
 

 EE 392: Control Systems & Their Components 

Lab 3: Suspension system control using root locus control method  

3.1 Introduction  

Designing an automotive suspension system is an interesting and challenging control problem. When 

the suspension system is designed, a 1/4 model (one of the four wheels) is used to simplify the problem 

to a 1D multiple spring-damper system. A diagram of this system is shown below in Fig.1.  

This model is for an active suspension system where an actuator is included that is able to generate the 

control force 𝑈 to control the motion of the bus body and 𝑊 is the disturbance due road irregularities. 

A good automotive suspension system should have satisfactory road holding ability, while still providing 

comfort when riding over bumps and holes in the road. When the vehicle is experiencing any road 

disturbance (i.e. pot holes, cracks, and uneven pavement), the vehicle body should not have large 

oscillations, and the oscillations should dissipate quickly.  

Note: Since the distance X1-W is very difficult to measure, and the deformation of the tire (X2-W) is 

negligible, we will use the distance X1-X2 instead of X1-W as the output in our problem. Keep in mind 

that this is estimation. 

 

 
 
 

 

  
Fig. 1 Suspension system 



3.2 Time Domain modeling (Equations of motion) 

Applying Newton’s second law of motion for masses 𝑀1 , 𝑀2 we can get  

 

 
 

3.3 Transfer function modeling  

Applying Laplace transform for the previous equations will be  

 

 

 

 

 

 

 

 

 

 

 

Find the inverse of matrix A and then multiply with inputs 𝑈(𝑠)and 𝑊(𝑠) on the righthand side as 

follows: 

 

 

 

When we want to consider the control input 𝑈(𝑠) only, we set 𝑊(𝑠)  =  0. Thus we get the transfer 

function 𝐺1(𝑠) as in the following: 

 

When we want to consider the disturbance input 𝑊(𝑠) only, we set 𝑈(𝑠)  =  0. Thus we get the transfer 

function 𝐺2(𝑠) as in the following: 

 
 



3.4 Building SIMULINK model 

The SIMULINK model can be modeled  using discrete components (without ready-made transfer 

functions) as the following  

1. First, we will model the integrals of the accelerations of the masses. 

 

 

2. Next, we will start to model Newton's law. Newton's law for each of these masses can be 

expressed as section 3.2 

3. We will add in the forces acting on each mass. First, we will add in the force from Spring 1. This 

force is equal to a constant, k1 times the difference X1-X2 

4. We will add in the force from Damper 1. This force is equal to b1 times V1-V2. 

5. We will add in the force from Spring 2. This force acts only on Mass 2, but depends on the 

ground profile, W. Spring 2's force is equal to X2-W. 

6. We will add in the force from Damper 2. This force is equal to b2 times V2-d/dt(W). Since there 

is no existing signal representing the derivative of W we will need to generate this signal 

7.  Last force is the input U acting between the two masses. 

3.5 Root Locus design  

The root locus of an (open-loop) transfer function  is a plot of the locations (locus) of all possible 

closed-loop poles with proportional gain K and unity feedback. 

 

If we write    

Properties of root locus : 

 We will consider all positive values of K. In the limit as , the poles of the closed-loop 

system are  or the poles of . In the limit as , the poles of the closed-loop 

system are  or the zeros of . 

 No matter what we pick K to be, the closed-loop system must always have  poles, where  is 

the number of poles of . The root locus must have  branches, each branch starts at a pole 

of  and goes to a zero of . If  has more poles than zeros (as is often the 

case),  and we say that  has zeros at infinity.  



 In this case, the limit of  as  is zero. The number of zeros at infinity is , the 

number of poles minus the number of zeros, and is the number of branches of the root locus 

that go to infinity (asymptotes). 

 Since the root locus is actually the locations of all possible closed-loop poles, from the root locus 

we can select a gain such that our closed-loop system will perform the way we want. 

 If any of the selected poles are on the right half plane, the closed-loop system will be unstable.  

 The poles that are closest to the imaginary axis have the greatest influence on the closed-loop 

response, so even though the system has three or four poles, it may still act like a second or 

even first order system depending on the location(s) of the dominant pole(s). 

 

3.6 Relation between Root locus design and time domain response  

The time domain response can be adjusted using root locus by first identifying the natural frequency 

and damping ratio as the following 

𝜉 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =  
 ln 𝑂𝑆% 2

 ln 𝑂𝑆% 2 + 𝜋2
 

𝜔𝑛 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞. ≈
1 − 0.417𝜉 + 2.917𝜉2

𝑡𝑟
 

Where 𝑂𝑆% is the overshoot ratio and 𝑡𝑟  is the rise time. 

After that identify the positions of the new poles according to 𝜉, 𝜔𝑛   to make the overshoot less than 

𝑂𝑆%, the poles have to be in between the two white dotted lines of 𝜉 , and to make the rise time 

shorter than 𝑡𝑟 , the poles have to be outside of the white dotted semicircle of 𝜔𝑛 .The positions of the 

new poles corresponds to the pure gain –ve feedback controller  

Notes 

Generally, to get a small overshoot and a fast response, we need to select a gain corresponding to a 

point on the root locus near the real axis and far from the imaginary axis or the point that the root locus 

crosses the desired damping ratio line. But in this case, we need the cancellation of poles and zeros near 

the imaginary axis, so we need to select a gain corresponding to a point on the root locus near the zeros 

and percent overshoot line 

 

3.7 Adding a notch filter 

We will probably need two zeros near the two poles on the complex axis to draw the root locus, leading 

those poles to the compensator zeros instead of to the plant zeros on the imaginary axis. We'll also need 

two poles placed far to the left to pull the locus to the left. It seems that a notch filter (2-lead controller) 

will probably do the job. Let's try putting two poles two zeros. 



 

 

3.7 Lab requirements  

1. Model the suspension system using M-file and Simulink using the following parameters  

(M1)    1/4 bus body mass                        2500 kg 

(M2)    suspension mass                          320 kg 

(K1)    spring constant of suspension system     80,000 N/m 

(K2)    spring constant of wheel and tire        500,000 N/m 

(b1)    damping constant of suspension system    350 N.s/m 

(b2)    damping constant of wheel and tire       15,020 N.s/m 

(U)     control force 

2. design a feedback controller so that when the road disturbance (W) is simulated by a unit step 

input, the output (X1-X2) has a settling time less than 5 seconds and an overshoot less than 5%. 

For example, when the bus runs onto a 10 cm high step, the bus body will oscillate within a 

range of +/- 5 mm and will stop oscillating within 5 seconds. 

3. Find the open loop poles. What is the dominant poles ? 

4. Plot the root locus of the plant itself. Is the system stable? 

5. Find proper damping ratio and natural frequency for the pure gain controller  

6. Add a notch-filter controller by putting the poles at 30 and 60 and the zeros at 3+/-3.5i. draw 

the new root locus  

7. Find the gain of the compensator that satisfies the design requirements. 

8. Draw the step response of the open loop system and the closed loop system  

3.8 Useful Matlab commands 

tf , roots , rlocus , sgrid , step, conv (Hint: to add zeros and poles), rlocfind 

 

http://www.mathworks.com/help/toolbox/control/ref/tf.html
http://www.mathworks.com/help/toolbox/control/ref/roots.html
http://www.mathworks.com/help/toolbox/control/ref/rlocus.html
http://www.mathworks.com/help/toolbox/control/ref/sgrid.html
http://www.mathworks.com/help/toolbox/control/ref/step.html

