Alexandria University
Faculty of Engineering
Electrical Engineering Department
Mid-term Exam, March 2015

جامعة الإسكندرية كلية الهندسة سم الهندسة الكهربية متحان نصف الفصل الدراسي الثاني (مارس ٢٠١٥)

Course Title and Code Number:

Control Systems and Components (EE391)

Third Year (Communications and Electronics)

Time Allowed: 45 Mins

Part II

اسم المقرر والرقم الكودي له: نظم التحكم ومكوناتها (EE391) السنة الدراسية الثالثة (اتصالات و الكترونيات)

> (15 marks) (7 marks)

Name: Seat number:

Answer only two questions in the dedicated space: Question 1:

For the block diagram shown in figure:

a) Find the transfer function $\frac{y}{u}$

b) Write a state space representation for G = S

c) Find the impulse response assuming zero initial conditions for G = S

Question 2:	:	7 marks

A single-input single-output (SISO) system having *n* state variables is described in the state space as:

$$\dot{x}(t) = Ax(t) + bu(t)$$

 $y(t) = c^T x(t) + du(t)$ a) Indicate the matrix size of x(t), y(t), u(t), and A, b, c, d.

b) For n=3, write an expression of the system's transfer function in terms of generic A, b, c, d.

c) For n=3, Draw the system block diagram showing individual system states.

Question 3:

(7 marks)

A system is characterized by the following state equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ a) Find the system transfer function $\frac{y(S)}{u(S)}$ and draw the system block diagram.

b) Compute the state transition matrix.

c) Obtain the solution to the state equation for a unit step input under zero initial conditions.

Laplace Transform Table

f(t)	F(s)		
f'(t)	sF(s) - f(0)		
f''(t)	$s^2 F(s) - s f(0) - f(0)$		
7	n-1		
$\frac{d^n f(t)}{dt^n}$	$\frac{s^{n}F(s) - \sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)}{F(s)e^{-st_{0}}}$		
	<i>i</i> = 0		
$f(t-t_0)u(t-t_0)$	$F(s)e^{-st_0}$		
	1		
$\int_{0} f(\tau) d\tau$	$\frac{1}{s}F(s)$		
ő	<u>-</u>		
f(t- au)	$e^{-s\tau}F(s)$		
$e^{-at}f(t)$	F(s+a)		
$f(0) = \lim_{t \to 0} f(t) = \lim_{s \to \infty} s F(s)$			
$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s)$			
$-t\cdot f(t)$	$\frac{d}{ds}F(s)$		
	ds^{1}		
$\delta(t)$	<u>1</u> 1		
$\delta_{-1}(t)$ or 1	$\frac{1}{2}$		
0-1(0) 01 1	<u>s</u>		
e^{-at}			
e	s+a		
t	$ \begin{array}{c} s+a \\ \frac{1}{s^2} \\ a \end{array} $		
t .	s ²		
$\sin(at)$	$\frac{a}{2}$		
	$s^2 + a^2$		
$\cos(at)$	$\frac{s}{s^2 + a^2}$		
	<u>ы ги</u>		

The Laplace Transformation

$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$

$$f(t) = \frac{1}{2 \pi i} \int_{\sigma - i \omega}^{\sigma + i \omega} F(s) e^{st} dt$$