Alexandria University Faculty of Engineering

Electrical Engineering Department

ECE 336: Semiconductor Devices Sheet 7

Chapter 16:

- 1. For the Figure below answer the following questions:
 - a. Draw the Block Diagram describing the charge situation inside an ideal *p*-bulk MOS-C biased at the onset of inversion.
 - b. Is your part (a) diagram in agreement with the plot of ρ/qN_A versus x in the below figure? Explain why the ρ/qN_A plot has a spike-like nature near x=0 and shows a value of $\rho/qN_A=-2$ at x=0.
 - c. Noting that $\phi_F/(KT/q) = 12$ and T = 300 K was assumed in constructing the below figure, determine W_T . Is the deduced W_T consistent with the approximate charge distribution shown in the figure?

- 2. An MOS-C is maintained at T = 300 K, $x_0 = 0.1$ μ m and the Si doping is $N_D = 10^{15}$ / cm³. Compute:
 - a. ϕ_F in KT/q units and in volts
 - b. W when $\phi_s = 2 \phi_F$
 - c. ε_s when $\phi_s = 2 \phi_F$
 - d. $V_G = V_T$ when $\phi_s = 2 \phi_F$ and state how the result is related to the figure below.

3. The energy band diagram for an ideal $x_o = 0.2 \mu m$ MOS-C operated at T = 300 K is sketched in the below figure. Note that the applied gate voltage causes band bending in the semiconductor such that $E_F = E_i$ at the Si-SiO₂ interface. Invoke the delta-depletion approximation as required in answering the questions that follow.

- a. Sketch the electrostatic potential (ϕ) inside the semiconductor as a function of position.
- b. Roughly sketch the electric field (ε) inside the oxide and semiconductor as a function of position.
- c. Do equilibrium conditions prevail inside the semiconductor? Explain.
- d. Roughly sketch the electron concentration versus position inside the semiconductor.
- e. What is the electron concentration at the Si-SiO₂ interface?
- f. $N_D = ?$
- g. $\phi_{s} = ?$
- h. $V_{\rm G} = ?$
- i. What is the voltage drop $(\Delta \phi_{ox})$ across the oxide?
- j. What is the normalized small-signal capacitance, C/C_o, of the MOS-C at the pictured bias point?
- 4. The below figure is a dimensioned energy band diagram for an ideal MOS-C operated at T = 300 K with $V_G \neq 0$. Note that $E_F = E_i$ at the Si-SiO₂ interface.

- a. Do equilibrium conditions prevail inside the semiconductor?
- b. $\phi_{\rm F} = ?$
- c. $\phi_s = ?$
- d. $V_{\rm G} = ?$
- e. $x_0 = ?$

- f. Draw the block charge diagram corresponding to the state pictured in the energy band diagram. For reference purposes, include the maximum equilibrium depletion width, W_T , on your diagram.
- g. Sketch the general shape of the low- frequency C-V characteristic to be expected from the given MOS-C. Place an X on the C-V characteristic at a point that roughly corresponds to the state pictured in the energy band diagram.
- h. For the specific bias point pictured in the energy band diagram, which of the following is the correct expression for the capacitance exhibited by the structure? Explain.

(iii)
$$C = \frac{C_{O}}{1 + \frac{K_{O}W_{T}}{K_{S}x_{o}}}$$
, (ii) $C = \frac{C_{O}}{\sqrt{1 + \frac{V_{T}}{2V_{\delta}}}}$, (iv) $C = \frac{C_{O}}{\sqrt{1 + \frac{V_{T}}{2V_{\delta}}}}$

- 5. With modern-day processing it is possible to produce semiconductor-oxide-semi-conductor (SOS) capacitors in which a semiconductor replaces the metallic gate in a standard MOS-C. Answer the following questions assuming an SOS-C composed of two identical n-type nondegenerate silicon electrodes, an ideal structure, and a biasing arrangement as defined by the below figure. Include any comments which may help to forestall a misinterpretation of the requested pictorial answers.
 - a. Draw the energy band diagram for the structure when (i) V_G =0, (ii) V_G >0 but small, (iii) V_G >0 and very large, (iv) V_G <0 but small, and (v) V_G <0 and very large.
 - b. Draw the block charge diagrams corresponding to the five biasing conditions considered in part (a)
 - c. Sketch the expected shape of the high frequency C-V characteristic for the SOS-C described in this problem. For reference purposes, also sketch on the same plot the high frequency C-V_G characteristic of an MOS-C assumed to have the same semi-conductor doping and oxide thickness as the SOS-C.

