Chapter 4: PN and Metal-Semiconductor Junctions

Building Blocks of the PN Junction Theory 4.1 Ι. Donor ions P N N-type K I P-type diode symbol $\rightarrow V$ **Reverse** bias Forward bias

PN junction is present in perhaps every semiconductor device.

4.1.1 Energy Band Diagram of a PN Junction

EE336 Semiconductor Devices

4.1.2 Built-in Potential

4.1.2 Built-in Potential

I

N-region
$$n = N_d = N_c e^{-qA/kT} \Longrightarrow A = \frac{kT}{q} \ln \frac{N_c}{N_d}$$

P-region
$$n = \frac{n_i^2}{N_a} = N_c e^{-qB/kT} \Longrightarrow B = \frac{kT}{q} \ln \frac{N_c N_a}{n_i^2}$$

$$\phi_{bi} = B - A = \frac{kT}{q} \left(\ln \frac{N_c N_a}{n_i^2} - \ln \frac{N_c}{N_d} \right)$$

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2}$$

E

4.1.3 Poisson's Equation

Gauss's Law: The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity.

$$\varepsilon_s \mathcal{E}(x + \Delta x)A - \varepsilon_s \mathcal{E}(x)A = \rho \Delta xA$$

 ε_s : permittivity (~12 ε_o for Si) ρ : charge density (C/cm³)

$$\frac{\frac{\mathcal{E}(x + \Delta x) - \mathcal{E}(x)}{\Delta x} = \frac{\rho}{\varepsilon_s}}{\frac{d\mathcal{E}}{dx} = \frac{\rho}{\varepsilon_s}}$$

$$\frac{d^2 V}{dx^2} = -\frac{d\mathcal{E}}{dx} = -\frac{\rho}{\varepsilon_s}$$

Poisson's equation

4.2 Depletion-Layer Model

4.2.1 Field and Potential in the Depletion Layer

EE336 Semiconductor Devices

4.2.1 Field and Potential in the Depletion Layer

The electric field is continuous at x = 0.

$$N_a / x_{\rm P} / = N_d / x_{\rm N} /$$

Which side of the junction is depleted more?

A one-sided junction is called a N+P junction or P+N junction

4.2.1 Field and Potential in the Depletion Layer

On the P-side,

$$V(x) = \frac{qN_a}{2\varepsilon_s}(x_P - x)^2$$

Arbitrarily choose the voltage at $x = x_P$ as V = 0.

On the N-side,

$$V(x) = D - \frac{qN_d}{2\varepsilon_s} (x - x_N)^2$$
$$= \phi_{bi} - \frac{qN_d}{2\varepsilon_s} (x - x_N)^2$$

4.2.2 Depletion-Layer Width

Neutral Region	Depletion Layer	Neutral Region
Ν		Р
	x _N O	x _P

V is continuous at $x = 0 \rightarrow$

$$x_P - x_N = W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{bi}}{q}} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)$$

If $N_a >> N_d$, as in a P+N junction,

$$W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{bi}}{qN_d}} \approx \left| x_N \right|$$

$$\left|x_{P}\right| = \left|x_{N}\right| N_{d} / N_{a} \cong 0$$

What about a N⁺P junction?

$$W_{dep} = \sqrt{2\varepsilon_s \phi_{bi}/qN}$$
 where $\frac{1}{N} = \frac{1}{N_d} + \frac{1}{N_a} \approx \frac{1}{lighter dopant density}$

EXAMPLE: A P⁺N junction has $N_a = 10^{20} \text{ cm}^{-3}$ and $N_d = 10^{17} \text{ cm}^{-3}$. What is a) its built in potential, b) W_{dep} , c) x_N , and d) x_P ?

Solution:

a)
$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2} = 0.026 \text{V} \ln \frac{10^{20} \times 10^{17} \text{ cm}^{-6}}{10^{20} \text{ cm}^{-6}} \approx 1 \text{ V}$$

b) $W_{dep} \approx \sqrt{\frac{2\varepsilon_s \phi_{bi}}{qN_d}} = \left(\frac{2 \times 12 \times 8.85 \times 10^{-14} \times 1}{1.6 \times 10^{-19} \times 10^{17}}\right)^{1/2} = 0.12 \,\mu\text{m}$

c)
$$|x_N| \approx W_{dep} = 0.12 \,\mu\text{m}$$

d) $|x_P| = |x_N| N_d / N_a = 1.2 \times 10^{-4} \,\mu\text{m} = 1.2 \,\text{\AA} \approx 0$

4.3 Reverse-Biased PN Junction

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

• Is C_{dep} a good thing?

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.4 Capacitance-Voltage Characteristics

• From this C-V data can N_a and N_d be determined?

