
The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing

EIGHTH EDITION

Barry B. Brey

Chapter 13: Direct Memory Access and DMA-Controlled I/O

Introduction

- The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled.
- This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed.
- Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors.

Chapter Objectives

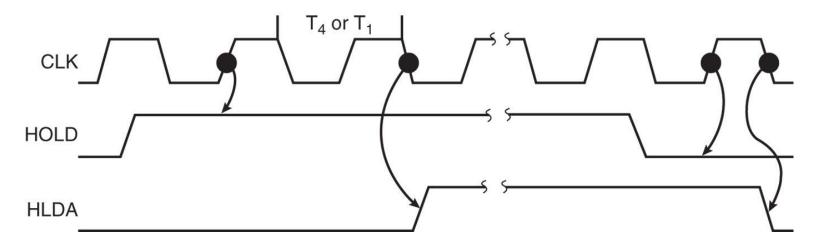
Upon completion of this chapter, you will be able to:

- Describe a DMA transfer.
- Explain the operation of the HOLD and HLDA direct memory access control signals.
- Explain the function of the 8237 DMA controller when used for DMA transfers.
- Program the 8237 to accomplish DMA transfers.

Chapter Objectives

cont.)

Upon completion of this chapter, you will be able to:


- Describe the disk standards found in personal computer systems.
- Describe the various video interface standards found in the personal computer.

13-1 BASIC DMA OPERATION

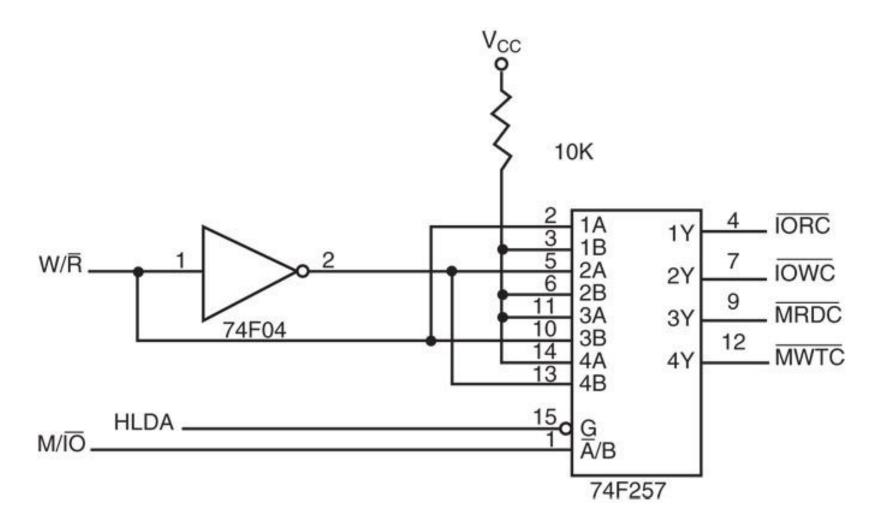
- Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system.
 - the HOLD pin is an input used to request a DMA action
 - the HLDA pin is an output that acknowledges the DMA action
- Figure 13–1 shows the timing that is typically found on these two DMA control pins.

Figure 13–1 HOLD and HLDA timing for the microprocessor.

- HOLD is sampled in any clocking cycle
- when the processor recognizes the hold, it stops executing software and enters hold cycles
- HOLD input has higher priority than INTR or NMI
- the only microprocessor pin that has a higher priority than a HOLD is the RESET pin

- HLDA becomes active to indicate the processor has placed its buses at highimpedance state.
 - as can be seen in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA changes
- HLDA output is a signal to the requesting device that the processor has relinquished control of its memory and I/O space.
 - one could call HOLD input a DMA request input and HLDA output a DMA grant signal

Basic DMA Definitions

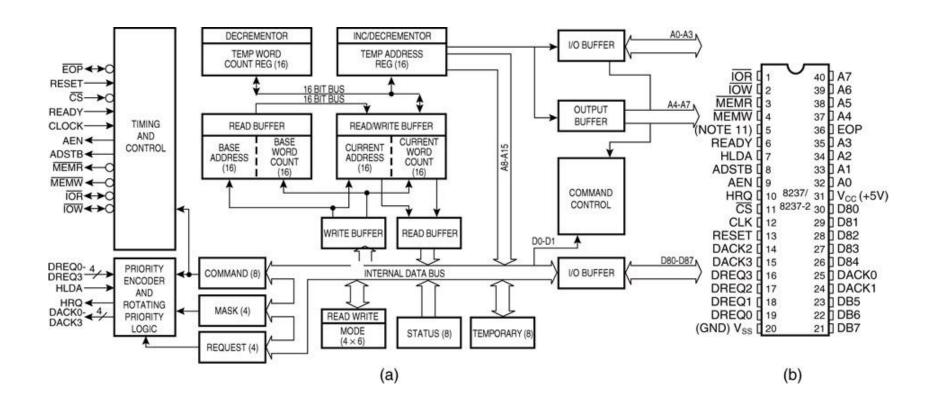

- Direct memory accesses normally occur between an I/O device and memory without the use of the microprocessor.
 - a DMA read transfers data from the memory to the I/O device
 - A DMA write transfers data from an I/O device to memory
- Memory & I/O are controlled simultaneously.
 - which is why the system contains separate memory and I/O control signals

- A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 - transferring data from memory to the I/O device
- A DMA write causes the MWTC and IORC signals to both activate.
- 8086/8088 require a controller or circuit such as shown in Fig 13–2 for control bus signal generation.
- The DMA controller provides memory with its address, and controller signal (DACK) selects the I/O device during the transfer.

Figure 13–2 A circuit that generates system control signals in a DMA environment.

- Data transfer speed is determined by speed of the memory device or a DMA controller.
 - if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns or 20 M bytes per second
 - if the DMA controller functions at a maximum rate of 15 MHz with 50 ns memory, maximum transfer rate is 15 MHz because the DMA controller is slower than the memory
- In many cases, the DMA controller slows the speed of the system when transfers occur.

- The switch to serial data transfers in modern systems has made DMA is less important.
- The serial PCI Express bus transfers data at rates exceeding DMA transfers.
- The SATA (serial ATA) interface for disk drives uses serial transfers at the rate of 300 Mbps
 - and has replaced DMA transfers for hard disks
- Serial transfers on main-boards between components using can approach 20 Gbps for the PCI Express connection.



13-2 THE 8237 DMA CONTROLLER

- The 8237 supplies memory & I/O with control signals and memory address information during the DMA transfer.
 - actually a special-purpose microprocessor whose job is high-speed data transfer between memory and I/O
- Figure 13–3 shows the pin-out and block diagram of the 8237 programmable DMA controller.

Figure 13–3 The 8237A-5 programmable DMA controller. (a) Block diagram and (b) pin-out. (Courtesy of Intel Corporation.)

- 8237 is not a discrete component in modern microprocessor-based systems.
 - it appears within many system controller chip sets
- 8237 is a four-channel device compatible with 8086/8088, adequate for small systems.
 - expandable to any number of DMA channel inputs
- 8237 is capable of DMA transfers at rates up to 1.6M bytes per second.
 - each channel is capable of addressing a full
 64K-byte section of memory and transfer up to
 64K bytes with a single programming

- Clock input is connected to the system clock signal as long as that signal is 5 MHz or less.
 - in the 8086/8088 system, the clock must be inverted for the proper operation of the 8237

CS

- Chip select enables 8237 for programming.
- The CS pin is normally connected to the output of a decoder.
- The decoder does not use the 8086/8088 control signal IO/M(M/IO) because it contains the new memory and I/O control signals (MEMR, MEMW, IOR and IOW).

8237 Pin Definitions RESET

- The reset pin clears the command, status, request, and temporary registers.
- It also clears the first/last flip-flop and sets the mask register.
 - this input primes the 8237 so it is disabled until programmed otherwise

8237 Pin Definitions READY

 A logic 0 on the **ready** input causes the 8237 to enter wait states for slower memory components.

HLDA

 A hold acknowledge signals 8237 that the microprocessor has relinquished control of the address, data, and control buses.

8237 Pin Definitions DREQ₀-DREQ₃

- DMA request inputs are used to request a transfer for each of the four DMA channels.
 - the polarity of these inputs is programmable, so they are either active-high or active-low inputs

DB₀-DB₇

 Data bus pins are connected to the processor data bus connections and used during the programming of the DMA controller.

IOR

 I/O read is a bidirectional pin used during programming and during a DMA write cycle.

IOW

• I/O write is a bidirectional pin used during programming and during a DMA read cycle.

