

The examiners: Dr. Nayera Sadek, Dr. Mohammed Morsy and the committee

Part I: Software

Answer All the following questions:
QUESTION ONE:
[15 points]
Choose the best answer(s). In your answer book, write the question number and your answer(s) only. If none of the given answer fits, write NONE and your answer in your answer book.

1) The large number of the registers in the 8086 microprocessor
a) Increases the data access time.
b) Increases the number of instruction executed per second.
c)Increases the data storage space.
d)Accelerates data movements to/from the ALU.
2) During execution, the ratio of the activated memory locations to the total memory size is...
a) $1: 1$
b) $1: 2$
c) $1: 4$
d) $1: 8$
3) The ALU of the 8088 microprocessor can perform its operation on the data whose size is
a) 4 bits
b) 8 bits
c) 16 bits
d) 32 bits
4) The ratio of the size of the physical memory of the 8086 to that of the 8088 is $\ldots \ldots$...
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) $1: 4$
5) To transfer a word to the memory, the ratio of speed transfer of the 8086 to that of 8088 is...
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) $1: 4$
6) The size of the interrupt-vectors table is:
a) 256 Bytes
b) 512 Bytes
c) 1024 Bytes
d) 64 KB
7) All the interrupt instructions are stored in bytes except.....
a) 1 , INT 2
b) 1, INT 3
c) 2, INTO
d) 2, INT 3

Using the memory part shown below, answer questions 8 to 15.
8) A character is stored in its ASCII format starting from the physical address 12344 H , its ASCII code is.......
a) 38 H
b) 3938 H
c) 3837 H
d) 41403938 H
9) Using the IEEE-754 short-form, the real number is stored starting at the physical address 12348 H , this real number is \qquad . (in decimal)
a) -232.7625
b) -465.625
c)-931.25
d) +232.7625
10) A word-instruction is stored starting from the memory location whose physical address is 1234 CH , this instruction is.....
a) MOV AX, BX
b) MOV [BP+DI+2001], AX
c) $M O V$ ES, BX
d) MOV BX, DS
11) If $\mathrm{BP}=2344 \mathrm{H}$ is used to point to the memory location whose physical address is 12344 H , the DS register has......
a) 1000 H
b) 1010 H
c) 2000 H
d) 2010 H
12) If SP is initialized at 0000 H and $\mathrm{SP}=0350 \mathrm{H}$ points to the memory location whose address is 12350 H , the stack is storingwords
a) 424
b) 848
c) 32344
d) 64688
13) According to question 11), the range of the stack segment is...
a) $03500 \mathrm{H}-134 \mathrm{FFH}$
b) $10000 \mathrm{H}-1 \mathrm{FFFFH}$
12000H- 21FFFH
d) $12350 \mathrm{H}-2234 \mathrm{FH}$
c)
14) According to question 11), after executing POP AX, AX equals...
a) 11 FFH
b) FF11H
c) 2011 H
d) 1120 H
15) After executing question 13), the SP equals......
a) 0348 H
b) 0349 H
c) 0351 H
d) 0352 H
Memory Locations

Physical address	Contents
12340 H	12 H
12341 H	34 H
12342 H	FAH
12343 H	37 H
12344 H	38 H
12345 H	39 H
12346 H	40 H
12347 H	41 H
12348 H	00 H
12349 H	D0H
1234 AH	E8H
1234 BH	C3H
1234 CH	8 EH
1234 DH	C3H
1234 EH	01 H
1234 FH	20 H
12350 H	11 H
12351 H	FFH
12352 H	94 H

Choose the best answer(s). In your answer book, write the question number and your answer(s) only. If none of the given answer fits, write NONE and your answer in your answer book.
Using Program 1, answer questions 1 to 8.

1) The machine code of MOV CX, 10 is H
a) C7C110
b) B910
c) B90A
d)B90A00
2) When $C X=10$, the program.....
a) Jumps to COMP
b) Shifts AX by 1
3) The addressing mode of IN AX, DX is....
a) Direct
b) Indirect
c) Immediate
d) Register
4) The addressing mode of JZ COMP is \qquad
a) Direct
b) Indirect
c) Relative
5) The JMP DONE instruction will be executed
... times
a) Zero
b) 5
c) 10
d) 16
6) The TEST CX, 1 can be replaced by......
a)AND CX, 1
b)OR CX, 1
c) $\mathrm{CMP} \mathrm{CX,0}$
d)XOR CX,1
7) The SHL AX, 1 is equivalent to....
a)Signed multiplying by 2 .
b)Unsigned multiplying by 2
c) Signed dividing by 2
d)Unsigned dividing by 2
8) The machine code of LOOP NEXT is......H
a) E210
b)E2F0
c) E 2 F 2
d)E2F4

