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Chapter 4:  PN and Metal-Semiconductor 
Junctions
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4.1 Building Blocks of the PN Junction Theory

2EE336 Semiconductor Devices 

PN junction is present in perhaps every semiconductor device.
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4.1.1 Energy Band Diagram of a PN Junction

3EE336 Semiconductor Devices 

A depletion layer 

exists at the PN 

junction where n  0 

and p  0.

Ef is constant at 

equilibrium

Ec and Ev are smooth, 

the exact shape to be 

determined.

Ec and Ev are known 

relative to Ef
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4.1.2   Built-in Potential

4EE336 Semiconductor Devices 

Can the built-in potential be measured with a voltmeter?
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4.1.2   Built-in Potential

5EE336 Semiconductor Devices 
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4.1.3  Poisson’s Equation

6EE336 Semiconductor Devices 

Gauss’s Law: The total of the electric flux out of 

a closed surface is equal to the charge enclosed 

divided by the permittivity.

s: permittivity (~12o for Si)

:  charge density (C/cm3)

Poisson’s equation

Dx


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4.2  Depletion-Layer Model

7EE336 Semiconductor Devices 

4.2.1  Field and Potential in the Depletion Layer

On the P-side of the 

depletion layer,  = –qNa

On the N-side,   = qNd
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4.2.1  Field and Potential in the Depletion Layer 

8EE336 Semiconductor Devices 

The electric field is continuous at x = 0.

Na |xP| = Nd|xN|

Which side of the junction is depleted more?

A one-sided junction is called a N+P junction or P+N junction
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4.2.1  Field and Potential in the Depletion Layer

9EE336 Semiconductor Devices 

On the P-side,

Arbitrarily choose the 

voltage at x = xP as V = 0.

On the N-side,
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4.2.2  Depletion-Layer Width
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V is continuous at x = 0

If Na >> Nd , as in a P+N junction,

What about a N+P junction?
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11EE336 Semiconductor Devices 

EXAMPLE: A P+N junction has Na=1020 cm-3 and Nd

=1017cm-3. What is a) its built in potential, b)Wdep , c)xN , 

and d) xP ?

Solution:
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4.3  Reverse-Biased PN Junction
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densitydopantlighterNNN ad     

1111
+

• Does the depletion layer

widen or shrink with

increasing reverse bias?
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4.4  Capacitance-Voltage Characteristics

13EE336 Semiconductor Devices 

• Is Cdep a good thing?

• How to minimize junction capacitance?

dep

s
dep

W
AC




N P

 

Nd Na

Conductor  Insulator Conductor

  

Wdep

Reverse biased PN junction is 

a capacitor.



ECE Department- Faculty of Engineering - Alexandria University 2015

4.4  Capacitance-Voltage Characteristics

14EE336 Semiconductor Devices 

• From this C-V data can Na and Nd be determined?

222

2

2

)(21

AqN

V

A

W

C S

bi

s

dep

dep


f



+


Vr

 1/Cdep
2

Increasing reverse bias

Slope = 2/qNsA
2 

 – fbi

Capacitance data



ECE Department- Faculty of Engineering - Alexandria University 2015

15EE336 Semiconductor Devices 

EXAMPLE: If the slope of the line in the previous slide is 

2x1023 F-2 V-1, the intercept is 0.84V, and A is 1 mm2, find the 

lighter and heavier doping concentrations Nl and Nh .

Solution:
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4.5  Junction Breakdown

16EE336 Semiconductor Devices 

A Zener diode is designed to operate in the breakdown mode.

V

I
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4.5.1  Peak Electric Field
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4.5.2  Tunneling Breakdown 

18EE336 Semiconductor Devices 

Dominant if both sides of 

a junction are very heavily 

doped.
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4.5.3  Avalanche Breakdown 

19EE336 Semiconductor Devices 

• impact ionization: an energetic 

electron generating electron and 

hole, which can also cause 

impact ionization.
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4.6   Forward Bias – Carrier Injection

20EE336 Semiconductor Devices 

Minority carrier injection 
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4.6   Forward Bias –
Quasi-equilibrium Boundary Condition

21EE336 Semiconductor Devices 
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4.6  Carrier Injection Under Forward Bias–
Quasi-equilibrium Boundary Condition

22EE336 Semiconductor Devices 
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23EE336 Semiconductor Devices 

EXAMPLE:  Carrier Injection

A PN junction has Na=1019cm-3 and Nd=1016cm-3.  The applied 

voltage is 0.6 V.  

