

جامعة الاسكندرية كلية الهندسة قسم الهندسة الكهربية يناير 2013

مدة الإمتحان: 3 ساعات

тс

Course title : Microprocessors-1 Year : 3rd Communications

Time allowed: 3 hours

a) 0348H

The examiners: Dr. Nayera Sadek, Dr. Mohammed Morsy and the committee

. .

Part I: Software

•. ...

.

Answer All the following questions: QUESTION ONE: () **T**

Choose the best answer(s). In your answer book, write the question number	and your answer(s) only. If									
none of the given answer fits, write NONE and your answer in your answer	book.									
1) The large number of the registers in the 8086 microprocessor										
a) Increases the data access time. b) Increases the number of instruction executed per second.										
c)Increases the data storage space. d)Accelerates data movements to/f	rom the ALU.									
2) During execution, the ratio of the activated memory locations to the tot	2) During execution, the ratio of the activated memory locations to the total memory size is									
a) 1:1 b) 1:2 c) 1:4	d) 1:8									
3) The ALU of the 8088 microprocessor can perform its operation on the	data whose size is									
a) 4 bits b) 8 bits c) 16 bits	d) 32 bits									
4) The ratio of the size of the physical memory of the 8086 to that of the 8	3088 is									
a) 1:1 b) 2:1 c) 1:2	d) 1:4									
5) To transfer a word to the memory, the ratio of speed transfer of the 8086 to that of 8088 is										
a) 1:1 b) 2:1 c) 1:2	d) 1:4									
6) The size of the interrupt-vectors table is:										
a) 256 Bytes b) 512 Bytes c) 1024 Bytes	d) 64 KB									
7) All the interrupt instructions are stored in bytes except										
a) 1, INT 2 b) 1, INT 3 c) 2, INTO	d) 2, INT 3									
Using the memory part shown below, answer questions 8 to 15.										
8) A character is stored in its ASCII format starting from the physical	Memory Locations									
address 12344H, its ASCII code is	Physical Contents									
a)38H b) 3938H c) 3837H d) 41403938H	address									
9) Using the IEEE-754 short-form, the real number is stored starting at	12340H 12H									
the physical address 12348H, this real number is (in decimal)	12341H 34H									
a) -232.7625 b) -465.625 c) -931.25 d) +232.7625	12342H FAH									
10) A word-instruction is stored starting from the memory location whose	12343H 37H									
physical address is 1234CH, this instruction is	12344H 38H									
a) MOV AX, BX b) MOV [BP+DI+2001], AX	12345H 39H									
c)MOV ES, BX d) MOV BX, DS	12346H 40H									
11) If $BP = 2344H$ is used to point to the memory location whose physical	12347H 41H									
address is 12344H, the DS register has	12348H 00H									
a) 1000H b) 1010H c) 2000H d) 2010H	12349H D0H									
12) If SP is initialized at 0000H and SP = $0350H$ points to the memory	1234AH E8H									
location whose address is 12350H, the stack is storingwords	1234BH C3H									
a) 424 b) 848 c) 32344 d) 64688	- 1234CH 8EH									
13) According to question 11), the range of the stack segment is	1234DH C3H									
a)03500H-134FFH b)10000H-1FFFFH c)	1234EH 01H									
12000H-21FFFH d)12350H-2234FH	1234FH 20H									
14) According to question 11), after executing POP AX, AX equals	12350H 11H									
a) 11FFH b) FF11H c) 2011H d) 1120H	12351H FFH									

15) After executing question 13), the SP equals.....

b) 0349H

السنة الدراسية : الثالثة- اتصالات

[15 points]

اسم المقرر والرقم الكودى له: المعالجات الدقيقة-1

12352H

94H

QUESTION TWO:

[15 points]

Choose the best answer(s). In your answer book, write the question number and your answer(s) only. If none of the given answer fits, write NONE and your answer in your answer book.