EXAMPLE: If the slope of the line in the previous slide is $2x10^{23} F^{-2} V^{-1}$, the intercept is 0.84V, and A is 1 μm^2 , find the lighter and heavier doping concentrations N_l and N_h .

Solution:

$$N_{l} = 2/(slope \times q\varepsilon_{s}A^{2})$$

= 2/(2×10²³×1.6×10⁻¹⁹×12×8.85×10⁻¹⁴×10⁻⁸cm²)
= 6×10¹⁵ cm⁻³

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_h N_l}{n_i^2} \implies N_h = \frac{n_i^2}{N_l} e^{\frac{q\phi_{bi}}{kT}} = \frac{10^{20}}{6 \times 10^{15}} e^{\frac{0.84}{0.026}} = 1.8 \times 10^{18} \,\mathrm{cm}^{-3}$$

• Is this an accurate way to determine N_l ? N_h ?

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

A Zener diode is designed to operate in the breakdown mode.

16

4.5.1 Peak Electric Field

EE336 Semiconductor Devices

4.5.2 Tunneling Breakdown

Dominant if both sides of a junction are very heavily doped.

$$J = G e^{-H/\mathcal{E}_p}$$

$$\boldsymbol{\varepsilon}_p = \boldsymbol{\varepsilon}_{crit} \approx 10^6 \text{ V/cm}$$

4.5.3 Avalanche Breakdown

2015

 $V_B = \frac{\varepsilon_s \varepsilon_{crit}}{2qN}$

4.6 Forward Bias –

Quasi-equilibrium Boundary Condition

$$n(x_{\rm P}) = N_c e^{-(E_c - E_{fn})/kT} = N_c e^{-(E_c - E_{fp})/kT} e^{(E_{fn} - E_{fp})/kT}$$

$$= n_{P0} e^{(E_{fn} - E_{fp})/kT} = n_{P0} e^{qV/kT}$$

- The minority carrier densities are raised by $e^{qV/kT}$
- Which side gets more carrier injection ?

4.6 Carrier Injection Under Forward Bias– Quasi-equilibrium Boundary Condition

$$n(x_{P}) = n_{P0}e^{qV/kT} = \frac{n_{i}^{2}}{N_{a}}e^{qV/kT}$$
$$p(x_{P}) = p_{N0}e^{qV/kT} = \frac{n_{i}^{2}}{N_{d}}e^{qV/kT}$$

$$n'(x_{P}) \equiv n(x_{P}) - n_{P0} = n_{P0}(e^{qV/kT} - 1)$$
$$p'(x_{N}) \equiv p(x_{N}) - p_{N0} = p_{N0}(e^{qV/kT} - 1)$$

EE336 Semiconductor Devices

EXAMPLE: Carrier Injection

A PN junction has $N_a = 10^{19} \text{ cm}^{-3}$ and $N_d = 10^{16} \text{ cm}^{-3}$. The applied voltage is 0.6 V.

Question: What are the minority carrier concentrations at the depletion-region edges?

Solution:
$$n(x_P) = n_{P0}e^{qV/kT} = 10 \times e^{0.6/0.026} = 10^{11} \text{ cm}^{-3}$$

 $p(x_N) = p_{N0}e^{qV/kT} = 10^4 \times e^{0.6/0.026} = 10^{14} \text{ cm}^{-3}$

Question: What are the excess minority carrier concentrations?

Solution:
$$n'(x_P) = n(x_P) - n_{P0} = 10^{11} - 10 = 10^{11} \text{ cm}^{-3}$$

 $p'(x_N) = p(x_N) - p_{N0} = 10^{14} - 10^4 = 10^{14} \text{ cm}^{-3}$

4.7 Current Continuity Equation

EE336 Semiconductor Devices

4.7 Current Continuity Equation

$$-\frac{dJ_p}{dx} = q\frac{p'}{\tau}$$

Minority drift current is negligible; $\therefore J_p = -qD_p dp/dx$

$$qD_p \frac{d^2 p}{dx^2} = q \frac{p'}{\tau_p}$$

 $\frac{d^{2}p'}{dx^{2}} = \frac{p'}{D_{p}\tau_{p}} = \frac{p'}{L_{p}^{2}}$

 $\frac{d^2n'}{dx^2} = \frac{n'}{L_n^2}$

L_p and L_n are the diffusion lengths

$$L_p \equiv \sqrt{D_p \tau_p}$$

$$L_n \equiv \sqrt{D_n \tau_n}$$

2015

4.8 Forward Biased Junction-- Excess Carriers

4.8 Excess Carrier Distributions

EXAMPLE: Carrier Distribution in Forward-biased PN Diode

N-type
$$N_d = 5 \times 10^{17} \text{ cm}^{-3}$$
P-type
 $N_a = 10^{17} \text{ cm}^{-3}$ $D_p = 12 \text{ cm}^2/\text{s}$
 $\tau_p = 1 \text{ } \mu \text{s}$ $D_n = 36.4 \text{ cm}^2/\text{s}$
 $\tau_n = 2 \text{ } \mu \text{s}$

