
Memory
Interface

Dr. Mohammed Morsy

Memory Interface
• This chapter will discuss:

o Memory Devices:

ROM, EEPROM, SRAM, DRAM.

o Address Decoding.

o 8088 Memory Interface.

o 8086 Memory Interface.

Memory Types
• Every microprocessor-based system has a memory

system

• Two basic types:
o Read-only memory (ROM): It stores system software and permanent

system data

o Random access memory (RAM): It stores temporary data and application

software (data and instructions)

• Four commonly used memories:
o ROM

o Flashable EEPROM

o Static RAM (SRAM)

o Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM

Memory Devices
• Generic pin configuration:

Address Pins
• All memory devices have address inputs.

• They select a memory location within the memory
device.

• The number of address pins is related to the number of
memory locations.
o Common sizes today are 1K to 256M locations.

o Therefore, between 10 and 28 address pins are present.

• Address inputs are labeled from A0 to AN.

• N is the total number of address pins minus 1.

• Example: The 2K memory:
o It has 11 address lines.

o The labels are (A0 - A10).

o If the start address is 10000H so the end address is:

10000H + ((2*1024)10 = 800H)=107FFH

Data Pins
• All memory devices have a set of data outputs or

input/outputs.

• They are used to enter the data for storage or
extract the data for reading.

• The data pins are typically bi-directional in read-
write memories.
o The number of data pins is related to the size of the memory location.

o For example, an 8-bit wide (byte-wide) memory device has 8data pins.

o Catalog listing of 1K X 8 indicate a byte addressable 8Kbit memory with 10
address pins.

• Memory devices are defined by memory locations
times bit per location.

• Examples: 1K8, 16K1, 64K4.

Selection Pins
• Each memory device has at least one chip

select(𝐶𝑆) or chip enable(𝐶𝐸) or select(𝑆) pin that

enables the memory device.
o This enables read and/or write operations.

o If more than one are present, then all must be 0 in order to perform a read

or write.

• If they are active (logic 0), the memory device

performs a read or write operation.

• If they are inactive (logic 1), the memory is disabled

and do not do any operation.

• If more than one selection connection is present. All

must be activated to read or write.

Control Pins
• Each memory device has at least one control pin

• For ROMs, an Output Enable (𝑂𝐸) or Gate (𝐺) is

present.

• The 𝑂𝐸 pin enables and disables a set of tri-state

buffers.

• For RAMs, a read-write(R/ 𝑊) or write enable(𝑊𝐸)

and read enable(𝑂𝐸) are present.

• For dual control pin devices, it must be hold true

that both are not 0 at the same time.

ROMs
• Non-volatile memory: Maintains its state when

powered down.

• There are several forms:
o ROM: Factory programmed, cannot be changed. Older style.

o Programmable Read-Only Memory (PROM): Field programmable but only

once. Older style.

o Erasable Programmable Read-Only Memory (EPROM): Reprogramming

requires up to 20 minutes of high-intensity UV light exposure.

o Electrically Erasable Programmable ROM (EEPROM): Also called

Electrically Alterable ROM (EAROM) and NOVRAM (Non-Volatile RAM).

Writing is much slower than a normal RAM.

Used to store setup information, e.g. video card, on computer systems.

Can be used to replace EPROM for BIOS memory.

ROMs
• The 27XXX series of the EPROM includes:

o 2704 (512  8). 2708 (1K  8).

o 2716 (2K  8). 2732 (4K  8).

o 2764 (8K  8). 27128 (16K  8).

o 27256 (32K  8). 27512 (64K  8).

o 271024 (128K  8).

• Each EPROM has:

o Address pins

o 8 data connections

o One or more selection inputs and one output

enable pin.

Intel 2716 EPROM (2K X 8)

Intel 2716 EPROM (2K X 8)

SRAM
• SRAMs are virtually identical to the EPROM with

respect to the pinout although access time is faster

(250ns).

• SRAMs used for caches have access times as low as

10ns.

DRAM
• SRAMs are limited in size (up to about 128K X 8).

• DRAMs are available in much larger sizes, e.g., 64M X 1.

• DRAMs MUST be refreshed (rewritten) every 2 to 4 ms

Since they store their value on an integrated capacitor

that loses charge over time.

• This refresh is performed by a special circuit in the DRAM

which refreshes the entire memory.

• Refresh also occurs on a normal read or write.

• The large storage capacity of DRAMs make it

impractical to add the required number of address pins.

• Instead, the address pins are multiplexed.

TI TMS4464 DRAM (64K X 4)
• The TMS4464 can store a total of 256K bits of data.

• It has 64Kaddressable locations which means it

needs 16 address inputs, but it has only 8.

• The row address (A0 through A7) are placed on the

address pins and strobed into a set of internal

latches.

• The column address (A8 through A15) is then strobed

in using 𝐶𝐴𝑆.

TI TMS4464 DRAM (64K X 4)

TI TMS4464 DRAM (64K X 4)

Timing Diagram:

DRAMs
• Larger DRAMs are available which are organized as

1M X 1, 4M X 1, 16M X 1, 64M X 1, 256M X 1.