EOP

- End-of-process is a bidirectional signal used as an input to terminate a DMA process or as an output to signal the end of the DMA transfer.
 - often used to interrupt a DMA transfer at the end of a DMA cycle

$A_0 - A_3$

- These address pins select an internal register during programming and provide part of the DMA transfer address during a DMA action.
 - address pins are outputs that provide part of the DMA transfer address during a DMA action

8237 Pin Definitions HRQ

 Hold request is an output that connects to the HOLD input of the microprocessor in order to request a DMA transfer.

8237 Pin Definitions DACK₀-DACK₃

- DMA channel acknowledge outputs acknowledge a channel DMA request.
- These outputs are programmable as either active-high or active-low signals.
 - DACK outputs are often used to select the DMA- controlled I/O device during the DMA transfer.

8237 Pin Definitions AEN

- Address enable signal enables the DMA address latch connected to the DB₇–DB₀ pins on the 8237.
 - also used to disable any buffers in the system connected to the microprocessor

8237 Pin Definitions ADSTB

 Address strobe functions as ALE, except it is used by the DMA controller to latch address bits A₁₅-A₈ during the DMA transfer.

MEMR

 Memory read is an output that causes memory to read data during a DMA read cycle.

MEMW

 Memory write is an output that causes memory to write data during a DMA write cycle.

8237 Internal Registers CAR

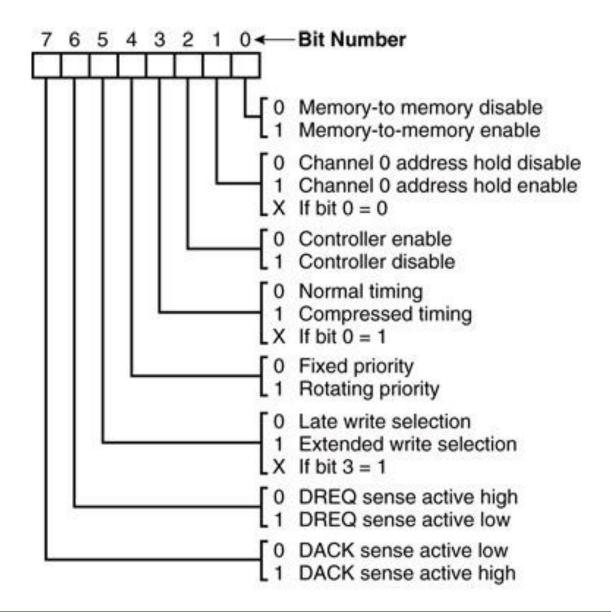
- The current address register holds a 16-bit memory address used for the DMA transfer.
 - each channel has its own current address register for this purpose
- When a byte of data is transferred during a DMA operation, CAR is either incremented or decremented.
 - depending on how it is programmed

8237 Internal Registers CWCR

- The current word count register programs a channel for the number of bytes (up to 64K) transferred during a DMA action.
- The number loaded into this register is one less than the number of bytes transferred.
 - for example, if a 10 is loaded to CWCR, then
 11 bytes are transferred during the DMA action

8237 Internal Registers BA and BWC

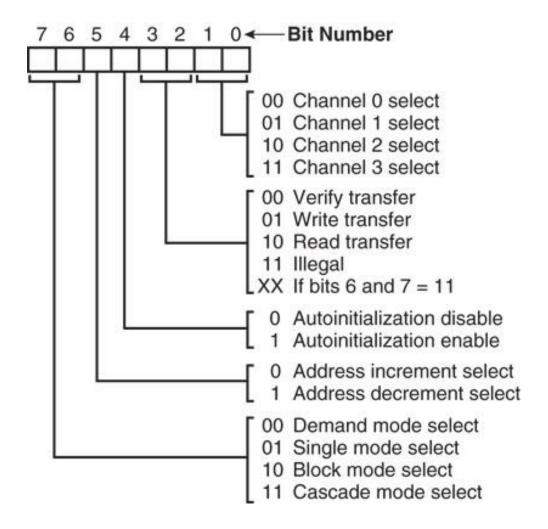
- The base address (BA) and base word count (BWC) registers are used when auto-initialization is selected for a channel.
- In auto-initialization mode, these registers are used to reload the CAR and CWCR after the DMA action is completed.
 - allows the same count and address to be used to transfer data from the same memory area



8237 Internal Registers CR

- The command register programs the operation of the 8237 DMA controller.
- The register uses bit position 0 to select the memory-to-memory DMA transfer mode.
 - memory-to-memory DMA transfers use DMA channel 0 to hold the source address
 - DMA channel 1 holds the destination address
- Similar to operation of a MOVSB instruction.

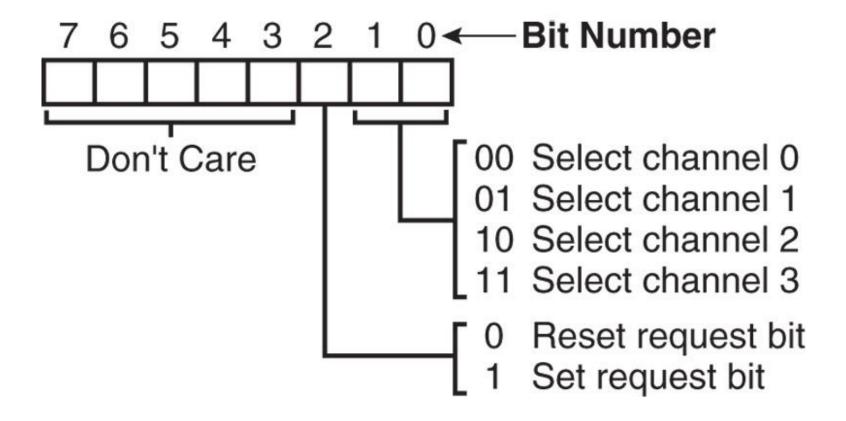
Figure 13–4 8237A-5 command register. (Courtesy of Intel Corporation.)



8237 Internal Registers MR

- The mode register programs the mode of operation for a channel.
- Each channel has its own mode register as selected by bit positions 1 and 0.
 - remaining bits of the mode register select operation, auto-initialization, increment/decrement, and mode for the channel

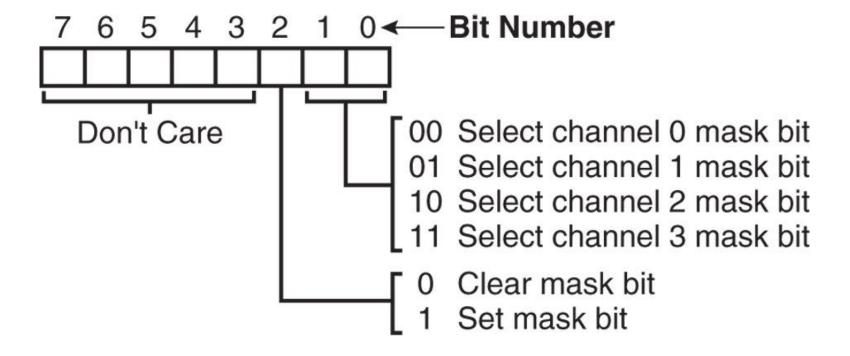
Figure 13–5 8237A-5 mode register. (Courtesy of Intel Corporation.)



8237 Internal Registers BR

- The **bus request register** is used to request a DMA transfer via software.
 - very useful in memory-to-memory transfers, where an external signal is not available to begin the DMA transfer

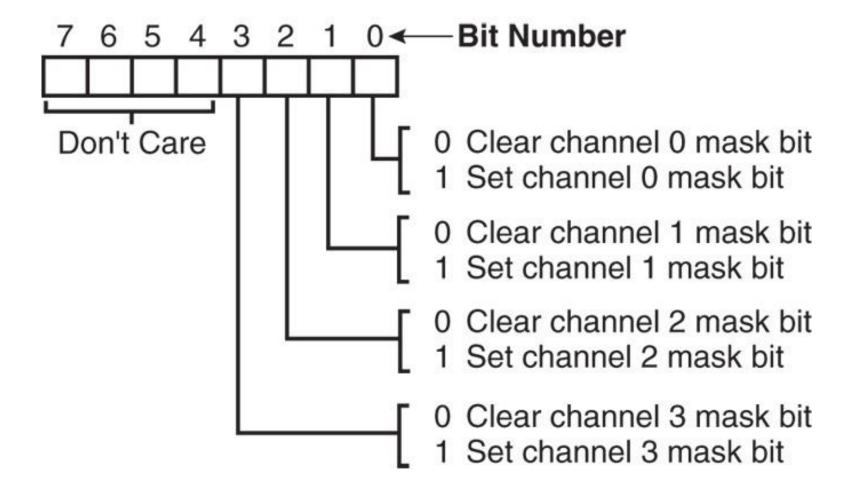
Figure 13–6 8237A-5 request register. (Courtesy of Intel Corporation.)