Question: What are the minority carrier concentrations at the 

depletion-region edges?

Solution:

Question: What are the excess minority carrier concentrations?

Solution:
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4.7   Current Continuity Equation
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4.7  Current Continuity Equation

25EE336 Semiconductor Devices 

Minority drift current is negligible;

Jp= –qDpdp/dx

Lp and Ln are the diffusion lengths
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4.8   Forward Biased Junction-- Excess Carriers
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4.8   Excess Carrier Distributions
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28EE336 Semiconductor Devices 

EXAMPLE:  Carrier Distribution in Forward-biased PN Diode

• Sketch n'(x) on the P-side.
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29EE336 Semiconductor Devices 

• How does Ln compare with a typical device size?

μm  8510236 6  

nnn DL 

• What is p'(x) on the P- side?  

EXAMPLE:  Carrier Distribution in Forward-biased PN Diode
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4.9   PN Diode I-V Characteristics

30EE336 Semiconductor Devices 
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The PN Junction as a Temperature Sensor

31EE336 Semiconductor Devices 

What causes the IV curves to shift to lower V at higher T ?
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4.9.1 Contributions from the Depletion Region

32EE336 Semiconductor Devices 
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4.10   Charge Storage

33EE336 Semiconductor Devices 

What is the relationship between s (charge-storage time)

and  (carrier lifetime)?
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4.11   Small-signal Model of the Diode
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Part II: Application to Optoelectronic Devices

35EE336 Semiconductor Devices 

4.12   Solar Cells
•Solar Cells is also known 

as photovoltaic cells. 

•Converts sunlight to 

electricity with 10-30% 

conversion efficiency. 

•1 m2 solar cell generate 

about 150 W peak or 25 W 

continuous power.

•Low cost and high 

efficiency are needed for 

wide deployment.
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4.12.1   Solar Cell Basics
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Direct-Gap and Indirect-Gap Semiconductors 

37EE336 Semiconductor Devices 

•Electrons have both particle and wave properties. 

•An electron has energy E and wave vector k.

indirect-gap semiconductordirect-gap semiconductor
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4.12.2 Light Absorption
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A thinner layer of direct-gap semiconductor can absorb most of 

solar radiation than indirect-gap semiconductor. But Si…
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4.12.3 Short-Circuit Current and Open-Circuit 
Voltage

39EE336 Semiconductor Devices 
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Solar Cell Short-Circuit Current, Isc

40EE336 Semiconductor Devices 

pLx

p

p

p

pp Ge
L

D
q

dx

xpd
qDJ

/)( 



 

G
D

G
Lp p

p

p  2)(

)1()(
/ pLx

p eGxp


 

0)0( p

Assume very thin P+ layer and carrier generation in N region only.

GAqLAJI ppsc  )0(x

NP+

Isc

0
x

P'

Lp

Gp

0

G is really not uniform. Lp needs be larger than the light 

penetration depth to collect most of the generated carriers.
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Open-Circuit Voltage
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•Total current is ISC plus the PV diode (dark) current:

•Solve for the open-circuit voltage (Voc) by setting I=0
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How to raise Voc ?
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4.12.4  Output Power
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FFVI ocsc  erOutput Pow

•Theoretically, the highest efficiency (~24%) can be obtained with 

1.9eV >Eg>1.2eV. Larger Eg lead to too low Isc (low light 

absorption); smaller Eg leads to too low Voc.

•Tandem solar cells gets 35% efficiency using large and small Eg 

materials tailored to the short and long wavelength solar light.

A particular operating point on the 

solar cell  I-V curve maximizes the 

output power (I   V).

•Si solar cell with 15-20% efficiency 

dominates the market now
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4.13  Light Emitting Diodes and Solid-State 
Lighting

43EE336 Semiconductor Devices 

Light emitting diodes (LEDs)

• LEDs are made of compound semiconductors such as InP 

and GaN.

• Light is emitted when electron and hole undergo radiative 

recombination.

Ec

Ev

Radiative 

recombination

Non-radiative 

recombination 

through traps
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Direct and Indirect Band Gap

44EE336 Semiconductor Devices 

Direct band gap

Example: GaAs

Direct recombination is efficient 
as k conservation is satisfied.