• DRAMs are typically placed on SIMM (Single In-line

Memory Modules) or DIMM (Dual In-line Memory

Modules) boards.

Memory Address Decoding
• The processor can usually address a memory space that

is much larger than the memory space covered by an

individual memory chip.

• In order to splice a memory device into the address

space of the processor, decoding is necessary.

• For example, the 8088 issues 20-bit addresses for a total

of 1MB of memory address space.

• However, the BIOS on a 2716 EPROM has only 2KB of

memory and 11address pins.

• A decoder can be used to decode the additional 9

address pins and allow the EPROM to be

• placed in any 2KB section of the 1MB address space.

NAND Decoder Example

NAND Decoder Example
• To determine the address range that a

device is mapped into

• NAND gate decoders are not often used
o Large fan-in NAND gates are not efficient

o Multiple NAND gate IC's might be required to perform such

decoding

o Rather the 3-to-8 Line Decoder (74LS138) is more common.

The 3-to-8 Line Decoder
(74LS138)

Sample Decoder Circuit

Dual 2-to-4 Line Decoder
• 74LS139 is a dual 2-to-4 line decoder

Programmable Decoder
• Programmable Logic Devices (PLDs) can be used

as a decoder

• PLDs come in three varieties:

o PLA (Programmable Logic Array)

o PAL (Programmable Array Logic)

o GAL (Gated Array Logic)

• PLDs have been around since the mid-1970s but

have only recently appeared in memory systems

(PALs have replaced PROM address decoders).

• PALs and PLAs can be fuse-programmed (like the

PROM) or erasable (like the EPROM).

AMD 16L8 PAL decoder

Example

8088 and 80188 (8-bit)
Memory Interface

• The memory system "sees" the 8088 as a

device with:

o 20 address connections (A19 to A0).

o 8 data bus connections (AD7 to AD0).

o 3 control signals: IO/ 𝑀, 𝑅𝐷, and 𝑊𝑅.

• We'll present examples of the 8088 interfacing

with:

o 32K of EPROM (at addresses F8000H through

FFFFFH).

o 512K of SRAM (at addresses 00000H through 7FFFFH).

8088 and 80188 (8-bit) EPROM

Memory Interface Example
• The EPROM interface uses a 74LS138 (3-to-8

line decoder) plus 8 2732 (4K X 8) EPROMs.

• The EPROM will also require the generation of

a wait state.

o The EPROM has an access time of 450ns .

o The 74LS138 requires 12ns to decode.

o The 8088 runs at 5MHz and only allows 460ns for

memory to access data.

o A wait state adds 200ns of additional time

8088 and 80188 (8-bit) EPROM

Memory Interface Example

8088 and 80188 (8-bit) SRAM
Memory Interface Example

8086,80186, 80286 and 80386

Memory Interface
• These machines differ from the

8088/80188 in several ways:
o The data bus is 16-bitswide.

o The IO/ 𝑀 pin is replaced with M/𝐼𝑂 (8086/80186) and 𝑀𝑅𝐷𝐶
and 𝑀𝑊𝑇𝐶 for 80286 and 80386SX.

o 𝐵𝐻𝐸, Bus High Enable, control signal is added.

o Address pin A0 (or 𝐵𝐿𝐸, Bus Low Enable) is used differently.

• The 16-bit data bus presents a new problem:
o The microprocessor must be able to read and write data

to any 16-bit location in addition to any 8-bit location.

8086,80186, 80286 and 80386

Memory Interface
• The data bus and memory are divided into banks:

• BHE and BLE are used to select one or both:

8086,80186, 80286 and 80386

Memory Interface
• Bank selection can be accomplished in two ways:

o Separate write decoders for each bank (which drive 𝐶𝑆).

o A separate write signal (strobe) to each bank (which drive

𝑊𝐸).

Note that 8-bit read requests in this scheme are handled by

the microprocessor (it selects the bits it wants to read from

the 16-bits on the bus).

• It does not seem to be a big difference between

these methods.

• Note in either method that A0 does not connect to

memory and bus wire A1 connects to memory pin

A0, A2 to A1, etc.

80386SX 16-bit Memory Interface

Example (Separate Decoders)

80386DX and 80486 Memory

Interface
• 80386DX and 80486 have 32-bit data buses and

therefore 4 banks of memory.

• 32-bit, 16-bitand 8-bit transfers are accomplished by
different combinations of the bank selection signals
𝐵𝐸3, 𝐵𝐸2, 𝐵𝐸1, 𝐵𝐸0.

• The Address bits A0 and A1are used within the
microprocessor to generate these signals.

• They are don't cares in the decoding of the 32-bit
address outside the chip (using a PLD such as the
PAL 16L8).

• The high clock rates of these processors usually
require wait states for memory access.

Pentium Memory Interface
• The Pentium, Pentium Pro, Pentium II and III contain

a 64-bit data bus.

• Therefore, 8 decoders or 8 write strobes are needed

as well as 8 memory banks.

• The write strobes are obtained by combining the

bank enable signals (𝐵𝐸𝑥) with the 𝑀𝑊𝑇𝐶 signal.