8237 Internal Registers MRSR

- The mask register set/reset sets or clears the channel mask.
 - if the mask is set, the channel is disabled
 - the RESET signal sets all channel masks to disable them

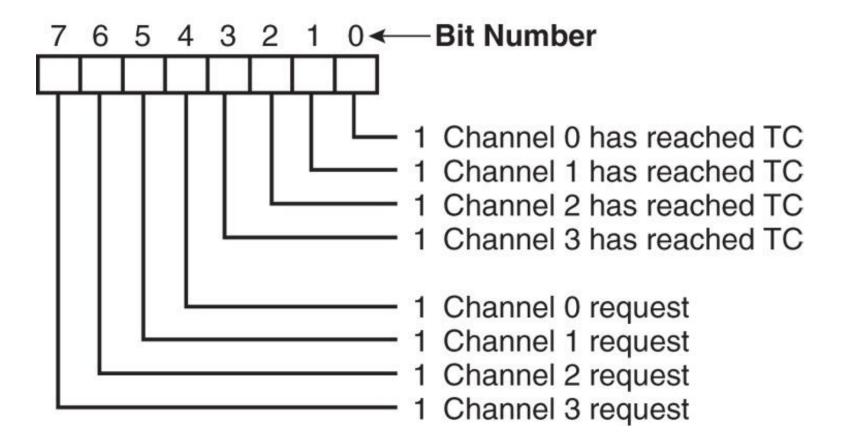
Figure 13–7 8237A-5 mask register set/reset mode. (Courtesy of Intel Corporation.)



8237 Internal Registers MSR

 The mask register clears or sets all of the masks with one command instead of individual channels, as with the MRSR.

Figure 13–8 8237A-5 mask register. (Courtesy of Intel Corporation.)



8237 Internal Registers SR

- The status register shows status of each DMA channel. The TC bits indicate if the channel has reached its terminal count (transferred all its bytes).
- When the terminal count is reached, the DMA transfer is terminated for most modes of operation.
 - the request bits indicate whether the DREQ input for a given channel is active

Figure 13–9 8237A-5 status register. (Courtesy of Intel Corporation.)

Software Commands

- Three software commands are used to control the operation of the 8237.
- These commands do not have a binary bit pattern, as do various control registers within the 8237.
 - a simple output to the correct port number enables the software command
- Fig 13–10 shows I/O port assignments that access all registers and the software commands.

Figure 13–10 8237A-5 command and control port assignments. (Courtesy of Intel Corporation.)

Signals						Onevelien			
A3	A2	A1	A0	ĪŌR	ĪŌW	Operation			
1	0	0	0	0	1	Read Status Register			
1	0	0	0	1	0	Write Command Register			
1	0	0	1	0	1	Illegal			
1	0	0	1	1	0	Write Request Register			
1	0	1	0	0	1	Illegal			
1	0	1	0	1	0	Write Single Mask Register Bit			
1	0	1	1	0	1	Illegal			
1	0	1	1	1	0	Write Mode Register			
1	1	0	0	0	1	Illegal			
1	1	0	0	1	0	Clear Byte Pointer Flip/Flop			
1	1	0	1	0	1	Read Temporary Register			
1	1	0	1	1	0	Master Clear			
1	1	1	0	0	1	Illegal			
1	1	1	0	1	0	Clear Mask Register			
1	1	1	1	0	1	Illegal			
1	1	1	1	1	0	Write All Mask Register Bits			

8237 Software Commands *Master clear*

- Acts exactly the same as the RESET signal to the 8237.
 - as with the RESET signal, this command disables all channels

Clear mask register

Enables all four DMA channels.

8237 Software Commands Clear the first/last flip-flop

- Clears the first/last (F/L) flip-flop within 8237.
- The F/L flip-flop selects which byte (low or high order) is read/written in the current address and current count registers.
 - if F/L = 0, the low-order byte is selected
 - if F/L = 1, the high-order byte is selected
- Any read or write to the address or count register automatically toggles the F/L flip-flop.

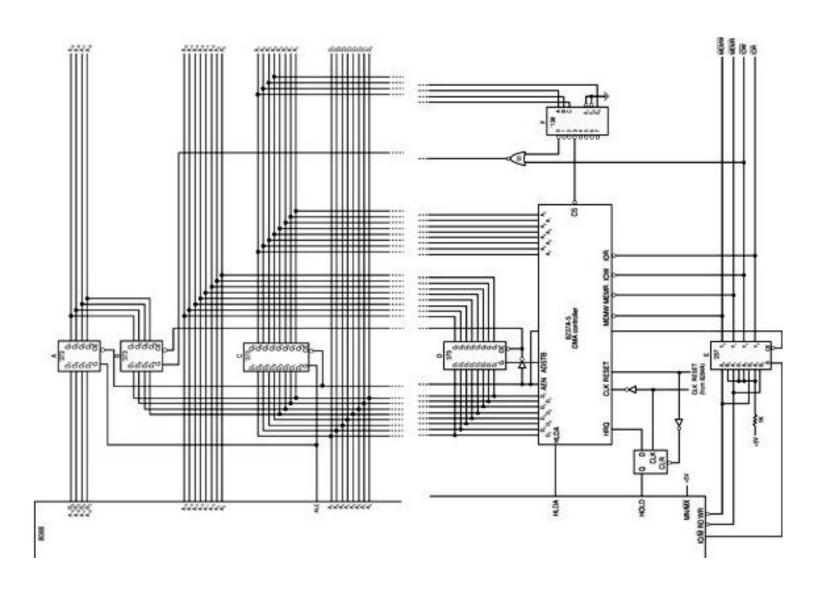
Programming the Address and Count Registers

- Figure 13–11 shows I/O port locations for programming the count and address registers for each channel.
- The state of the F/L flip-flop determines whether the LSB or MSB is programmed.
 - if the state is unknown, count and address could be programmed incorrectly
- It is important to disable the DMA channel before address and count are programmed.

Figure 13–11 8237A-5 DMA channel I/O port addresses. (Courtesy of Intel Corporation.)

Ch	Desirtes	Operation	Signals							turnal Pro Pro	D
Channel	Register		CS	IOR	IOW	A3	A2	A1	A0	Internal Flip-Flop	Data Bus DB0-D87
0	Base and Current Address	Write	0	1	0	0	0	0	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	0	0	0 1	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	0	1	0	W0-W7 W8-W15
1	Base and Current Address	Write	0	1	0	0	0	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	1	1	0	W0-W7 W8-W15
2	Base and Current Address	Write	0	1	0	0	1	0	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	0	0	0 1	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	0	1	0	W0-W7 W8-W15
3	Base and Current Address	Write	0	1	0	0	1	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	1	1	0	W0-W7 W8-W15

- Four steps are required to program the 8237:
 - (1) The F/L flip-flop is cleared using a clear F/L command
 - (2) the channel is disabled
 - (3) LSB & MSB of the address are programmed
 - (4) LSB & MSB of the count are programmed
- Once these four operations are performed, the channel is programmed and ready to use.
 - additional programming is required to select the mode of operation before the channel is enabled and started



The 8237 Connected to the 80X86

- The address enable (AEN) output of 8237 controls the output pins of the latches and outputs of the 74LS257 (E).
 - during normal operation (AEN=0), latches
 A & C and the multiplexer (E) provide address
 bus bits A₁₉-A₁₆ and A₇-A₀
- See Figure 13-12.

Figure 13–12 Complete 8088 minimum mode DMA system.

- The multiplexer provides the system control signals as long as the 80X86 is in control of the system.
 - during a DMA action (AEN=1), latches A & C are disabled along with the multiplexer (E)
 - latches D and B now provide address bits A_{19} – A_{16} and A_{15} – A_{8}
- Address bus bits A₇-A₀ are provided directly by the 8237 and contain part of the DMA transfer address.
- The DMA controller provides conntrol signals.

Memory-to-Memory Transfer with the 8237

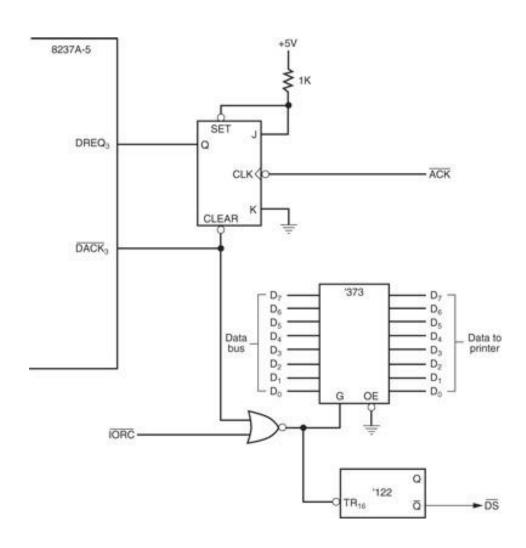
- Memory-to-memory transfer is much more powerful than the automatically repeated MOVSB instruction.
 - most modern chip sets do not support the memory-to-memory feature
- 8237 requires only 2.0 μs per byte, which is over twice as fast as a software data transfer.
- This is not true if an 80386, 80846, or Pentium is in use in the system.

