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System Modeling 

Physical setup and system equations 

The equations governing the motion of an aircraft are a very complicated set of six 

nonlinear coupled differential equations. However, under certain assumptions, they can 

be decoupled and linearized into longitudinal and lateral equations. Aircraft pitch is 

governed by the longitudinal dynamics. In this example we will design an autopilot that 

controls the pitch of an aircraft. The basic coordinate axes and forces acting on an aircraft 

are shown in Figure 1 given below. 

 

Figure 1: Aircraft Pitch System 

We will assume that the aircraft is in steady-cruise at constant altitude and velocity; thus, 

the thrust, drag, weight and lift forces balance each other in the x- and y-directions. We 

will also assume that a change in pitch angle will not change the speed of the aircraft 

under any circumstance (unrealistic but simplifies the problem a bit). Under these 



assumptions, the longitudinal equations of motion for the aircraft can be written as 

follows: 

                   (1) 

 

                                                                                                                                                    (2) 

For this system, the input will be the elevator deflection angle  and the output will be the 

pitch angle  of the aircraft. 

Transfer Function and State-Space Model 

Before finding the transfer function and state-space models, let's plug in some numerical 

values to simplify the modeling equations shown above: 

                                                          (3) 

              (4) 

                                                                                                (5) 

These values are taken from the data from one of Boeing's commercial aircraft. 

Transfer Function 

To find the transfer function of the above system, we need to take the Laplace transform 

of the above modeling equations. Recall that when finding a transfer function, zero initial 

conditions must be assumed. The Laplace transform of the above equations are shown 

below. 

                                                                                                                 (6) 

                                                                                                                 (7) 

                                                                                                                 (8) 

After few steps of algebra, you should obtain the following transfer function. 

                                                                                                                 (9) 

 

State-Space Model 

Recognizing the fact that the modeling equations above are already in the state-variable 

form, we can rewrite them as matrices as shown below. 

                                                                                                                             

                                                                                                                              (10) 



 

 

Since our output is pitch angle, the output equation is the following. 

 

                                                                                                                      (11) 

 

where the input is elevator deflection angle  and the output is the aircraft pitch angle . 

The above equations match the general, linear state-space form. 

                                                       (12) 

                                                      (13) 

In this part we will apply a state-space controller design technique. In particular, we will 

attempt to place the closed-loop poles of the system by designing a controller that 

calculates its control based on the state of the system. 

Controllability and Observability 

A system is controllable if there exists a control input, u(t), that transfers any state of the 

system to zero in finite time. It can be shown that an LTI system is controllable if and 

only if its controllabilty matrix, CO, has full rank (i.e. if rank(CO) = n where n is the 

number of states ).                  

    (14) 

All the state variables of a system may not be directly measurable, for instance if the 

component is in an inaccessible location. In these cases it is necessary to estimate the 

values of the unknown internal state variables using only the available system outputs. A 

system is observable if the initial state, x(t0), can be determined from the system output, 

y(t), over some finite time t0<t<tf. For LTI systems, the system is observable if and only 

if the observability matrix, OB, has full rank (i.e. if rank(OB) = n where n is the number 

of states). 

 

 

 (14) 

 
 



State Feedback Control Design  

The schematic of a full-state feedback control system is shown in Figure 2 (with D = 0). 

 

Figure 2: State feedback control system 

where 

K = control gain matrix 

x = [ α, q, θ ]' = state vector 

θdes = reference (r) 

δ = θdes - K x = control input (u) 

θ = output (y) 

Referring back to the state-space equations at the top of the page, we see that substituting 

the state-feedback law  =  - K x for  leads to the following. 

                      (16) 

                                                      (17) 

Based on the above, matrix A - BK determines the closed-loop dynamics of our system. 

Specifically, the roots of the determinant of the matrix [ sI - ( A - BK ) ] are the closed-

loop poles of the system. Since the determinant of [ sI - ( A - BK ) ] is a third-order 

polynomial, there are three poles we can place and since our system is completely state 

controllable, we can place the poles anywhere we like. Recall that a "pole-placement" 

technique can be used to find the control gain matrix K to place the closed-loop poles in 

the desired locations. Note that this feedback law presumes that all of the state variables 

in the vector x are measured, even though  is our only output. If this is not the case, then 

an observer needs to be designed to estimate the other state variables. 