Indirect band gap
Example: Si

Direct recombination is rare as k 

conservation is not satisfied

Trap
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4.13.1  LED Materials and Structure
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4.13.1  LED Materials and Structure
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)(eVEg

red

yellow

blue

Wavelength 

(μm)
Color

Lattice 

constant 

(Å)

InAs 0.36 3.44 6.05

InN 0.65 1.91 infrared 3.45

InP 1.36 0.92

violet

5.87

GaAs 1.42 0.87 5.66

GaP 2.26 0.55 5.46

AlP 3.39 0.51 5.45

GaN 2.45 0.37 3.19

AlN 6.20 0.20 UV 3.11

Light-emitting diode materials

compound semiconductors

binary semiconductors:
- Ex: GaAs, efficient emitter

ternary semiconductor :
- Ex: GaAs1-xPx , tunable Eg (to 

vary the color)

quaternary semiconductors:
- Ex: AlInGaP , tunable Eg and 

lattice constant (for growing high 

quality epitaxial films on 

inexpensive substrates)

Eg(eV)

Red
Yellow
Green

Blue
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Common LEDs
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Spectral 

range

Material 

System
Substrate Example Applications

Infrared InGaAsP InP Optical communication

Infrared

-Red
GaAsP GaAs

Indicator lamps. Remote 

control

Red-

Yellow
AlInGaP

GaA or 

GaP

Optical communication. 

High-brightness traffic 

signal lights

Green-

Blue
InGaN

GaN or 

sapphire

High brightness signal 

lights. 

Video billboards

Blue-UV AlInGaN
GaN or 

sapphire
Solid-state lighting

Red-

Blue

Organic 

semicon-

ductors

glass Displays

AlInGaP 

Quantun Well
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4.13.2 Solid-State Lighting
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Incandescent 

lamp

Compact 

fluorescent 

lamp

Tube 

fluorescent 

lamp

White 

LED

Theoretical limit at 

peak of eye sensitivity 

( λ=555nm)

Theoretical limit 

(white light)

17 60 50-100 90-? 683 ~340

luminosity (lumen, lm): a measure of visible light energy 

normalized to the sensitivity of the human eye at 

different wavelengths

Luminous efficacy of lamps in lumen/watt

Terms: luminosity measured in lumens. luminous efficacy, 

Organic Light Emitting Diodes (OLED) : 

has lower efficacy than nitride or aluminide based compound semiconductor LEDs.
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4.14  Diode Lasers
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(d) Net Light 

Absorption

(e) Net Light 

Amplification

Stimulated emission: emitted photon has identical frequency and 

directionality as the stimulating photon; light wave is amplified.

(b) Spontaneous 

Emission

(c) Stimulated 

Emission

(a) Absorption

4.14.1 Light Amplification

Light amplification requires

population inversion: electron 

occupation probability is larger 

for higher E states than lower E 

states.
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4.14.1 Light Amplification in PN Diode
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gfpfn EEEqV 

Population inversion 

is achieved when

Population inversion, qV > Eg

Equilibrium, V=0



ECE Department- Faculty of Engineering - Alexandria University 2015

4.14.2   Optical Feedback and Laser
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121  GRR

•R1, R2: reflectivities of the two ends

•G : light amplification factor (gain) 

for a round-trip travel of the light 

through the diode

Light intensity grows until                         , when the light intensity 

is just large enough to stimulate carrier recombinations at the same 

rate the carriers are injected by the diode current.

121  GRR

light
out

Cleaved
crystal
plane

P+

N+

Laser threshold is reached (light 

intensity grows by feedback) 

when
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4.14.2   Optical Feedback and Laser Diode
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• Distributed Bragg 

reflector (DBR) reflects 

light with multi-layers of 

semiconductors.

•Vertical-cavity surface-

emitting laser (VCSEL) is 

shown on the left.

•Quantum-well laser has 

smaller threshold current 

because fewer carriers 

are needed to achieve 

population inversion in 

the small volume of the 

thin small-Eg well. 
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4.14.3 Laser  Applications
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Red diode lasers: CD, DVD reader/writer

Blue diode lasers: Blu-ray DVD (higher storage density)

1.55 mm infrared diode lasers: Fiber-optic communication

Photodiodes: Reverse biased PN diode. Detects  photo-

generated current (similar to Isc of solar cell) for optical 

communication, DVD reader, etc. Avalanche 

photodiodes: Photodiodes operating near avalanche 

breakdown amplifies photocurrent by impact ionization.