Using Program 1, answer questions 1 to 8.		J				
1) The machine code of MOV CX, 10 isH		Program 1				
a) C7C110 b) B910 c) B90A d	B90A00	Address	Code			
2) When CX =10, the program		CS:X	MOV CX, 10			
a) Jumps to COMP b) Shifts AX by 1		CS:0107H	NEXT:			
3) The addressing mode of IN AX, DX is			TEST CX, 1			
a) Direct b) Indirect c) Immediate d)	Register	CS:010BH	JZ COMP			
4) The addressing mode of JZ COMP is		CS:010DH	SHL AX, 1			
a) Direct b) Indirect c) Relative		CS:010FH	OUT 15H, AX			
5) The JMP DONE instruction will be executed	imes	CS:0111H	JMP DONE			
a) Zero b) 5 c) 10 d)	16	CS:0113H	COMP:			
6) The TEST CX, 1 can be replaced by			IN AX, DX			
a)AND CX, 1 b)OR CX,1 c)CMP CX,0 d)X	OR CX,1	CS:0115H	DONE:			
7) The SHL AX, 1 is equivalent to			LOOP NEXT			
a)Signed multiplying by 2. b)Unsigned multiplying by 2.	ying by 2	CS:0117H	HLT			
c)Signed dividing by 2 d)Unsigned dividin	g by 2					
8) The machine code of LOOP NEXT isH						
a) E210 b)E2F0 c)E2F2 d)E	2F4					
Using Program 2, answer questions 9 to 15.						
Assume that $AX = 2310H$, $BX = F976H$, $CX = 01FBH$	DX = 539A	AH, Flag regis	ter = 0417H			
9) After executing the instruction in line 1, AX becom	nes	Program 2				
a) 0070H b) 0A90H c) 0FB0H d) H	F90H	1. SERVICE:				
10) After executing LAHF, AX becomes		IMUL CL				
a) 0417H b) 0470H c) 1710H d) 1	790H	2. MOV BX, AX				
11) After executing CBW, AX becomes		3. LAHF				
a) 0004H b) 0017H c) FF17H d)	FF90H	4. XCHG AH, AL				
12) After executing the instruction in line 6, AX becom	2. CBW					
a) 01DBH b) 0203H c) 02B3H d)	6. IDI	V CL				
13) After executing line 8, CX and the Flag register be	/. MU	DV DX, AX				
a) 0175H, 0404H b) 0176H, 0400H	$\begin{array}{ccc} \delta & & 501 \\ 0 & & 101 \end{array}$	5 CA, 85H				
c)0176H, 0401H d) 0276H, 0401H	9. IKE	1				
14) If $SP = FFF0$, after executing IRET, SP becomes						
a) FFECH b) FFF2H c) FFF4H d) I	FF6H					
15) If the given program is the ISR of INT 60, the addi						
SERVICE should be stored in the interrupt vector to	able at					
the physical address	010011					
a) $000ECH$ b) $000F0H$ c) $000F4H$ d) (0180H					

QUESTION THREE:

[15 points]

Choose the best answer(s). In your answer book, write the question number and your answer(s) only. If none of the given answer fits, write NONE and your answer in your answer book. Given: CS=1000H, DS=2000H, SS=2002H, ES=3000H, AX=0008H, BX=0030H, CX=0000H, BP=0004H, SP=0010H and the Flag=0000H. Part of memory locations are given as follows (in H) 2000:0000 00 01 02 03 04 05 06 07 08 09 0A 0B0C0D 0E 0F 02 03 C2 7F 49 20 44 2000:0010 00 01 04 FE 89 45 09 0A 60 2000:0020 A2 B6 71 84 00 00 00 20 10 00 71 72 73 04 75 76 12 2000:0030 90 43 22 84 0E 34 80 87 55 0A 10 12 15 18 19