Sample Memory-to-Memory DMA Transfer

- Suppose contents of memory locations 10000H–13FFFH are to be transferred to locations 14000H–17FFFH.
 - accomplished with a repeated string move instruction or with the DMA controller
- Example 13–1 shows the software required to initialize the 8237 and program latch B in Figure 13–12 for this DMA transfer.

Sample Memory Fill Using the 8237

- To fill an area of memory with the same data, the channel 0 source register is programmed to point to the same address throughout the transfer.
 - accomplished with the channel 0 hold mode
- The controller copies the contents of this single memory location to an entire block of memory addressed by channel 1.
- This has many useful applications.



DMA-Processed Printer Interface

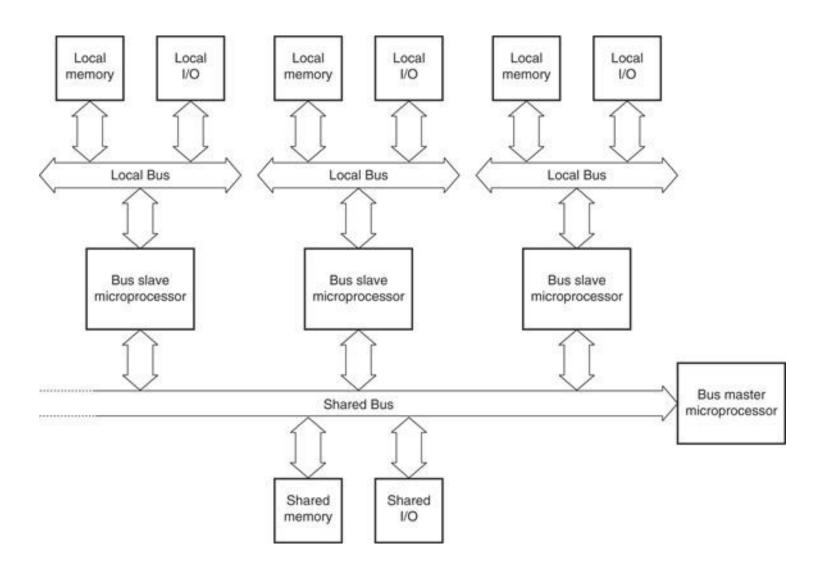
- Fig 13–13 illustrates the hardware added to Fig13–12 for a DMA-controlled printer interface.
 - software to control this interface is simple as only the address of the data and number of characters to be printed are programmed
- Once programmed, the channel is enabled, and the DMA action transfers a byte at a time to the printer interface.
 - each time a printer ACK signal is received

Figure 13–13 DMA-processed printer interface.

13-3 SHARED BUS OPERATION

- Current computer systems have so many tasks to perform that some systems use more than one processor to accomplish the work.
 - called a multiprocessing or a distributed system
 - a system that performs more than one task is called a multitasking system
- In systems that contain more than one processor, some method of control must be developed and employed.

- In a distributed, multiprocessing, multitasking environment, each microprocessor accesses two buses.
 - (1) the local bus
 - (2) the remote or shared bus
- 80286 uses the 82289 bus arbiter for shared bus operation.
 - -80386/80486 uses the 82389
- The Pentium—Pentium 4 directly support a multiuser environment.

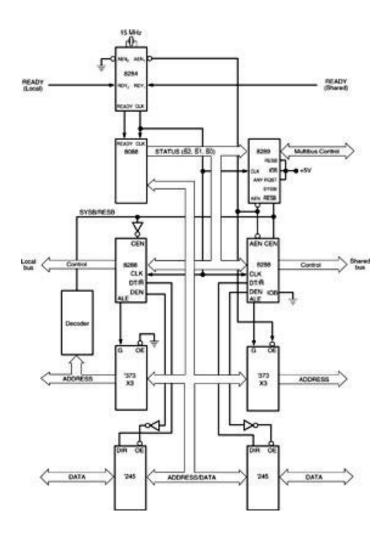


- The local bus is connected to memory and I/O directly accessed by a single processor with no special protocol or access rules.
- The remote (shared) bus contains memory and I/O that are accessed by any processor in the system.

- The bus master is the main microprocessor in the PC.
 - what we call the local bus in the PC is the shared bus in this illustration
- The ISA bus is operated as a slave to the PC's microprocessor.
 - as well as any other devices attached to the shared bus
- The PCI bus can operate as a slave or a master.

Figure 13–14 A block diagram illustrating the shared and local buses.

Types of Buses Defined

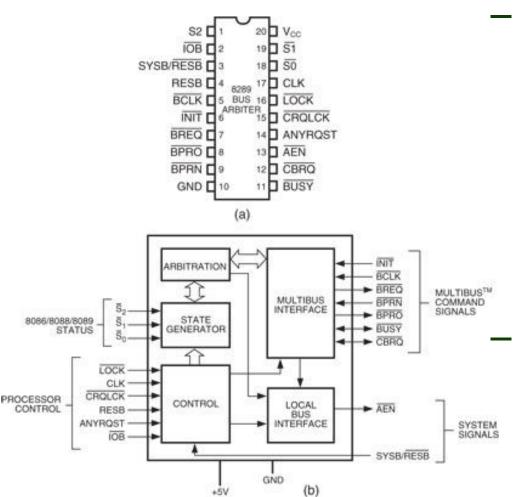

- The local bus is resident to the processor.
 - contains the resident or local memory and I/O
- All microprocessors studied thus far in this text are considered to be local bus systems.
 - local memory and I/O are accessed by the microprocessor directly connected to them
- A shared bus is one that is connected to all microprocessors in the system.
- The shared bus is used to exchange data between microprocessors in the system.

- Fig 13–15 shows an 8088 is connected as a remote bus master.
 - bus master applies to any device that can control a bus containing memory and I/O
 - the 8237 DMA controller is an example of a remote bus master
- The 8088 has an interface to both a local, resident bus and the shared bus.
- This allows 8088 to access memory & I/O.
 - or, via the bus arbiter and buffers, the shared bus

Figure 13–15 The 8088 operated in the remote mode, illustrating the local and shared bus connections.

The Bus Arbiter

- The 8289 bus arbiter controls interface of a bus master to a shared bus.
- Each bus master or microprocessor requires an arbiter for the interface to the shared bus.
 - which Intel calls the Multibus
 - and IBM calls the Micro Channel
- Processors connected in this kind of system are often called parallel or distributed processors because they can execute software and perform tasks in parallel.



8289 Architecture

- Fig 13–16 shows pin-outs and block diagram of the 8289 bus arbiter.
 - the left side of the block diagram depicts the connections to the microprocessor
 - the right side denotes the 8289 connection to the shared (remote) bus or Multibus
- 8289 controls the shared bus by causing the READY input to the microprocessor to become logic 0 (not ready) if access to the shared bus is denied.

Figure 13–16 The 8289 pin-out and block diagram. (Courtesy of Intel Corporation.)

- 8289 controls the shared bus by causing READY input to the microprocessor to become a logic 0 (not ready) if access to the shared bus is denied
 - blocking occurs when another processor is accessing the shared bus

8289 Pin Definitions

AEN

 The address enable output causes the bus drivers in a system to switch to their threestate, high-impedance state.

8289 Pin Definitions ANYRQST

- The any request input is a strapping option that prevents a lower- priority microprocessor from gaining access to the shared bus.
- If tied to a logic 0, normal arbitration occurs and a lower priority microprocessor can gain access to the shared bus if CBRQ is also a logic 0.

8289 Pin Definitions

BCLK

 The bus clock input synchronizes all sharedbus masters.

BPRN

• The **bus priority input** allows the 8289 to acquire the shared bus on the next falling edge of the BCLK signal.

8289 Pin Definitions BPRO

 The bus priority output is a signal that is used to resolve priority in a system that contains multiple bus masters.

BREQ

• The **bus request** output is used to request access to the shared bus.

8289 Pin Definitions BUSY

- The busy input/output indicates, as an output, that an 8289 has acquired the shared bus.
- As an input, BUSY is used to detect that another 8289 has acquired the shared bus.

8289 Pin Definitions CBRQ

- The common bus request input/output is used when a lower priority microprocessor is asking for the use of the shared bus.
- As an output, CBRQ becomes logic 0 when the 8289 requests the shared bus and remains low until the 8289 obtains access to the shared bus.

8289 Pin Definitions CLK

 The clock input is generated by the 8284A clock generator and provides the internal timing source to the 8289.