4.15 Photodiodes



ECE Department- Faculty of Engineering - Alexandria University 2015

Part III: Metal-Semiconductor Junction
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Two kinds of metal-semiconductor contacts:

• Rectifying Schottky diodes: metal on lightly 

doped silicon 

•Low-resistance ohmic contacts: metal on 

heavily doped silicon 
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fBn Increases with Increasing Metal Work 
Function
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Theoretically, 

fBn= yM – cSi

y
M

c Si

: Work Function 

of metal

: Electron Affinity of Siqf
Bn Ec

Ev

Ef

E0

qy
M

c
Si

= 4.05 eV

Vacuum level,
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4.16   Schottky Barriers
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Energy Band Diagram of Schottky Contact

• Schottky barrier height, fB , 

is a function of the metal 

material.

• fB is the most important 

parameter.  The sum of qfBn

and qfBp is equal to Eg .

Metal
Depletion

layer Neutral region

qfBn

Ec

Ec

Ef

Ef

Ev

EvqfBp

N-Si

P-Si
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Schottky barrier heights for electrons and holes
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fBn increases with increasing metal work function

Metal Mg Ti Cr W Mo Pd Au Pt

f Bn  (V) 0.4 0.5 0.61 0.67 0.68 0.77 0.8 0.9

f Bp  (V) 0.61 0.5 0.42 0.3

Work

Function 3.7 4.3 4.5 4.6 4.6 5.1 5.1 5.7

y m  (V)

fBn + fBp  Eg
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Fermi Level Pinning
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• A high density of 

energy states in the 

bandgap at the metal-

semiconductor interface 

pins Ef to a narrow 

range and fBn is 

typically 0.4 to 0.9 V

• Question:  What is the 

typical range of fBp?

qfBn E
c

E
v

E
f

E0

qy
M

c
Si

= 4.05 eV

Vacuum level,

+ 



ECE Department- Faculty of Engineering - Alexandria University 2015

Schottky Contacts of Metal Silicide on Si
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Silicide-Si interfaces are more stable than metal-silicon 

interfaces.  After metal is deposited on Si, an annealing step is 

applied to form a silicide-Si contact.  The term metal-silicon 

contact includes and almost always means silicide-Si contacts.

Silicide: A silicon and metal compound. It is conductive 

similar to a metal.

Silicide ErSi1.7 HfSi MoSi2 ZrSi2 TiSi2 CoSi2 WSi2 NiSi2 Pd2Si PtSi

f Bn  (V) 0.28 0.45 0.55 0.55 0.61 0.65 0.67 0.67 0.75 0.87

f Bp  (V) 0.55 0.49 0.45 0.45 0.43 0.43 0.35 0.23

fBn

fBp
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Using C-V Data to Determine fB
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A
W

C

qN

V
W

N

N
kTq

EEqq

dep

s

d

bis
dep

d

c
Bn

fcBnbi



f

f

ff



+






         
)(2

ln

)(

Question: 

How should we plot the CV 

data to extract fbi?

Ev

Ef

Ec

qfbiqfBn

Ev

Ec

Ef

qfBn q(fbi + V)

qV
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Using CV Data to Determine fB

61EE336 Semiconductor Devices 

Once fbi is known, fB can 

be determined using

22

)(21

AqN

V

C sd

bi



f +


d

c
BnfcBnbi

N

N
kTqEEqq ln)(  fff

V

1/C2

fbi

E

v

Ef

Ec

qfbiqfBn
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4.17   Thermionic Emission Theory
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4.18   Schottky Diodes
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V

I

Reverse bias Forward bias

V = 0

Forward 

biased

Reverse 

biased



ECE Department- Faculty of Engineering - Alexandria University 2015

4.18   Schottky Diodes
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4.19   Applications of Schottly Diodes
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• I0 of a Schottky diode is 103 to 108 times larger than a PN 

junction diode, depending on fB . A larger I0 means a smaller 

forward drop V.  

• A Schottky diode is the preferred rectifier in low voltage, 

high current applications.

I

V

PN junction

Schottky

fB

I

V

PN junction

Schottky diode

fB

diode

kTq

kTqV

BeAKTI

eII

/2

0

/

0 )1(

f



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Switching Power Supply
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AC
DC AC AC DC

utility
power

110V/220V

PN Junction
rectifier

Hi-voltage

MOSFET

inverter

100kHz

Hi-voltage

Transformer
Schottky
rectifier

Lo-voltage 50A
1V

feedback to modulate the pulse width to keep Vout
= 1V
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4.19   Applications of Schottky diodes
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• There is no minority carrier injection at the Schottky 

junction. Therefore, Schottky diodes can operate at higher 

frequencies than PN junction diodes.