Using this data and program 4 to answer the following questions.								
1) The physical address of the first executed instruction is						Program 3		
	a) 10100H	b) 10010H	c) 20030H	d) 30100H	1.	org 100H		
2)	After executing	line 2, ES and I	••••	2.	LES DI, [BP]			
	a) 0000H, 1020	H	b) 1020H, 0	000H	3.	MOV SI, [BP+04H]		
	c)2000H, 0000H	[d) 1000H, 2	000H	4.	CLD		
3)	After executing	XLAT, AL bec	omes		5.	XLAT		
	a) OAH	b) 10H	c) 12H	d) 0EH	6.	MOV CL, AL		
4)	After executing	line 10, CX bec	omes		7.	MOV [BX], DI		
	a) 0009H	b) 000AH	c) 000BH	d) 000CH	8.	MOV [BX+2], SI		
5)	After executing	line 18,			9.	MOV [BX+4], CX		
	a) The data store	ed from 20000H	I to 2000FH ch	anged.	10.	REPE CMPSB		
	b) The data store	ed from 20010F	I to 2001FH ha	ve no change.	11.	DEC SI		
	c) The data store	ed from 20000F	I to 2000F becc	omes equal to	12.	DEC DI		
	the data store	ed from 20010F	I to 2001FH.		13.	INC CX		
	d) The data store	ed from 20010F	I to 2001F becc	omes equal to	14.	NEXT: MOV AL, ES:[DI]		
	the data store	ed from 20000F	I to 2000FH.		15.	MOV [SI], AL		
6)	The MOV instru	ctions at lines 1	9 to 21 are use	d to	16.	INC SI		
	a) Load DI, SI a	and CX by new	values.		17.	INC DI		
	b) Retrieve the o	old values of DI	, SI and CX.		18.	LOOP NEXT		
7)	The LOOP AGA	IN will be exec	cutedtimes		19.	MOV DI, [BX]		
	a) 10	b) 12	c) 16	d) 18	20.	MOV SI, [BX+2]		
8)	After executing	line 23, the regi	ster(s)is/a	re pushed to	21.	MOV CA, [BA+4]		
	the stack.				22.	AGAIN: LODSB		
	a) IP	b) CS, and II	c) flags	, CS, and IP	23.	CALL COMPUTE		
9)	The LOOP NEW	W will be execut	ed times		24.	MOVAL, DL		
	a) 8	b) 10	c) 12	d) 16	23.	STOSD LOOP AGAIN		
10) If $AL = 04H$, aft	er executing the	e subroutine, Al	L becomes	20. 27	HI T		
	a) 02H	b) 04H	c) 08	d) 10H	27.			
11) If $AL = 04H$, aft	er executing the	e subroutine, D	L becomes	28	COMPLITE: PROC NEAR		
	a) 00H	b) 01H	c) 02H	d) 04H	20.	MOV DL 0		
12) If $AL = 04H$, aft	er executing the	e subroutine, Cl	L becomes	30	PUSH CX		
	a) 00H	b) 08H	c) 101	1	31.	MOV CX.8		
1.0	d) The same valu	e before calling	the subroutine	•	32.	NEW: RCL AL, 1		
13) After executing	line 37 , the SP	becomes	1) 001011	33.	JNC DONE		
1.4	a) OOFCH	b) 00FEH	c) 0010H	d) 0012H	34.	INC DL		
14) After executing	line 26,		1	35.	DONE: LOOP NEW		
	e) The data stor	ed from $20000F$	1 to 2000FH ha	ve no change.	36.	POP CX		
	I) The data store	ed from 20010F	1 to 2001FH ha	ve changes.	37.	NOP		
g) The data stored from 20000H to 2000F becomes a function of the data stored from 20010H to 2001EH				38.	RET			
	Iunction of t	ne data stored II	20010 H to	2001FH	39.	COMPUTE: ENDP		
	function of t	be data stored f	1 10 2001F 0ecc					
15	While executing	the NOP instru	offician	2000гп.				
15	a) The micronro	ule NOP listu						
	b) The micropro	cessor perform	io. ing an intermet					
	c) The micropro	cessor is in idi	ang an interrupt	-nrocessor				
	uses the buse	s and accesses	be memory	o-processor				
	d) The micropro	Cessor commu	nicates with the	I/O device				
	a) The inicropro	cessor commu	incates with the	I/O device.				

Part II: Hardware

Attempt all questions:

12 **QUESTION FOUR:**

- (3) a. Draw the Von Newmann computer architecture, and briefly describe its advantages and limitations.
- b. Draw the demultiplexing and buffering circuits for the 8086 microprocessor shown in Figure 1, and explain the importance of address decoding.
- c. Briefly describe the purpose of each T state including the wait state in the 8086 processor bus cycle shown in Figure 2. Is this a read or write bus cycle? How many bus cycles are needed to transfer 16 bits of data from the 8088 and 8086 processors to the memory system.
- d. If a memory chip of 500ns access time is interfaced to the processor with the bus cycle given in Figure 2, does it require a wait state? What are the factors affecting this decision?

18 QUESTION FIVE:

[18 points]

- e. Compare between SRAM and DRAM in terms of memory access time, size, and complexity, and give an example application of each memory type in personal computers.
 - f. For the memory interface shown in Figure 3, find the address range for each chip. If the 74138 (3-8 decoder) is replaced by a PAL 16L8 programmable decoder, draw the new interface circuit and write the 16L8 program.

Note: PAL 16L8 is constructed with AND/OR gate logic and has 10 fixed inputs, 2 fixed outputs, and 6 pins programmable as inputs or outputs.

- g. An 8086 processor is required to interface to:
 - 24 KB of EROM at addresses (10000H 15FFFH).
 - 16 KB of SRAM at addresses (16000H 19FFFH).
 - 512 KB of DRAM at addresses (1A000H 99FFFH).

Design the full interface circuit using the minimum number of resources. You can only use the following chips: NAND gates, 74LS138 (3-to-8 decoder) and 74LS139 (dual 2-to-4 decoder), 74157 (2-to-1 MUX), 2716 (2K×8) EPROM, TMS 4016 (2K×8) SRAM, and TMS 4464 (64K×4) DRAM. Chip pinouts are shown in Figure 4. Calculate the required number of memory and decoder chips and draw the full interface circuitry.

Hint: You should select an appropriate decoding method to minimize the number of decoders used in the 8086 memory interface.

h. Draw a simplified diagram to illustrate how to connect a memory system of an 8-bit data width to an even parity generator and checker,

(5)

(3)

(3)

(3)

[12 points]

and briefly explain how this circuit can help in error detection, and what are its limitations.