CRQLCK

• The **common request lock** input prevents 8289 from surrendering the shared bus to any 8289 in the system. This signal functions in conjunction with the CBRQ pin.

8289 Pin Definitions CLK

- The initialization input resets 8289
 - normally connected to the system RESET signal

IOB

The I/O bus input selects whether 8289 operates in a shared-bus system (if selected by RESB) with I/O (IOB=0) or with memory and I/O (IOB=1).

8289 Pin Definitions RESB

- The resident-bus input is a strapping connection allowing 8289 to operate in systems that have either a shared-bus or resident-bus system.
 - if RESB is a logic 1, 8289 is configured as a shared-bus master
 - if RESB is a logic 0, as a local-bus master
- As a shared-bus master, access is requested through the SYSB/RESB input pin.

8289 Pin Definitions LOCK

- The lock input prevents the 8289 from allowing any other microprocessor from gaining access to the shared bus.
- An 8086/8088 instruction that contains a LOCK prefix will prevent other processors from accessing the shared bus.

8289 Pin Definitions S_0 , S_1 , and S_2

 The status inputs initiate shared-bus requests and surrenders. These pins connect to the 8288 system bus controller status pins.

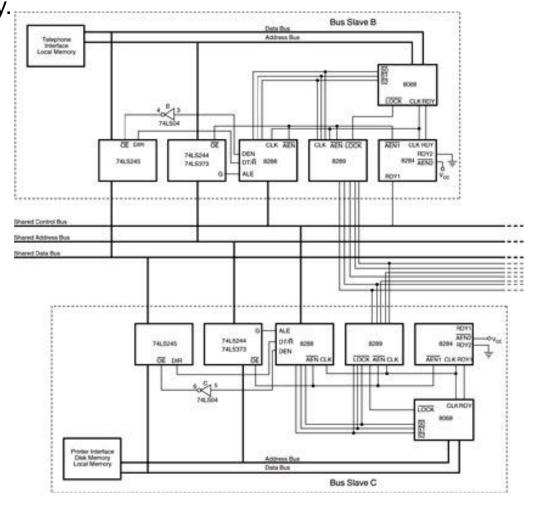
SYSB/RESB

 The system bus/resident bus input selects the shared-bus system when placed at logic 1 or resident local bus when placed at logic 0.

General 8289 Operation

- 8289 can operate in three basic modes:
 - (1) I/O peripheral-bus mode
 - (2) resident-bus mode
 - (3) single-bus mode
- In the I/O peripheral bus mode, all local bus devices are treated as I/O, including memory.
 - and are accessed by all instructions
- All memory references access the shared bus and all I/O access the resident-local bus.

System Illustrating Single-Bus and Resident-Bus Connections


- Single-bus operation interfaces a processor to a shared bus with both I/O and memory resources shared by other processors.
- Fig 13–17 illustrates three 8088 processors, each connected to a shared bus.
- Two of the three microprocessors operate in the resident-bus mode, while the third operates in the single-bus mode.

- Microprocessor A, in Figure 13–17, operates in the single-bus mode and has no local bus.
 - this processor accesses only shared memory &
 I/O space and is often referred to as the systembus master because it is responsible for coordinating the main memory and I/O tasks
- The remaining two (B and C) are connected in resident-bus mode
 - which allows them access to both the shared bus and their own local buses

Figure 13–17 Three 8088 microprocessors that share a common bus system. Microprocessor A is the bus master in control of the shared memory and CRT terminal. Microprocessor B is a bus slave controlling its local telephone interface and memory. Microprocessor C is also a slave that controls a printer, disk memory system, and local memory.

- Bus master (A) allows the user to operate with a video terminal that allows execution of programs and generally controls the system.
- Microprocessor B handles all telephone communications and passes this information to the shared memory in blocks.
- Processor C is used as a print spooler. Its only task is to print data on the printer.
 - when the bus master requires printed output, it transfers the task to microprocessor C
 - These tasks all execute simultaneously.

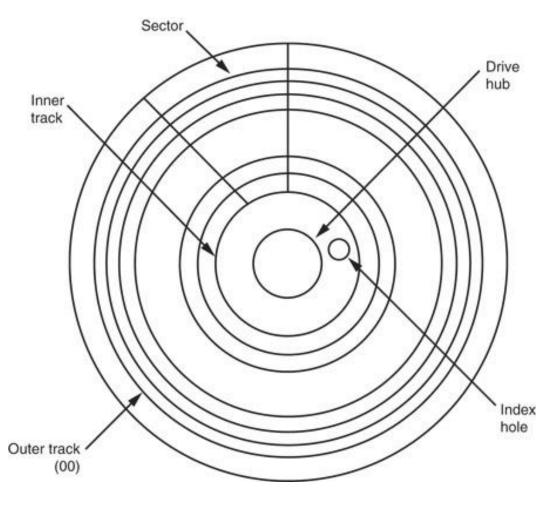
- There is no limit to the number of processors connected to a system or the number of tasks performed simultaneously using this technique.
 - the only limit is that introduced by the system design and the designer's ingenuity
- Lawrence Livermore Labs in California has a system that contains 4096 Pentium microprocessors.

13-4 DISK MEMORY SYSTEMS

- Disk memory is used to store long-term data.
- Many types of disk storage systems are available and they use magnetic media.
 - except optical disk memory that stores data on a plastic disk
- Optical disk memory is either:
 - CD-ROM (compact disk/read only memory)
 which read, but never written
 - WORM (write once/read mostly), read most of the time, but can be written once by a laser

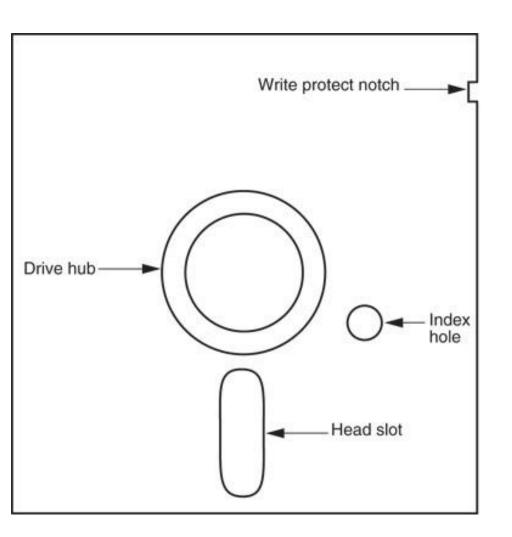
- Optical disk memory that can be read and written many times is becoming available.
 - there is still a limitation on the number of write operations allowed
- The latest optical disk technology is called DVD (digital-versatile disk).
 - also available in high-resolution versions for video and data storage as Blu-ray (50G) or HD-DVD (30G)

Floppy Disk Memory


- The floppy, or flexible disk was once the most common and basic form of disk memory.
 - the floppy is beginning to vanish and may disappear shortly in favor of the USB pen drive
- Floppy disk magnetic recording media have been made available in three sizes:
 - -8" standard
 - $-5^{1}/_{4}^{\prime\prime}$ mini-floppy
 - $-3^{1}/_{2}^{"}$ micro-floppy.

- All disks have several things in common.
- They are all organized so that data are stored in tracks and sectors.
 - a track is a concentric ring of data stored on the surface of a disk
 - a sector is a common subdivision of a track designed to hold a reasonable amount of data
- In many systems, a sector holds either 512 or 1024 bytes of data.
 - size of a sector can vary from 128 bytes to the length of one entire track

Figure 13–18 The format of a $5^{1}/_{4}$ " mini-floppy disk.


- the index hole is so
 the system can find
 the start of a track
 and first sector (00)
- tracks are numbered from track 00, the outermost track, toward the center
- sectors are often numbered from sector 00 on the outermost track

The 5 1/4" Mini-floppy Disk

- The 5¹/₄" floppy is very difficult to find and is used only with older microcomputer systems.
- The floppy disk is rotated at 300 RPM inside its semi-rigid plastic jacket.
 - the head mechanism in a floppy drive makes physical contact with the surface of the disk, which causes wear and damage to the disk
- Most mini-floppy disks are double-sided.
 - data are written on the top & bottom surfaces

Figure 13–19 The $5^{1}/_{4}$ " mini-floppy disk.

- a set of tracks called a cylinder consists of one top and one bottom track
- Cylinder 00 consists of the outermost top and bottom tracks

- the magnetic recording technique used to store data on the surface of the disk is called non-return to zero (NRZ) recording
- with NRZ recording, magnetic flux placed on the surface of the disk never returns to zero
- arrows show the polarity of the magnetic field stored on the surface of the disk

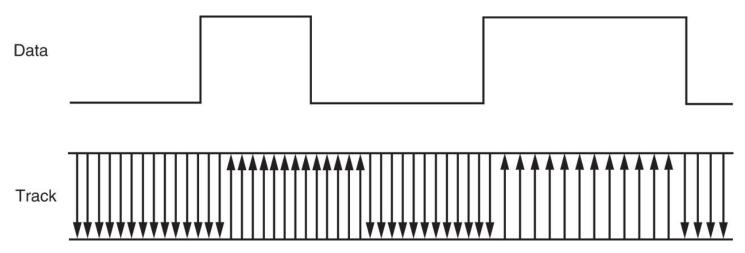


Figure 13-20 The non-return to zero (NRZ) recording technique.