• 𝑀𝑊𝑇𝐶 is generated by combining the M/𝐼𝑂 and

W/ 𝑅 signals.

Pentium Memory Interface

Pentium Memory Interface

Example

Pentium Memory Interface

Example
• In order to map the previous memory interface into

address space FFF80000H-FFFFFFFFH

Error Detection and Correction

in Memory Devices
• Memory devices use error detection and correction

methods to detect and correct memory storing

errors.

• Error detection and correction methods attach

extra bits to data strings which can help in error

detection and correction.

• In this section we will discuss:
o Parity checking

o Checksum tests

o Cyclic Redundancy Check

o Hamming code error correction

Parity Checking
• Parity checking is used to detect single bit errors in

the memory.

• The current trend is away from parity checking.

• Parity checking adds 1bit for every 8 data bits.

o For EVEN parity, the 9th bit is set to yield an even number of

1's in all 9 bits.

o For ODD parity, the 9th bit is set to make this number odd.

• For 72-pin SIMMs, the number of data bits is 32 + 4 =

36 (4parity bits).

Parity for Memory Error

Detection

Parity for Memory Error

Detection
• This circuit generates EVEN or ODD parity for the 9-

bit number placed on its inputs.

• Typically, for generation, the 9th input bit is set to 0.

• This circuit also checks EVEN or ODD parity for the 9-
bit number.

• In this case, the 9th input bit is connected to the 9th

bit of memory.

• For example, if the original byte has an even # of 1's
(with 9th bit at GND), the parity bit is set to 1 (from
the EVEN output).

• If the EVEN output goes high during the check, then
an error occurred.

Parity for Memory Error

Detection

Checksum Error Detection
• This parity scheme can only detect a single bit error.

• Block-Check Character (BCC) or Checksum can

detect multiple bit errors.

• This is simply the two's complement sum (the

negative of the sum) of the sequence of bytes.

• No error occurred if adding the data values and

the checksum produces a 0.

Checksum Error Detection
• For example

• If 45 changes to 44 AND 04 changes to 05, the error

is missed.

CRC Error Detection
• Cyclic Redundancy Check (CRC) is commonly

used to check data transfers in hardware such as

hard drives.

• Treats data as a stream of serial data n-bits long.

• The bits are treated as coefficients of a

characteristic polynomial, M(X) of the form:

where b0 is the least significant bit while bn is

the most significant bit.

CRC Error Detection
• For example

• The CRC is found by applying the following equation

• G(X)is the called the generator polynomial and has

special properties.

CRC Error Detection
• A commonly used polynomial is:

• The remainder R(X) is appended to the data block.

• When the CRC and R(X)is computed by the

receiver, R(X)should be zero.

• Since G(X)is of power 16, the remainder, R(X),

cannot be of order higher than 15.

• Therefore, no more than 2 bytes are needed

independent of the data block size.

CRC Error Detection Example
• For the data stream 26F0H:

Error Correction
• Parity, BCC and CRC are only mechanisms for error

detection.

• The system is halted if an error is found in memory.

• Error correction is starting to show up in new
systems.

• SDRAM has ECC (Error Correction Code).

• Correction will allow the system to continue its
operation.

• If two errors occur, they can be detected but not
corrected.

• Error correction will of course cost more in terms of
extra bits.

Hamming Codes
• Error correction is based on Hamming Codes.

• There is lots of theory here but our focus will be on
implementation.

• The objective is to correct single bit errors in an 8-bit
data byte.

• We need 4 parity bits to correct single bit errors.

• Note that the parity bits are at bit positions that are
powers of 2.

• The data bits of the byte are labeled X3, X5, X6, X7,
X9, X10, X11and X12.

• The parity bits are labeled P1, P2, P4 and P8.

Calculating the Hamming

Code
The key to the Hamming Code is the use of extra parity bits to allow the
identification of a single error. Create the code word as follows:

• Mark all bit positions that are powers of two as parity bits.(positions 1, 2, 4,
8, 16, etc)

• All other bit positions are for the data to be encoded. (positions 3, 5, 6, 7,
9, 10, 11, 12, 13, 14, 15, 17, etc.)

• Each parity bit calculates the parity for some of the bits in the code word.
The position of the parity bit determines the sequence of bits that it
alternately checks and skips.
Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. (1, 3, 5, 7, 9,
11, 13, 15,...)
Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc.(2, 3, 6, 7,
10, 11, 15,...)
Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. (4, 5, 6, 7,
12, 13, 14, 15, 20, 21, 22, 23, ...)
Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc. (8-15, 24-
31, 40-47,...)

• Set a parity bit to 1 if the total number of ones in the positions it checks is
odd. Set a parity bit to 0 if the total number of ones in the positions it
checks is even.

Hamming Code Example

Hamming Code Example

Parity for Memory Error

Correction
• The 74LS636 corrects errors

by storing 5 parity bits with

each byte of data.

• The pinout consists of: 8

data I/O pins, 5 check bit

I/O pins, 2 control pins, 2

error outputs (Single error

flag (SEF), Double error flag

(DEF)).

