

Alexandria University Faculty of Engineering

Electrical Engineering Department

ECE 336: Semiconductor Devices Sheet 1

Chapter 2:

- 1- Using the energy band model for a semiconductor, indicate how one visualizes (a) an electron, (b) a hole, (c) donor sites, (d) acceptor sites, (e) Freeze out of majority carrier electrons at donor sites as the temperature is lowered toward 0 K (f)) Freeze out of majority carrier holes at acceptor sites as the temperature is lowered toward 0 K, (g) Energy distribution of carriers in the respective bands, (h) an intrinsic semiconductor, (i) n-type semiconductor, (j) p-type semiconductor, (k) a non-degenerate semiconductor, (l) a degenerate semiconductor.
- 2- Develop an expression for the total number of available STATES/cm³ in the conduction band between energies E_c and $E_c+\gamma KT$, where γ is an arbitrary constant.
- 3- (a) Under equilibrium conditions and T>0K, what is the probability of an electron state being occupied if it is located at the Fermi level?
 - (b) If E_F is positioned at E_C , determine (numerical answer required) the probability of finding electrons in statesat E_C +KT?
 - (c) The probability a slate is filled at E_C+KT equal to the probability a state is empty at E_C+KT , where is that Fermi level?
- 4- The carrier distributions or numbers of carriers as a function of energy in the conduction and valence bands were noted to be peak at an energy very close to band edges. Taking the semiconductor to be non-degenerate, show that the energy at which the carrier distribution peak is $E_C+KT/2$ and $E_v=KT/2$ for the conduction and valence bands, respectively.
- 5- For a non-degenerate semiconductor, the peak in the electron distribution versus energy inside the conduction band noted in Figure 2.16 occurs at $E_c + KT/2$. Expressed as a fraction of the electron population at the peak energy, what is the electron population in a non-degenerate semiconductor at $E = E_C + 5KT$?
- 6- The Fermi Level in Si sample maintained at T=300~K is located at $E_c-E_G/4$, compute and plot the electron and hole distributions as a function of energy in the conduction and valence bands respectively.
- 7- Let us investigate how the electron energy distribution in the conduction band varies as a function of temperature.
 - a. Assuming the semiconductor to be non-degenerate and employing equation 2.16a expression for n, confirm that the electron distribution in the conduction band normalized to the total electron concentration given

by
$$\frac{g_c(E)f(E)}{n} = \frac{2\sqrt{E - E_c}}{\sqrt{\pi} (kT)^{3/2}} e^{-(E - E_c)/kT}$$

- b. Compute and plot the normalized electron distribution in the conduction band versus $E - E_c$ for temperatures T = 300k, 600K and 1200K. Plot the distribution values along the x-axis ($0 \le g_c(E)f(E)/n \le 20 \text{ eV}^{-1}$) and E – $E_c(0 \le E - E_c \le 0.4 \text{ eV})$ along the y-axis on a single set of coordinates, discuss your results.
- 8- The density of states in the conduction band of a hypothetical semiconductor is $g_c(E) = constant = N_C/kT \dots E >= E_c$
 - a. Assuming $E_F < E_c 3kT$, sketch the electron distribution in the conduction band of the hypothetical semiconductor.
 - b. Following the procedure outlined in the text, establish relationships for the electron concentration in the hypothetical semiconductor analogous to equations 2.14a and 2.16a.
- 9- Concentration questions with a twist
 - a. A silicon wafer uniformly doped p-type with $N_A = 10^{15}$ cm⁻³. At T = 0K. what are the equilibrium hole and electron concentrations?
 - b. A semiconductor is doped with an impurity concentration N such that N>> n_i , and all the impurities are ionized. Also n = N and $p = n_i^2/N$. Is the impurity a donor or acceptor? Explain.
 - c. The electron concentration in a piece of Si maintained at 300K under equilibrium conditions is 10 ¹⁵ cm⁻³ .What is the hole concentration?
 - d. For a silicon sample maintained at T=300K, the Fermi level is located 0.259eV above the intrinsic Fermi level. What are the hole and electron concentrations?
 - e. In a non-degenerate germanium sample maintained under equilibrium conditions near room temperature, it is known that $n_i = 10^{13}$ cm⁻³, n = 2p, and N_A =0. Determine n and N_D .
- 10- Determine the electron and hole concentration inside a uniformally doped sample of Si under the following conditions.
 - a. T = 300K, $N_A \ll N_D$, $N_D = 10^{15}$ cm⁻³.

 - b. T = 300K, $N_D << N_A$, $N_A = 10^{16}$ cm⁻³. c. T = 300K, $N_A = 9x10^{15}$ cm⁻³, $N_D = 10^{16}$ cm⁻³. d. T = 450K, $N_A = 0$, $N_D = 10^{14}$ cm⁻³. e. T = 650K, $N_A = 0$, $N_D = 10^{14}$ cm⁻³.

Figure 2.16

Equations 2.16

$$n = N_{C}e^{(E_{F}-E_{c})/kT}$$

$$p = N_{V}e^{(E_{V}-E_{F})/kT}$$

Equations 2.14

$$n = N_{\rm C} \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_{\rm c})$$

$$p = N_{\rm V} \frac{2}{\sqrt{\pi}} \, F_{1/2}(\eta_{\rm v})$$