6. The C-V characteristic exhibited by an MOS-C (assumed to be ideal) is displayed in the figure below.

- a. Is the semiconductor component of the MOS-C doped n-type or p-type? Indicate how you arrived at your answer.
- b. Draw the MOS-C energy band diagram corresponding to point 2 on the C-V characteristic. (Be sure to include the diagrams for all three components of the MOS-C, show the proper band bending in both the oxide and semi-conductor, and properly position the Fermi level in the metal and semiconductor.)
- c. Draw the block charge diagram corresponding to point 1 on the C-V characteristic.
- d. If the area of the MOS-C is 3×10^{-3} cm², what is the oxide thickness (x_o) ?
- e. Invoking the delta-depletion approximation, determine $W_{\rm T}$ and the associated semi-conductor doping concentration for the given MOS-C.

Chapter 17:

- 1. Given an ideal p-channel MOSFET maintained at room temperature:
 - a. Assuming $V_D = 0$, sketch the MOS energy band diagram for the gate region of the given transistor at threshold.
 - b. Assuming $V_D = 0$, sketch the MOS block charge diagram for the gate region of the given transistor at threshold.
 - c. Sketch the inversion layer and depletion region inside the MOSFET at pinch-off. Show and label all parts of the transistor.
- 2. Construct a plot of $V_{\rm T}$ versus $N_{\rm A}$ for ideal n-channel MOSFETs operated at room temperature. Superimpose on the same plot the curves corresponding to $x_{\rm o} = 0.01$, 0.02, 0.05, and 0.1 μ m. Let the semiconductor doping vary over the range 10^{14} / cm³ $\leq N_{\rm A} \leq 10^{18}$ / cm³; limit the plotted $V_{\rm T}$ to $0 \leq V_{\rm T} \leq 3$ V.

- 3. Suppose a battery $V_B \ge 0$ is connected between the gate and drain of an ideal n-channel MOSFET as pictured in the figure. Using the square law results,
 - a. Sketch I_D versus V_D ($V_D \ge 0$) if $V_B = V_T / 2$;
 - b. Sketch I_D versus V_D ($V_D \ge 0$) if $V_B = 2 V_T$.

- 4. The most widely encountered MOSFET characteristics are a plot of I_D versus V_D with V_G or $V_G V_T$ held constant at select values. An alternative plot of I_D versus V_G or $V_G V_T$ with V_D held constant at select values is sometimes useful. Sketch the shape of the I_D versus $V_G V_T$ characteristics to be expected from an ideal n-channel MOSFET. Specifically show the characteristics corresponding to $V_D = 1$, 2, 3, and 4 V. Explain how you arrived at your sketch.
- 5. An I_D V_D characteristic derived from an ideal MOSFET is pictured in the figure below. Note that $I_{Dsat} = 10^{-3}$ A and $V_{Dsat} = 5$ V for the given characteristic. Answer the questions that follow making use of the square-law theory and the information conveyed in the figure.

- a. Carefully sketch the inversion layer and depletion region inside the MOSFET corresponding to point (1) on the pictured characteristic. Show and label all parts of the transistor.
- b. Given a turn-on voltage of $V_T = 1$ V, what is the gate voltage one must apply to the MOSFET gate to obtain the pictured characteristic?
- c. If $x_0 = 0.1 \,\mu\text{m}$, what is the inversion-layer charge / cm² at the drain end of the channel when the MOSFET is biased at point (2) on the characteristic?
- d. Suppose the gate voltage is readjusted so that V_G V_T = 3V. For the new condition, determine I_D if V_D = 4 V.

- e. Determine g_d if the quiescent operating point of the MOSFET is point (3) on the pictured characteristic.
- f. Determine g_m if the quiescent operating point of the MOSFET is point (3) on the pictured characteristic.
- g. If $V_D = 0$ (i.e., the drain is shorted to the source and back), sketch the general shape of the C_G (gate capacitance) versus V_G characteristic to be expected from the MOSFET.