Using Program 2, answer questions 9 to 15.
Assume that AX $=2310 \mathrm{H}, \mathrm{BX}=\mathrm{F976H}, \mathrm{CX}=01 \mathrm{FBH}, \mathrm{DX}=539 \mathrm{AH}$, Flag register $=0417 \mathrm{H}$
9) After executing the instruction in line $1, \mathrm{AX}$ becomes.
a) 0070 H
b) 0 A 90 H
c) 0 FBOH
d) FF 90 H
10) After executing LAHF, AX becomes.....
a) 0417 H
b) 0470 H
c) 1710 H
d) 1790 H
11) After executing CBW, AX becomes
a) 0004 H
b) 0017 H
c) FF17H
d) FF 90 H
12) After executing the instruction in line 6 , AX becomes.....
a) 01 DBH
b) 0203 H
c) 02 B 3 H
d) 02 FBH
13) After executing line $8, \mathrm{CX}$ and the Flag register become....
a) $0175 \mathrm{H}, 0404 \mathrm{H}$
b) $0176 \mathrm{H}, 0400 \mathrm{H}$
c) $0176 \mathrm{H}, 0401 \mathrm{H}$
d) $0276 \mathrm{H}, 0401 \mathrm{H}$
14) If SP = FFF0, after executing IRET, SP becomes.
a) FFECH
b) FFF2H
c) FFF4H
d) FFF6H
15) If the given program is the ISR of INT 60, the address of SERVICE should be stored in the interrupt vector table at the physical address
a) 000 ECH
b) 000 FOH
c) 000 F 4 H
d) 00180 H

Program 2

1. SERVICE: IMUL CL
2. MOV BX, AX
3. LAHF
4. XCHG AH, AL
5. CBW
6. IDIV CL
7. MOV DX, AX
8. SUB CX, 85H
9. IRET

QUESTION THREE:

Choose the best answer(s). In your answer book, write the question number and your answer(s) only. If none of the given answer fits, write NONE and your answer in your answer book.
Given: $C S=1000 H, D S=2000 H, S S=2002 \mathrm{H}, \mathrm{ES}=3000 \mathrm{H}, \mathrm{AX}=0008 \mathrm{H}, \mathrm{BX}=0030 \mathrm{H}, \mathrm{CX}=0000 \mathrm{H}$,
$\mathrm{BP}=0004 \mathrm{H}, \mathrm{SP}=0010 \mathrm{H}$ and the Flag $=0000 \mathrm{H}$. Part of memory locations are given as follows (in H)

$2000: 0000$	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
$2000: 0010$	00	01	02	03	04	FE	89	45	09	0 A	C 2	7 F	49	20	44	60
$2000: 0020$	A2	B6	71	84	00	00	00	20	10	00	71	72	73	04	75	76
$2000: 0030$	80	90	43	87	55	22	84	0 A	10	12	0 E	12	34	15	18	19

Attempt all questions:

QUESTION FOUR:

[12 points]
a. Draw the Von Newmann computer architecture, and briefly describe its advantages and limitations.
b. Draw the demultiplexing and buffering circuits for the 8086 microprocessor shown in Figure 1, and explain the importance of address decoding.
c. Briefly describe the purpose of each T state including the wait state in the 8086 processor bus cycle shown in Figure 2. Is this a read or write bus cycle? How many bus cycles are needed to transfer 16 bits of data from the 8088 and 8086 processors to the memory system.
d. If a memory chip of 500 ns access time is interfaced to the processor with the bus cycle given in Figure 2, does it require a wait state? What are the factors affecting this decision?

QUESTION FIVE:

[18 points]
e. Compare between SRAM and DRAM in terms of memory access time, size, and complexity, and give an example application of each memory type in personal computers.
f. For the memory interface shown in Figure 3, find the address range for each chip. If the 74138 (3-8 decoder) is replaced by a PAL 16L8 programmable decoder, draw the new interface circuit and write the 16L8 program.
Note: PAL 16L8 is constructed with AND/OR gate logic and has 10 fixed inputs, 2 fixed outputs, and 6 pins programmable as inputs or outputs.
g. An 8086 processor is required to interface to:

- 24 KB of EROM at addresses (10000H-15FFFH).
- 16 KB of SRAM at addresses (16000H - 19FFFH).
- 512 KB of DRAM at addresses (1A000H - 99FFFH).