- data are stored in the form of MFM (modified frequency modulation) on modern floppy disks
- each bit time is 2.0 μ s wide on a double-density disk
- data are recorded at the rate of 500,000 bits per second

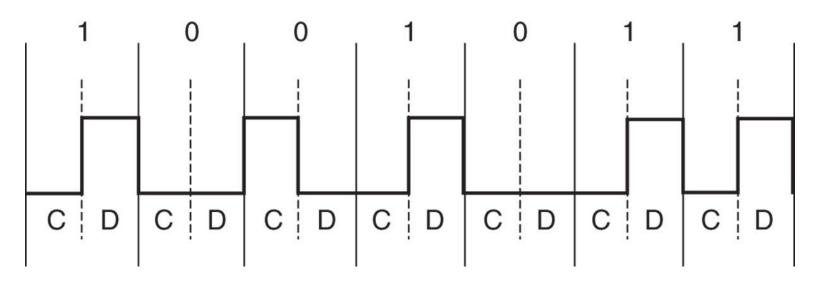
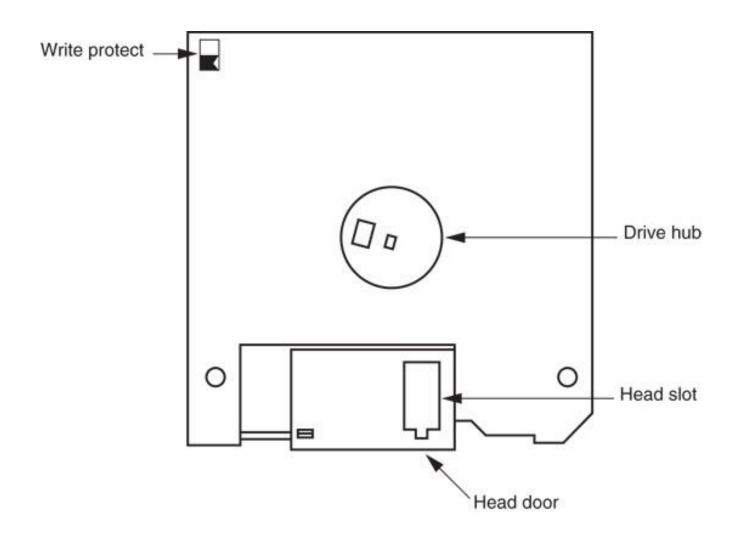


Figure 13-21 Modified frequency modulation (MFM) used with disk memory.



The 3 ¹/₂" Micro-Floppy Disk

- A much improved version of the mini-floppy disk described earlier.
- The micro-floppy is packaged in a rigid plastic jacket that will not bend easily.
 - a much greater degree of protection to the disk
- The head door remains closed until the disk is inserted into the drive.
 - once in the drive, the mechanism slides open the door, exposing the surface of the disk to the read/write heads

Figure 13–22 The $3^{1}/_{2}$ " micro-floppy disk.

- On the mini-floppy, a piece of tape was placed over a notch on the side of the jacket to prevent writing.
 - this plastic tape easily became dislodged inside disk drives, causing problems
- The micro-floppy has an integrated plastic slide replacing the tape write-protection.
- To write-protect (prevent writing) the microfloppy disk, the plastic slide is moved to open the hole through the disk jacket.
 - allows light to strike a sensor that inhibits writing

Pen Drives

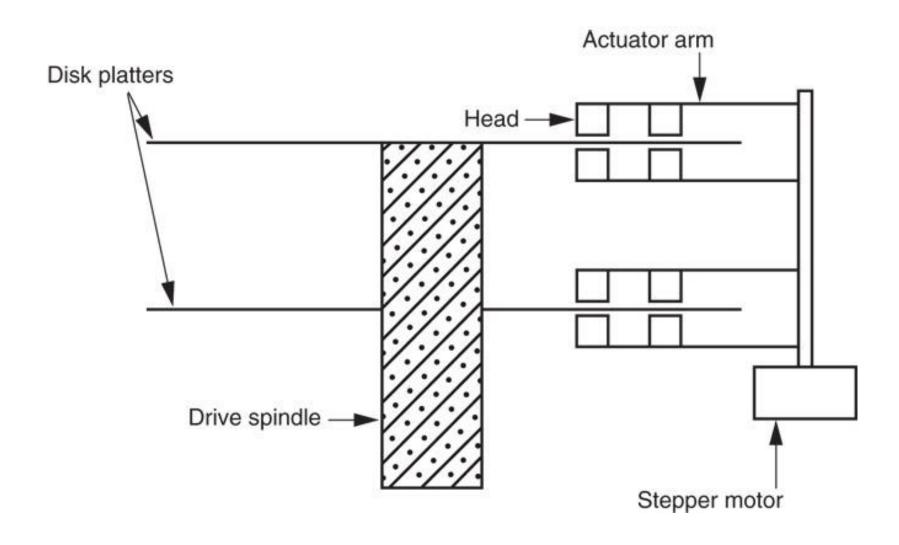
- Pen drives, or flash drives use flash memory to store data.
 - a driver treats the pen drive as a floppy with tracks and sectors, though it really does not
- The FAT system is used for the file structure.
 - memory in this type of drive is serial memory
- When connected to the USB bus, the OS recognizes it and allows data to be transferred between it and the computer.

Hard Disk Memory

- Hard disk memory has a much larger capacity than the floppy disk memory.
 - often called a fixed disk because it is not removable like the floppy disk
- A hard disk is also often called a rigid disk.
 - the term Winchester drive is also used, but less commonly today
- Common, low-cost (less than \$1 per gigabyte) sizes are presently 20G bytes to 500G bytes.
 - sizes approaching 1 T (tera) bytes are available

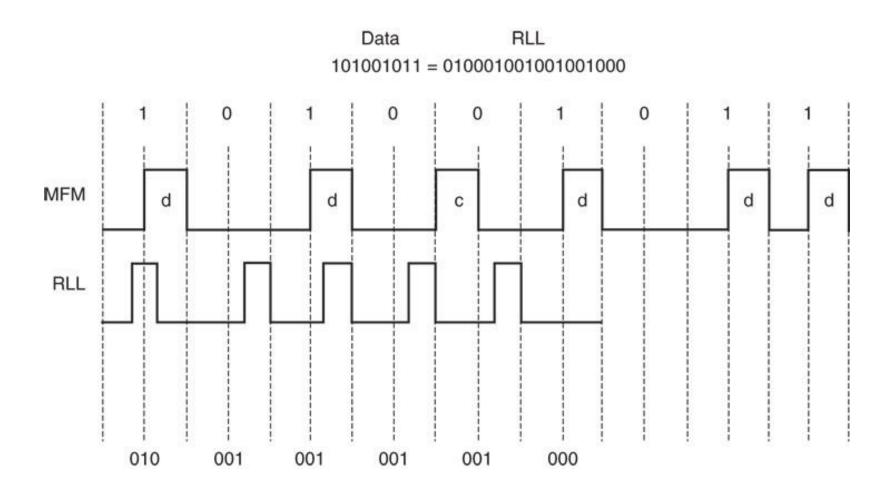
- The hard disk memory uses a flying head to store and read data.
- A flying head, which is very small and light, does not touch the surface of the disk.
 - it flies above the surface on a film of air that is carried with the surface of the disk as it spins
- The hard disk typically spins at 3000 to 15,000 RPM, many times faster than a floppy.
 - higher rotational speed allows the head to fly just over the top of the surface of the disk
- There is no wear on the hard disk's surface.

- Problems can arise because of flying heads.
 - if power is interrupted or the drive is jarred, the head can crash onto the disk surface, which can damage the disk surface or the head
- Some drive manufacturers have included a system to automatically park the head when power is interrupted.
 - when the heads are parked, they are moved to a safe landing zone (unused track) when power is disconnected


- Another difference between a floppy and a hard drive is the number of heads and disk surfaces.
 - a floppy has two heads, one for the upper surface and one for the lower surface
 - the hard drive has up to eight disk surfaces (four platters), with up to two heads per surface
- Each time a new cylinder is obtained by moving the head assembly, 16 new tracks are available under the heads.
- See Figure 13–23.

