Interrupts

Dr. Mohammed Morsy

Interrupts

- This chapter will discuss:
 - o Software Interrupt.
 - Hardware Interrupt.
 - Expanding the Interrupt Structure.
 - 8259A Programmable Interrupt Controller.

Introduction

- Interrupt is useful when interfacing I/O device that provide or require data at relatively low data transfer rates.
- Interrupt processing is an alternative to polling.

Introduction

- The Intel microprocessors support hardware interrupts through:
 - Two pins that allow interrupt requests, INTR and NMI
 - o One pin that acknowledges, \overline{INTA} , the interrupt requested on INTR.
- And software interrupts through instructions:
 - o INT, INTO, INT 3, BOUND
- Control is provided through
 - IF and TF flag bits
 - IRET and IRETD

Software Interrupts

INT and INT 3 behave in a similar way.

INT n

- o Calls ISR located by vector n at address (n*4).
- BOUND and INTO are both conditional:

BOUND AX, DATA; Compares AX with DATA

- AX is compared with DATA and DATA+1, if less than a type 5 interrupt occurs.
- AX is compared with DATA+2 and DATA+3, if greater than a type 5 interrupt occurs.

INTO

- Checks the overflow flag (OF). If OF=1, the ISR stored in vector type number 4 is called.
- An IRET instruction returns six bytes from the stack:
 two for the IP, two for the CS, and two for the flags

Real Mode Interrupts

- After the execution of each instruction, the microprocessor determines whether an interrupt is active by checking, in order:
 - Other instruction executions
 - o Single-step
 - o NMI
 - Coprocessor segment overrun
 - o INTR
 - o INT

Real Mode Interrupts

- If one or more of these conditions are present, then:
 - FLAG register contents are pushed onto the stack
 - Both the interrupt (IF) and trap (TF) flags are cleared, which disables the INTR pin and the trap or single-step feature.
 - The CS and IP contents are pushed onto the stack.
 - The interrupt vector contents are fetched and loaded into CS and IP and execution starts the ISR.
 - On IRET, CS, IP and FLAGS are popped.
 IF and TF are set to the state prior to the interrupt.

- There are two types of hardware interrupts:
 - o Non-maskable interrupt (NMI).
 - o Interrupt Request (INTR).
- NMI is decoded internally.
- When NMI input is activated, type 2 interrupt occurs.
- It is an edge-triggered input that requests an interrupt on the positive edge.
- Before the +ve edge, the NMI pin must remain low for at least two clocking periods.
- After the +ve edge, the NMI must remain high until it is recognized by the microprocessor.
- It is often used for parity errors and other major system faults, such as power failures.

- The INTR pin must be externally decoded to select a vector.
 - Any vector is possible, but the interrupt vectors between 20H and FFH are usually used (Intel reserves vectors between 00H and 1FH).
- \overline{INTA} is an output of the microprocessor to signal the external decoder to place the interrupt number on data bus connections D_7 - D_0 .
- The INTR pin is set by an external device (8259A) and cleared in the ISR.
 - o The input is automatically disabled by the microprocessor once it is recognized and re-enabled by IRET or IRETD instruction.

- The INTR pin must be externally decoded to select a vector.
- The interrupt vectors between 20H and FFH are usually used.
- INTA is an output of the microprocessor to signal the external decoder to place the interrupt number on data bus connections D_7 - D_0 .
- INTR pin is set by the external device and cleared in the ISR.
- Timing diagram of the handshake:

 The simplest method of generating an interrupt vector:

Tri-state Buffer for Generating the Interrupt Vector:

An Example 82C55 Interrupt Configuration:

Handling more than one IRQ:

- If any of $\overline{IRQ_X}$ goes low, the NAND goes low requesting an interrupt.
- If more than one IRQ goes low, a unique interrupt vector is generated and an interrupt priority is defined.

Daisy-Chained Mechanism for Multiple IRQs:

- Setting the daisy-chain priority requires additional software execution time.
- When a daisy-chain is used to request an interrupt, the data bus connections are pulled to high.
- When the INTR goes high, the hardware does not give any indication about the interrupt reason.
- The interrupt service procedure (ISP) polls the 8255s to determine which output caused the interrupt.