Design the full interface circuit using the minimum number of resources. You can only use the following chips: NAND gates, 74LS138 (3-to-8 decoder) and 74LS139 (dual 2-to-4 decoder), 74157 (2-to-1 MUX), 2716 ($2 \mathrm{~K} \times 8$) EPROM, TMS 4016 ($2 \mathrm{~K} \times 8$) SRAM, and TMS $4464(64 \mathrm{~K} \times 4)$ DRAM. Chip pinouts are shown in Figure 4. Calculate the required number of memory and decoder chips and draw the full interface circuitry.
Hint: You should select an appropriate decoding method to minimize the number of decoders used in the 8086 memory interface.
h. Draw a simplified diagram to illustrate how to connect a memory system of an 8-bit data width to an even parity generator and checker,
and briefly explain how this circuit can help in error detection, and what are its limitations.
i. Test if these code words are correct (D93H, D97H, DD7H, C93H), assuming they were created for a single byte of data using an even parity Hamming Code. If one is incorrect, indicate what the correct code word should have been. Also, indicate what the original data was.
(4)
e.
i. List the events that occur for any interrupt instruction, and compare between software and hardware interrupts.
ii. Compare between the daisy-chined mechanism and the programmable interrupt controller for processing multiple interrupt requests.

Code	Explanation					Segment codes:			
						Register	r SR		
00	Memory mode, no displacement					$\begin{aligned} & \hline \text { ES } \\ & \text { CS } \\ & \text { SS } \\ & \text { DS } \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$		
01	Memory mode, 8-bit displacement								
10	Memory mode, 16-bit displacement								
11	Register mode, no displacement								
*Except when R/M=110, then 16 bit displacement									
Mode = 11			Effective address Calculation						
R/M	W=0	W=1	R/M	Mode $=00$	Mode=01		Mode=10		
000	AL	AX	000	[BX]+[SI]	[BX]+[SI]+D8		[BX]+[SI] + D16		
001	CL	CX	001	[BX]+[DI]	[BX]+[DI] +D8		[BX]+[DI] +D16		
010	DL	DX	010	[BP]+[SI]	[BP]+[SI] +D8		[BP]+[SI]+D16		
011	BL	BX	011	[BP]+[DI]	[BP]+[DI] +D8		[BP]+[DI]+D16		
100	AH	SP	100	[SI]	[SI] +D8		[SI] + D16		
101	CH	BP	101	[DI]	[DI] + D8		[DI] + D16		
110	DH	SI	110	Direct address	[BP]+D8		[BP]+D16		
111	BH	DI	111	[BX]	[BX]	+D8	[BX]	+D16	
MOV=Move:									
Register/memory to/from register			100010dw	Mod Reg R/M		Disp-lo	$\begin{aligned} & \text { Disp- } \\ & \text { hi } \end{aligned}$		
Immediateregister/memory			1100011w	Mod 000 R/M		Disp-lo	$\begin{aligned} & \text { Disp- } \\ & \text { hi } \end{aligned}$	Data	$\begin{aligned} & \hline \text { Data } \\ & \text { if } w=1 \end{aligned}$
Immediate to register Regstrent			1011wReg	Data		$\begin{aligned} & \text { Data if } \\ & w=1 \end{aligned}$			
Register/memory to Segment Register			10001110	Mod 0 SR R/M					
Segment Register to Register/memory			10001100	Mod 0 SR R/M					
LOOP: loop CX times									
1110	0010	Displa	cement						
The Flag Register									
			O	I	S	Z	A	P	C
The Conditional Jump instructions									
Instruction			Flags			Function			
JZ			ZF = 1			Jumps if zero			
JNC			CF $=0$			Jumps if no carry			

Figure 1

Figure 2

Figure 5
Figure 4

Figure 6

Stop bits: $\mathrm{S}=1,1.5$ stop bits used for 5 data bits, 2 used for 6,7 or 8 .

DMA mode control

Error in FIFO if $1 \quad$| ER | TE | TH | BI | FE | PE | OE | DR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Transmitter empty if 1

Figure 7