- Heads are moved from track to track by using either a stepper motor or a voice coil.
 - the stepper motor is slow and noisy; moving the head assembly requires one step per cylinder
 - the voice coil mechanism is quiet and quick; the heads can be moved many cylinders with one sweeping motion
 - Stepper-motor-type head positioning mechanisms can become misaligned
 - while the voice coil mechanism corrects for any misalignment

Figure 13–23 A hard disk drive that uses four heads per platter.


- Hard drives often store information in sectors that are 512 bytes long.
- Data are addressed in clusters of eight or more sectors, which contain 4096 bytes (or more) on most hard disk drives.
- All hard drives use today RLL encoding.

RLL Storage

- The term run-length limited (RLL) means the run of zeros (zeros in a row) is limited.
 - a common RLL encoding scheme is RLL 2,7,
 which means the run of zeros is always between two and seven
- An RLL drive often contains 27 tracks instead of the 18 found on the MFM drive.
- Fig 13–24 is a comparison of MFM & RLL.
 - besides holding more information, the RLL drive can be written and read at a higher rate

Figure 13–24 A comparison of MFM with RLL using data 101001011.

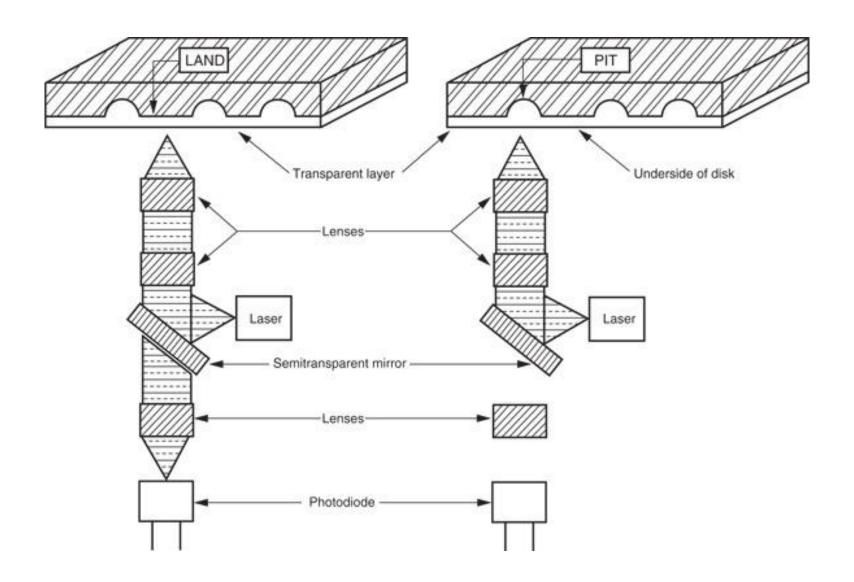
- There are a number of disk drive interfaces in use today.
 - the oldest is the ST-506 interface, which uses either MFM or RLL data
- Newer standards are in use today.
 - which include ESDI, SCSI, and IDE
- The IDE system is becoming the standard hard disk memory interface.
- The enhanced small disk interface (ESDI) system is capable of transferring data at rates approaching 10M bytes per second.

- ST-506 interface approaches 860K bytes/sec.
- The small computer system interface (SCSI) allows up to seven different disk or other interfaces to be connected to the computer through same interface controller.
 - SCSI is found in some PC-type computers and also in the Apple Macintosh system
- An improved version, SCSI-II, has started to appear in some systems.
 - in the future, this interface may be replaced with IDE in most applications

- One of the most common systems is the integrated drive electronics (IDE) system.
 - incorporates the disk controller in the drive and attaches to the host system through a small interface cable
- IDE drives are found in newer IBM PS-2 systems and many clones.
 - even Apple computer systems are starting to be found with IDE drives
- The IDE interface is also capable of driving other I/O devices besides the hard disk.

- IDE usually contains at least a 256K- to 8Mbyte cache memory for disk data.
 - the cache speeds disk transfers
- Access times for an IDE drive are often less than 8 ms.
 - access time for a floppy-disk is about 200 ms
- IDE is also called ATA, an acronym for AT attachment where "AT" means the Advanced Technology computer.

- The latest is the serial ATA interface or SATA.
 - this interface transfers serial data at 150 MBps (or 300 MBps for SATA2), faster than IDE
- Not yet released is SATA3, which transfers data at a rate of 600 MBps.
- The transfer rate is higher because the logic 1 level is no longer 5.0 V. It is now 0.5 V.
 - which allows higher data transfer rates because it takes less time for the signal to rise to 0.5 V than to 5.0 V



Optical Disk Memory

- Optical disk memory is commonly available in two forms:
 - CD-ROM (compact disk/read only memory)
 - WORM (write once/read mostly)
- CD-ROM is the lowest cost, but suffers from lack of speed.
 - access times are typically 300 ms or longer
- As systems develop and become more visually active, use of the CD-ROM drive will become even more common.

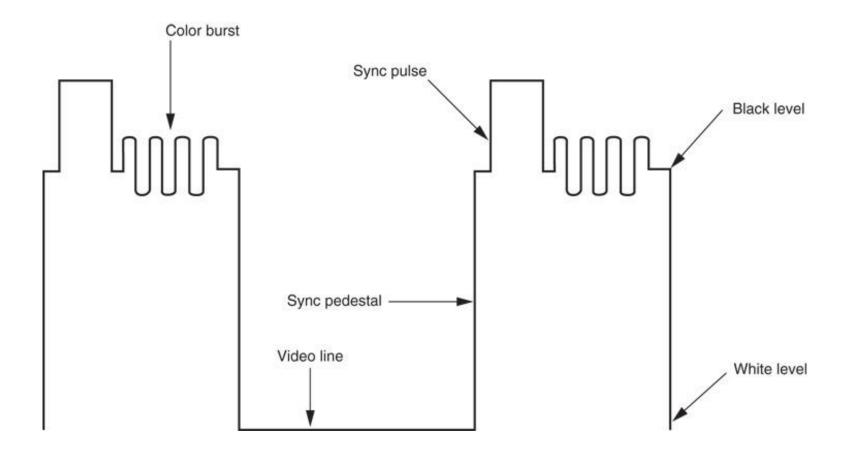
Figure 13–25 The optical CD-ROM memory system.

- The WORM drive sees far more commercial application than the CD-ROM.
 - application is very specialized due to its nature
- WORM is normally used to form an audit trail of transactions spooled onto the WORM and retrieved only during an audit.
 - one might call the WORM an archiving device
 - The advantage of the optical disk is durability.
 - About the only way to destroy data on an optical disk is to break it or deeply scar it.

- The new versatile read/write CD-ROM, called a DVD, became available in the mid 1990's.
- New to this technology are the Blu-ray DVD from Sony Corporation and the HD-DVD from Toshiba Corporation.
 - Blu-ray DVD capacity is 50 GB; HD-DVD, 30 GB
- The big change from older DVDs is a switch from a red laser to a blue laser.
 - a blue laser has a higher frequency, which means it can read more information per second from the DVD, hence a high storage density

13-5 VIDEO DISPLAYS

- Color display systems are available that accept information as a composite video signal as TIL voltage level signals (0 or 5 V), and as analog signals (0–0.7 V).
 - composite video displays are disappearing because the available resolution is too low
- Early composite video displays were found with Commodore 64, Apple 2, and similar computer systems.



Video Signals

- Fig 13–26 illustrates the signal sent to a composite video display.
- These signals include video, sync pulses, sync pedestals, and a color burst.
 - no audio signal is shown; one often doesn't exist
- Major disadvantages of the composite video display are the resolution and color limitations.
 - composite video was designed to emulate television video so a home television could function as a video monitor

Figure 13–26 The composite video signal.

The TTL RGB Monitor

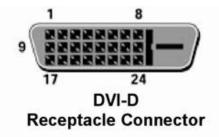
- Available as either an analog or TTL monitor.
- The RGB video TTL display can display a total of 16 different colors.
- TTL RGB is used in CGA (color graphics adapter) system found in older systems.
- Figure 13–27 shows the connector found on a TTL RGB or monochrome monitor.
 - monochrome TTL monitors use the same
 9-pin connector as RGB TTL monitors

Figure 13–27 The 9-pin connector found on a TTL monitor.