;Interrupt service procedure that resolves priority in a daisy-chained interrupt scheme

CONTROL 1 CONTROL 2 MASK 1 MASK 2 INTERRUPT

EQU 03H; first 8255A EQU 07H; second 8255A EQU 01H;INTR B EQU 08H:INTR A PROC NEAR PUSH AX IN AL, CONTROL 1 TEST AL, MASK 1 JNZ LEVEL 0 TEST AL, MASK 2 JNZ LEVEL_1 IN AL, CONTROL 2 TEST AL, MASK_1 JNZ LEVEL 2

TEST AL, MASK_2 JNZ LEVEL 4 RFT **FNDP**

INTERRUPT

8259A Programmable Interrupt Controller

- The 8259A adds 8 vectored priority encoded interrupts to the microprocessor.
- It can be expanded to 64 interrupt requests using one master 8259A and 8 slave units

 $\overline{\text{CS}}$ and $\overline{\text{WR}}$ must be decoded. Other connections are direct to microprocessor.

8259A Programmable Interrupt Controller

The meaning of the other connections:

- \overline{WR} : Connects to a write strobe signal (one of 8 for the Pentium).
- \overline{RD} : Connects to the \overline{IORC} signal.
- INT: Connects to the INTR pin on the microprocessor.
- *INTA*: Connects to the *INTA* pin on the microprocessor.
- A0: Selects different command words in the 8259A.
- \overline{CS} : Chip select enables the 8259A for programming and control.
- SP/EN: Slave Program (1 for master, 0 for slave)/Enable Buffer (controls the data bus transceivers when in buffered mode).
- CAS2-CAS0: Used as outputs from the master to the slaves in cascaded systems.

8259A Programmable Interrupt Controller Interface

Cascading Multiple 8259A

- Programmed using Initialization (ICWs) and Operation (OCWs) Command Words.
- There are 4 ICWs.
 - o At power-up, ICW1, ICW2 and ICW4 must be sent.
 - If ICW1 indicates cascade mode, then ICW3 must also be sent.
- ICW1:

• ICW2:

These bits determine the vector numbers used with the IRQ inputs.

For example, if programmed to generate vectors 08H-0FH, 08H is placed into these bit positions.

• ICW3:

This register is treated as a mask, with 1's indicating the IRQ channels connected to master/slave 8259As.

0 = IR Input has a slave

1 = IR Input does not have a slave

• ICW4:

- Fully nested mode allows the highest-priority interrupt request from a slave to be recognized by the master while it is processing another interrupt from a slave.
- AEOI, if 1, indicates that an interrupt automatically resets the interrupt request bit, otherwise OCW2 is consulted for EOI processing.

- The Operation Command Words (OCWs) are used to direct the operation of the 8259A.
- OCW1:

OCW1 is used to read or set the interrupt mask register.

If a bit is set, it will turn off (mask) the corresponding interrupt input.

• OCW2:

Only programmed when the AEOI mode in ICW4 is 0. Allows you to control priorities after each interrupt is processed

• OCW2:

- Non-specific EOI: Here, the ISR sets this bit to indicate EOI.
 The 8259A automatically determines which interrupt was active and re-enables it and lower priority interrupts.
- o Specific EOI: ISR resets a specific interrupt request given by L_2 - L_0 .
- Rotate commands cause priority to be rotated w.r.t. the current one being processed.
- Set priority: allows the setting of the lowest priority interrupt (L_2-L_0) .

• OCW3:

- o If polling is set, the next read operation will read the poll word. If the leftmost bit is set in the poll word, the rightmost 3 bits indicate the active interrupt request with highest priority.
- Allows ISR to service highest priority interrupt.

- There are three status registers, Interrupt Request Register (IRR), In-Service Register (ISR) and Interrupt Mask Register (IMR).
 - IRR: Indicates which interrupt request lines are active.
 - ISR: Level of the interrupt being serviced.
 - IMR: A mask that indicates which interrupts are on/off.

 ISR update procedure with rotating priority configured.

Example: Interfacing 16550 UART using 8259A

- In the following configuration the 16550 is connected to the 8259A through IRO.
- An interrupt is generated, if enabled through the interrupt control register, when either:
 - The transmitter is ready to send another character.
 - o The receiver has received a character.
 - An error is detected while receiving data.
 - A modem interrupt occurs.
- The 16550 is decoded at 40H and 47H.
- The 8259A is decoded at 48H and 49H.

Interfacing 16550 UART using 8259A

16550 UART Interrupts

