the mechanical 

system as shown in Figure

Example (4)
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 Let us consider the system whose transfer function is 

given by

 This system may be represented in state space by the 

following equations

 The Laplace transforms of the state-space equations is

Transfer Functions and State-Space
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 To get the transfer function from the state-space 

equations, set initial conditions to zero (x(0)=0)

or

Substitute in the output equation

The eigenvalues of A are identical to the poles of G(s)

Transfer Functions and State-Space (2)
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 Obtain the transfer function for the mechanical 

system in the previous example from the state-space 

equations.

Solution:

Example
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Note:

Thus

Example (2)
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 An nth-order differential equation may be expressed 

by a first-order vector-matrix differential equation

 If n elements of the vector are a set of state 

variables, then the vector-matrix differential equation 

is a state equation

 In this section we will present methods for obtaining 

state-space representations of continuous-time 

systems

STATE-SPACE REPRESENTATION
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 Linear Differential Equations in which the Forcing 

Function Does Not Involve Derivative Terms:

Let us define

State-Space Representation of nth-Order Systems
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This equation is on the form

where

State-Space Representation of nth-Order Systems (2)

Sep-14 101



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

The output can be given by

Or where

Note that the transfer function of the system is

State-Space Representation of nth-Order Systems (3)
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 Linear Differential Equations in which the Forcing 

Function Involves Derivative Terms:

 The main problem in defining the state variables for 

this case lies in the derivative terms of the input u

 The state variables must be expressed such that 

they will eliminate the derivatives of u in the state 

equation

State-Space Representation of nth-Order Systems (4)
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 Let us define the following n variables as a set of n 

state variables:

State-Space Representation of nth-Order Systems (5)

Sep-14 104



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University 2013

State-Space Representation of nth-Order Systems (6)
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 With this choice of state variables the existence and 

uniqueness of the solution of the state equation is guaranteed

 With the present choice of state variables, we obtain

State-Space Representation of nth-Order Systems (7)
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 The state and output equations can be written as

State-Space Representation of nth-Order Systems (8)
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Or

Where

Note that the transfer function of the system is 

State-Space Representation of nth-Order Systems (9)
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 A system is nonlinear if the principle of superposition 
does not apply

 Most linear systems are really linear only in limited 
operating ranges

 In practice, many systems involve nonlinear 
relationships among the variables

 For example, the output of a component may saturate 
for large input signals

 There may be a dead space that affects small signals

 Square-law nonlinearity may occur in some 
components

LINEARIZATION OF NONLINEAR SYSTEMS
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 In reality, most systems are indeed nonlinear, e.g. the pendulum 

system, which is described by nonlinear differential equations. 

 Example

Nonlinear Systems
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 L

Mg

2

2
sin ( ) 0

d
ML Mg t

dt


 

• It is difficult to analyze nonlinear systems, however, 

we can linearize the nonlinear system near its 

equilibrium point under certain conditions.

2

2
( ) 0  (when  is small

d
ML Mg t

dt


   ）
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Several typical nonlinear characteristics in

control system.

Linearization of Nonlinear Systems
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input

output

0

Saturation (Amplifier)
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output
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Dead-zone (Motor)
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（1）Weak nonlinearity neglected

Linearization Methods
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（2）Small perturbation/error method

Assumption: In the system control process, there are just
small changes around the equilibrium point in the input and
output of each component.

If the nonlinearity of the component is not within its 

linear working region, its effect on the system is weak and 

can be neglected.

This assumption is reasonable in many practical control system: 

in closed-loop control system, once the deviation occurs, the 

control mechanism will reduce or eliminate it. Consequently, all 

the components can work around the equilibrium point.



Faculty of Engineering - Alexandria University 2013Faculty of Engineering - Alexandria University Control Systems and Components    2013

Sep-14 113

The input and output only have small 

variance around the equilibrium point. 0( ), ( ) 0nx x x x    

0

0 0( )
x

dy
y y x x

dx
  

xky 
This is linearized model of 
the nonlinear component.

0 x

y

饱和（放大器）

y0

x0

y=f(x)

A(x0,y0)

Example

A(x0,y0) is equilibrium point. 

Expanding the nonlinear function 

y=f(x) into a Taylor series about 

A(x0,y0) yields
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Note：this method is only suitable for systems with 
weak nonlinearity.

0

继电特性

0

饱和特性Relay Saturation

For systems with strong nonlinearity, we cannot use such 
linearization method.
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 To obtain a linear mathematical model for a 

nonlinear system, we assume that the variables 

deviate only slightly from some operating condition

 Consider a system whose input is x(t)and output is 

y(t).The relationship between y(t)and x(t) is given by

The output equation may be expanded into a Taylor 

series about this equilibrium point as follows

Linear Approximation of Nonlinear Mathematical Models
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If the variation 𝑥 −  𝑥 is small, we may neglect the 
higher-order terms in 𝑥 −  𝑥

The output equation can be rewritten as

Or

where ,

This indicates that 𝑦 −  𝑦 is proportional to 𝑥 −  𝑥
which gives a linear mathematical model for the 
nonlinear system

Linear Approximation of Nonlinear Mathematical Models (2)
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 The linearization technique presented here is valid in 

the vicinity of the operating condition

 If the operating conditions vary widely, however, 

such linearized equations are not adequate, and 

nonlinear equations must be dealt with

Linear Approximation of Nonlinear Mathematical Models (3)
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 Linearize the nonlinear equation: 

in the region 5 ≤x ≤ 7, 10 ≤ y ≤12. Find the error if the 

linearized equation is used to calculate the value of z

when x=5, y=10

Solution:

Choose  𝑥 ,  𝑦 as the average values of the given ranges

Then 

Example
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Expanding the nonlinear equation into a Taylor series 

about points 𝑥 =  𝑥 , 𝑦 =  𝑦 and neglecting the higher-

order terms

Where

Example (2)
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Hence the linearized equation is

or

When x=5, y=10,the value of z given by the linearized 

equation is

The exact value of z is z = xy =50

The error is thus 50-49=1 or 2%

Example (3)
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 Check the textbook examples and solutions (Pages 

46-60)

 Sheet #1 includes Chapter 2 problems.

Example Problems and Solutions
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