(4)
 i. Test if these code words are correct (D93H, D97H, DD7H, C93H), assuming they were created for a single byte of data using an even parity Hamming Code. If one is incorrect, indicate what the correct code word should have been. Also, indicate what the original data was.

20 <u>QUESTION SIX:</u>

[20 points]

- (4)

 a. Write the necessary assembly instructions to load the appropriate control word to program the 8255 PPI for the I/O configuration shown in Figure 5, add bytes read from Ports A and B, and output the result to Port C. Please reset all do not care bits in the address to zeros if exist.
- (4)
 b. Write the PAL program to interface the 8254 chip shown in Figure 6 to an 8086 microprocessor at I/O ports AF00H, AF02H, AF04H, and AF06H, and write an assembly program to generate a 100KHz squarewave (mode 3) at counter OUT0 and a 200KHz continuous pulse (mode 2) at counter OUT1.
- (3) c. Explain a method to measure the period between two events (events generate pulses) using 8254 (No assembly programs are needed).
- d. Design an interface circuit to establish full-duplex serial communication between two 8088 systems connected through two 16550 UARTs. Both UARTs are decoded at addresses 40-47H, transmit and receive data at 38,400 bps baud rate, and operated with an 18.432 MHz crystal oscillator. A serial frame contains 8 data bits, an even parity bit, and one stop bit. Draw the interface circuit and write assembly programs to initialize both UARTs, transmit 16 bytes from a small buffer in the data segment of the first system memory, and receive the 16 bytes and store them in a small buffer in the data segment of the other system memory. Choose arbitrary values for the transmit and receiving buffer addresses. The necessary information to write your program is shown in Figure 7. The table defines the register addresses, followed by the line control register, followed by FIFO control register, and finally the line status register.

e.

- i. List the events that occur for any interrupt instruction, and compare between software and hardware interrupts.
- ii. Compare between the daisy-chined mechanism and the programmable interrupt controller for processing multiple interrupt requests.

(4)

	Explanation						Segment codes:					
Code							Regist	er S	SR			
00	0 Memory mode, no displacement							(00			
01	Men	iory n	node, 8-bit	t displac	ement		CS	()]			
10	Men	iory n	node, 16-b	it displa	cement		22	1				
11	Regi	ster m	ode, no d	isplacem	ent		D3		1			
*Exce	pt when	R/M=	=110, then	16 bit d	isplacemer	nt						
Mode	= 11		Effect	ive addr	ess Calcula	ntior	ı					
R/M	W=0	W=1	R/M	Mode=	00 Mo	de=	=01 Mode=10					
000	AL	AX	000	[BX]+[SI] [BX	[]+[SI]+D8	[]	[BX]+[SI] +D16			
001	CL	CX	001	[BX]+[DI] [BX	[]+[]	DI] +D8	8 []	BX]-	+[DI]	+D16	
010	DL	DX	010	[BP]+[SI] [BF]+[\$	SI] +D8	[]	BP]+	-[SI]+	D16	
011	BL	BX	011	[BP]+[DI] [BF	']+[]	DI] +D8	3 []	BP]+	']+[DI]+D16		
100	AH	SP	100	[SI]	[SI	+D	8	[[SI] +D16			
101	СН	BP	101	[DI]	[DI] +D)8	[]	[DI] +D16			
110	DH	SI	110	Direct	[BF	[BP]+D8		[]	[BP]+D16			
				addres	S							
111	BH	DI	111	[BX]	[BX	[] +]	+D8 [BX]+D16					
MOV=	Move:		100010.1	- Ma		Т	No. 10	D:-				
to/from	register		10001000	aw Mod Reg R/M			hi					
Immediate to			1100011v	w Mod 000 R/M			Disp-lo Disp-		Data	Da	ata	
register/memory							hi	r		if	w=1	
Immediate to		1011wRe	g Data		Т)ata if						
register	r		1011.0100	5	u	v	v=1					
Register/memory to		1000 1110	110 Mod 0 SR R/M									
Segmer	nt Regist	er										
Segment Register to 1			1000 1100) Mo	d 0 SR R/M							
	r/memol	ry TV tim	200									
LUUP	$\frac{1000}{10}$	$\frac{\Delta \text{III}}{\Delta \text{III}}$	nes									
11100		Jispia	cement	T 1		• ,						
	-	1			ie Flag Re	gist	er			D		0
			0 D		TS	Z		А		P		C
			Th	e Condi	tional Jun	ıp ir	istructi	ons				
Instruction				Flag	S		Function					
JZ				ZF = 1				Ju	Jumps if zero			
				CF = 0 Jumps if no carry								
	JNC			CF =	0			Jum	ps if	no ca	arry	