Question:  What sets the lower limit in a Schottky diode’s 

forward drop?

• Synchronous Rectifier:  For an even lower forward drop, 

replace the diode with a wide-W MOSFET which is not 

bound by the tradeoff between diode V and leakage current.
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4.20 Quantum Mechanical Tunneling
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Tunneling probability:
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4.21   Ohmic Contacts
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4.21   Ohmic Contacts
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4.21   Ohmic Contacts
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4.22   Chapter Summary
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The potential barrier 

increases by 1 V if a 1 V 

reverse bias is applied

junction capacitance

depletion width

2
ln

i

ad
bi

n

NN

q

kT
f

qN

barrier potential
W s

dep


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2

dep

s
dep

W
AC


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Part I: PN Junction



ECE Department- Faculty of Engineering - Alexandria University 2015

4.22  Chapter Summary
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• Under forward bias,   minority carriers are injected 

across the jucntion.

• The quasi-equilibrium boundary condition of 

minority carrier densities is:

• Most of the minority carriers are injected into the 

more lightly doped side.

kTVq

Pp enxn 0)( 
kTVq

NN epxp 0)( 
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4.22  Chapter Summary

74EE336 Semiconductor Devices 

• Steady-state 

continuity equation:

• Minority carriers 

diffuse outward  e–|x|/Lp

and e–|x|/Ln

• Lp and Ln are the 

diffusion lengths22

2
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4.22   Chapter Summary
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q

kT
/IG DC

Charge storage:

Diffusion capacitance:

Diode conductance:

GC s

sIQ 
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4.22   Chapter Summary
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Part II: Optoelectronic Applications

•~100um Si or <1um direct–gap semiconductor can absorb most of solar 

photons with energy larger than Eg. 

•Carriers generated within diffusion length from the junction can be 

collected and contribute to the Short Circuit Current Isc.

•Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV 

>Eg>1.2eV. Larger Eg lead to too low Isc (low light absorption); smaller Eg

leads to too low Open Circuit VoltageVoc.

FFVI ocsc  power cellSolar 

•Si cells with ~15% efficiency dominate the market. >2x cost reduction 

(including package and installation) is required to achieve cost parity with 

base-load non-renewable electricity.
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4.22   Chapter Summary
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Part II: Optoelectronic Applications

•~100um Si or <1um direct–gap semiconductor can absorb most of solar 

photons with energy larger than Eg. 

•Carriers generated within diffusion length from the junction can be 

collected and contribute to the Short Circuit Current Isc.

•Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV 

>Eg>1.2eV. Larger Eg lead to too low Isc (low light absorption); smaller Eg

leads to too low Open Circuit VoltageVoc.

FFVI ocsc  power cellSolar 

•Si cells with ~15% efficiency dominate the market. >2x cost reduction 

(including package and installation) is required to achieve cost parity with 

base-load non-renewable electricity.
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4.22   Chapter Summary
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•Light is amplified under the condition of population inversion – states at 

higher E have higher probability of occupation than states at lower E.

•When the round-trip gain (including loss at reflector) exceeds unity, laser 

threshold is reached. 

Laser Diodes

•Population inversion occurs when diode forward bias qV > Eg.

•Optical feedback is provided with cleaved surfaces or distributed Bragg 

reflectors.

•Quantum-well structures significantly reduce the threshold currents.

•Purity of laser light frequency enables long-distance fiber-optic 

communication. Purity of light direction allows focusing to tiny spots and 

enables DVD writer/reader and other application.
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4.22   Chapter Summary
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Part III: Metal-Semiconductor Junction

•Schottky diodes have large reverse saturation current, determined by the 

Schottky barrier height fB, and therefore lower forward voltage at a given 

current density.

kTq BeAKTI
/2

0

f


2
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4
(

cmΩ 
 dnsB qNm

h
c eR

f


•Ohmic contacts relies on tunneling. Low resistance contact requires 

low fB and higher doping concentration.
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fBn Increases with Increasing Metal Work 
Function
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qf
Bn Ec

Ev

Ef

E0

qy
M

c
Si

= 4.05 eV

Vacuum level,

Ideally, 

fBn= yM – cSi