We know from the above that we can place the closed-loop poles of the system anywhere 

we would like. The question then that is left is, where should we place them? If we have a 

standard first- or second-order system, we then have relationships that directly relate pole 

locations to characteristics of the step response and can use these relations to place the 

poles in order to meet our given requirements. This process becomes more difficult if we 

have a higher-order system or zeros. With a higher-order system, one approach is to place 

the higher-order poles 5-10 times farther to the left in the complex plane than the 

dominant poles, thereby leading them to have negligible contribution to the transient 

response. The effect of zeros is more difficult to address using a pole-placement approach 

to control. Another limitation of this pole-placement approach is that it doesn't explicitly 

take into account other factors like the amount of required control effort. 

Linear Quadratic Regulation 

We will use a technique called the Linear Quadratic Regulator (LQR) method to 

generate the "best" gain matrix K, without explicitly choosing to place the closed-loop 

poles in particular locations. This type of control technique optimally balances the system 

error and the control effort based on a cost that the designer specifies that defines the 

relative importance of minimizing errors and minimizing control effort. In the case of the 

regulator problem, it is assumed that the reference is zero. Therefore, in this case the 

magnitude of the error is equal to the magnitude of the state. To use this LQR method, we 

need to define two parameters: the state-cost weighted matrix (Q) and the control 

weighted matrix (R). For simplicity, we will choose the control weighted matrix equal to 

1 (R=1), and the state-cost matrix (Q) equal to pC'C. Employing the vector C from the 

output equation means that we will only consider those states in the output in defining 

our cost. In this case,  is the only state variable in the output. The weighting factor (p) 

will be varied in order to modify the step response. In this case, R is a scalar since we 

have a single input system. 

Referring to the closed-loop state equations given above assuming a control law with 

non-zero reference,  = θdes - K x, we can then generate the closed-loop step response. 

Note that the response is scaled to model the fact that the pitch angle reference is a 0.2 

radian (11 degree) step.  

Examination of the above demonstrates that the response is too slow. We can tune the 

performance of our system to be faster by weighting the importance of the error more 

heavily than the importance of the control effort. More specifically, this can be done by 



increasing the weighting factor p. After some trial and error, we settle on a value of p = 

50.  

Adding Precompensation 

Unlike other design methods, the full-state feedback system does not compare the output 

to the reference; instead, it compares all states multiplied by the control matrix (K x) to 

the reference (see the schematic shown above). Thus, we should not expect the output to 

equal the commanded reference. To obtain the desired output, we can scale the reference 

input so that the output does equal the reference in steady state. This can be done by 

introducing a precompensator scaling factor called N_bar. The basic schematic of our 

state-feedback system with scaling factor (N_bar) is shown below. 

 

Figure 3: State feedback with input precompensation 

Observer Design 

When we can't measure all the states x (often the case in practice), we can build 

an observer to estimate them, while measuring only the output y = C x. For the magnetic 

ball example, we will add three new, estimated states to the system. The schematic is as 

follows: 



 

Figure 4: State estimator (observer) 

The observer is basically a copy of the plant; it has the same input and almost the same 

differential equation. An extra term compares the actual measured output y to the 

estimated output 𝑦̂; this will cause the estimated states 𝑥 to approach the values of the 

actual states x. The error dynamics of the observer are given by the poles of (A-LC). 

First, we need to choose the observer gain L. Since we want the dynamics of the observer 

to be much faster than the system itself, we need to place the poles at least five times 

farther to the left than the dominant poles of the system. If we want to use place, we need 

to put the three observer poles at different locations. Because of the duality between 

controllability and observability, we can use the same technique used to find the control 

matrix, but replacing the matrix B by the matrix C and taking the transposes of each 

matrix.  

Lab Requirements 

During the Lab period, you are required to: 



1. Model the aircraft pitch system shown in Figure 1 and Equation (10) in state 

space using MATLAB & SimuLink and draw the open loop step response. The 

parameters for the system are given in equation (10). 

2. Check the system stability, controllability, and observability using the appropriate 

Matlab commands. 

3. Find the value of the state feedback gain K using the LQR method and draw the 

system closed loop response. For a step reference of 0.2 radians, the design 

criteria are the following. 

 Overshoot less than 10% 

 Rise time less than 2 seconds 

 Settling time less than 10 seconds 

 Steady-state error less than 2% 

4. Find the value of the precompensator gain and plot the closed loop step response. 

5. Find the gain L of the state estimator and remodel the whole system and plot its 

unit step response for the reference input given in step 1.  

Useful MATLAB Commands 

  ss , ctrb , rank , lqr , step 

 

http://www.mathworks.com/help/toolbox/control/ref/ss.html
http://www.mathworks.com/help/toolbox/control/ref/ctrb.html
http://www.mathworks.com/help/techdoc/ref/rank.html
http://www.mathworks.com/help/toolbox/control/ref/lqr.html
http://www.mathworks.com/help/toolbox/control/ref/step.html