DB9	Pin	Function
6909090	1	Ground
5 9 4 8 3 7 2 6 1	2	Ground
	3	Red video
	4	Green video
	5	Blue video
	6	Intensity
	7	Normal video
	8	Horizontal retrace
	9	Vertical retrace

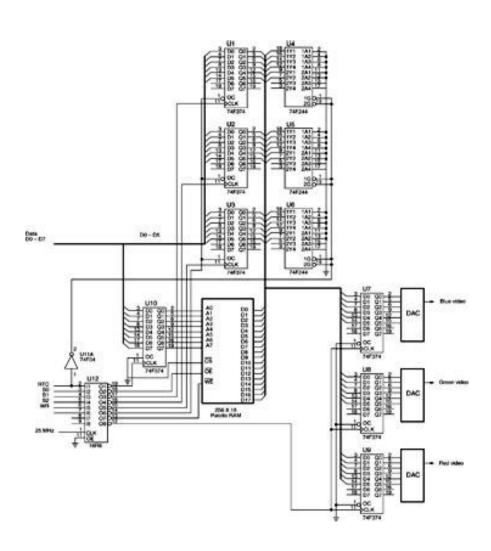
- To display more than 16 colors, an analog video display is required.
- Because the video signals are analog signals instead of two-level TTL signals, they are at any voltage level between 0.0 V and 0.7 V, which allows an infinite number of colors.
 - this is because an infinite number of voltage levels could be generated
- Fig 13–28 shows the connector used for an analog RGB or analog monochrome monitor.

Figure 13–28 The 15-pin connector found on an analog monitor.


DB15	Pin	Function
(202020202020)	1	Red video
	2	Green video (monochrome video)
8 5 7 4 6 3 5 2 4 0 2 9 1	3	Blue video
	4	Ground
	5	Ground
	6	Red ground
	7	Green ground (monochrome ground)
	8	Blue ground
	9	Blocked as a key
	10	Ground
	11	Color detect (ground on a color monitor)
	12	Monochrome detect (ground on a monochrome monitor)
	13	Horizontal retrace
	14	Vertical retrace
	15	Ground

- Another type of connector for analog RGB is called the DVI-D (digital visual interface).
 - the -D is for digital, the most common of this type
- Figure 13–29 illustrates the female connector found on newer monitors and video cards.
- Also found on television and video equipment is the HDMI (high-definition multimedia interface) connector.
 - eventually all video equipment will use the HDMI connector for its connection

Figure 13–29 The DVI-D interface found on many newer monitors and video cards.

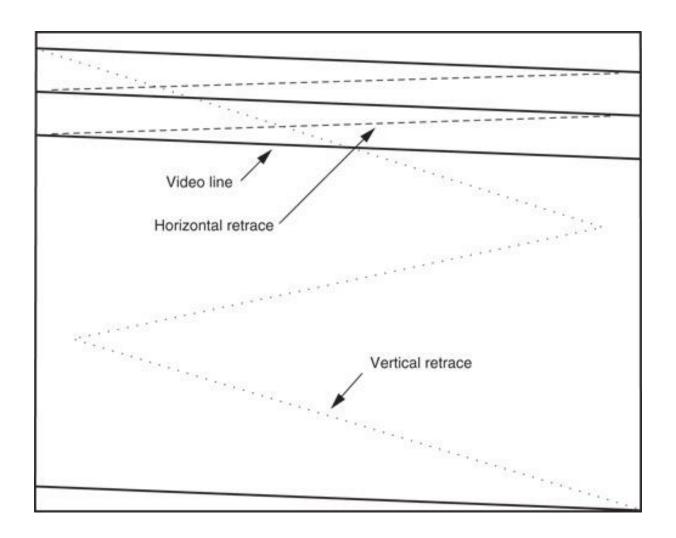

	DIGITAL-ONLY CONNECTOR PIN ASSIGNMENTS							
Pin	Signal Assignment	Pin	Signal Assignment	Pin	Signal Assignment			
1	Data2-	9	Data1-	17	Data0-			
2	Data2+	10	Data1+	18	Data0+			
3	Data2/4 Shield	11	Data1/3 Shield	19	Data0/5 Shield			
4	Data4-	12	Data3-	20	Data5-			
5	Data4+	13	Data3+	21	Data5+			
6	DDC Clock	14	+5V Power	22	Clock Shield			
7	DDC Data	15	Ground (for +5V)	23	Clock+			
8	No Connect	16	Hot Plug Detect	24	Clock-			

- Most analog displays use digital-to-analog converter to generate color video voltage.
- There are 256 different red video levels, 256 different green video levels, and 256 different blue video levels.
 - this allows 256 \times 256 \times 256, or 16,777,216 (16 M) colors to be displayed
- Figure 13–30 illustrates the video generation circuit employed in many common video standards as used with an IBM PC.

Figure 13–30 Generation of VGA video signals.

- A high-speed palette SRAM is used to store 256 different 18-bit codes representing hues.
- To select any of 256 colors, an 8-bit code stored in the computer's video display RAM is used to specify color of a picture element.
 - if more colors are used, the code must be wider
 - newer systems use larger palette SRAM to store up to 64K of different color codes
- If color codes must be changed, it is done during retrace when RTC is a logic 1.
 - preventing video noise from disrupting the image

- Retrace occurs 70.1 times per second vertical and 31,500 times per second horizontal direction for a 640 × 480 display.
 - used to move the electron beam to the upper left corner for vertical retrace and the left margin of the screen for horizontal retrace
- The resolution of the display determines the memory required for the video interface card.
 - -640×480 bytes of memory (307,200) are required to store all of the pixels for the display


- A 640 × 480 display has 480 video raster lines and 640 pixels per line.
 - a raster line is the horizontal line of video information that is displayed on the monitor
 - a pixel (picture element) is the smallest subdivision of this horizontal line
- In order to generate 640 pixels across one line, it takes 40 ns \times 640, or 25.6 μ s.
- A horizontal time of 31,500 Hz allows a horizontal line time of 1/31,500, or 31.746 μ s.
 - the difference between these two times is the retrace time allowed to the monitor

- In the case of a VGA display (a 640 × 400 display), this is 449.358 lines.
 - 400 lines are used to display information
 - the rest are lost during the retrace
- Because 49.358 lines are lost, retrace time is $49.358 \times 31.766 \ \mu s$, or $1568 \ \mu s$.
- During this time color palette SRAM is changed or the display memory is updated.
- Fig 13–31 illustrates the video display, showing the video lines and retrace.

Figure 13–31 A video screen illustrating the raster lines and retrace.

- 800 × 600 SVGA (super VGA) display is ideal for a 14" color monitor
- 1024 × 768 EVGA or XVGA (extended VGA) is ideal for a 21" or 25" monitor,
 - an average home television receiver has a resolution of approximately 400 × 300
- Disadvantage of the video display on is the number of colors displayed at a time.
- Additional colors allow the image to appear more realistically because subtle shadings are required for a true high-quality, lifelike image.

- High-resolution displays use interlaced or non-interlaced scanning.
 - non-interlaced is used in all except the highest standards
- In the interlaced system, the displayed draws half the image first with all the odd scan lines.
 - the other half is then drawn using even scan lines
- This system is more complex
 - and only more efficient because scanning frequencies are reduced by 50%

- The HOLD input is used to request a DMA action, and the HLDA output signals that the hold is in effect.
- When a logic 1 is placed on the HOLD input, the micro-processor (1) stops executing the program; (2) places its address, data, and control bus at their highimpedance state; and (3) signals that the hold is in effect by placing a logic 1 on the HLDA pin.

- A DMA read operation transfers data from a memory location to an external I/O device.
- A DMA write operation transfers data from an I/O device into the memory.
- Also available is a memory-to-memory transfer that allows data to be transferred between two memory locations by using DMA techniques.

- The 8237 direct memory access (DMA) controller is a four-channel device that can be expanded to include an additional channel of DMA.
- Disk memory comes in the form of floppy disk storage that is found as 3-1/2" microfloppy disks.

- Floppy disk memory data are stored using NRZ (non-return to zero) recording.
- This method saturates the disk with one polarity of magnetic energy for a logic 1 and the opposite polarity for a logic 0.
- In either case, the magnetic field never returns to 0.
- This technique eliminates the need for a separate erase head.

- The MFM scheme records a data pulse for a logic 1, no data or clock for the first logic 0 of a string of zeros, and a clock pulse for the second and subsequent logic 0 in a string of zeros.
- The RLL scheme encodes data so that 50% more information can be packed onto the same disk area. Most modern disk memory systems use the RLL encoding scheme.

- Video monitors are either TTL or analog.
- The TTL monitor uses two discrete voltage levels of 0 V and 5.0 V.
- The analog monitor uses an infinite number of voltage levels between 0.0 V and 0.7 V.
- The analog monitor can display an infinite number of video levels, while the TTL monitor is limited to two video levels.

- The color TTL monitor displays 16 different colors.
- This is accomplished through three video signals (red, green, and blue) and an intensity input.
- The analog color monitor can display an infinite number of colors through its three video inputs.

- In practice, the most common form of color analog display system (VGA) can display 16 M different colors.
- The video standards found today include VGA (640 ´ 480), SVGA (800 ´ 600), and EVGA or XVGA (1024 ´ 768).
- In all three cases, the video information can be 16M colors.