• Sketch n'(x) on the P-side.

$$n'(x_{P}) = n_{P0}(e^{qV/kT} - 1) = \frac{n_{i}^{2}}{N_{a}}(e^{qV/kT} - 1) = \frac{10^{20}}{10^{17}}e^{0.6/0.026} = 10^{13} \text{ cm}^{-3}$$

N-side
$$n'(=p')$$
$$2 \times 10^{12}$$

EE336 Semiconductor Devices

EXAMPLE: Carrier Distribution in Forward-biased PN Diode

• How does L_n compare with a typical device size?

$$L_n = \sqrt{D_n \tau_n} = \sqrt{36 \times 2 \times 10^{-6}} = 85 \ \mu m$$

• What is p'(x) on the *P*-side?

2015

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

The PN Junction as a Temperature Sensor

What causes the IV curves to shift to lower V at higher T?

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.9.1 Contributions from the Depletion Region

What is the relationship between τ_s (charge-storage time) and τ (carrier lifetime)?

4.11 Small-signal Model of the Diode

$$C = \frac{dQ}{dV} = \tau_s \frac{dI}{dV} = \tau_s G = \tau_s I_{DC} / \frac{kT}{q}$$

Which is larger, diffusion or depletion capacitance?

Part II: Application to Optoelectronic Devices

•*Solar Cells* is also known as *photovoltaic cells*.

•Converts sunlight to electricity with 10-30% conversion efficiency.

•1 m² solar cell generate about 150 W peak or 25 W continuous power.

•Low cost and high efficiency are needed for wide deployment.

2015

4.12.1 Solar Cell Basics

Direct-Gap and Indirect-Gap Semiconductors

Electrons have both particle and wave properties.An electron has energy E and wave vector k.

direct-gap semiconductor

indirect-gap semiconductor

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.12.2 Light Absorption

A thinner layer of direct-gap semiconductor can absorb most of solar radiation than indirect-gap semiconductor. But Si...

EE336 Semiconductor Devices

4.12.3 Short-Circuit Current and Open-Circuit

Voltage

If light shines on the N-type semiconductor and generates holes (and electrons) at the rate of G s⁻¹cm⁻³,

 $\frac{d^2 p'}{dx^2} = \frac{p'}{L^2} - \frac{G}{D_a}$

If the sample is uniform (no PN junction), $d^2p'/dx^2 = 0 \rightarrow p' = GL_p^2/D_p = G\tau_p$

Solar Cell Short-Circuit Current, I_{sc}

Assume very thin P+ layer and carrier generation in N region only.

G is really not uniform. L_p needs be larger than the light penetration depth to collect most of the generated carriers.

Open-Circuit Voltage

•Total current is I_{SC} plus the PV diode (dark) current:

$$I = Aq \frac{n_i^2}{N_d} \frac{D_p}{L_p} (e^{qV/kT} - 1) - AqL_p G$$

•Solve for the open-circuit voltage (V_{oc}) by setting I=0(assuming $e^{qV_{oc}/kT} >>1$) $0 - \frac{n_i^2}{D_p} \frac{D_p}{e^{qV_{oc}/kT}} - I_c G$

$$0 = \frac{n_i}{N_d} \frac{D_p}{L_p} e^{qV_{oc}/kT} - L_p G$$

$$V_{oc} = \frac{kT}{q} \ln(\tau_p G N_d / n_i^2)$$

How to raise V_{oc} ?

2015

Dark IV

Eq.(4.9.4)

Solar cell

Eq.(4.12.1

IV

0

0.7 V

Maximum

power output

4.12.4 Output Power

A particular operating point on the solar cell I-V curve maximizes the output power (I ×V).

Output Power =
$$I_{sc} \times V_{oc} \times FF$$

•Si solar cell with 15-20% efficiency $-I_{\underline{sc}}$ dominates the market now

4.13 Light Emitting Diodes and Solid-State

Light emitting diodes (LEDs)

Lighting

- LEDs are made of compound semiconductors such as InP and GaN.
- Light is emitted when electron and hole undergo *radiative recombination*.

Direct and Indirect Band Gap

Direct band gap Example: GaAs

Direct recombination is efficient as k conservation is satisfied.

Indirect band gap Example: Si

Direct recombination is rare as k conservation is not satisfied

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

2015

4.13.1 LED Materials and Structure Р Ν Р N Emitted photons w Lens +m

LED wavelength (
$$\mu$$
 m) = $\frac{1.24}{\text{photon energy}} \approx \frac{1.24}{E_g(eV)}$

4.13.1 LED Materials and Structure

	E _g (eV)	Wavelength (µm)	Color	Lattice constant (Å)	
InAs	0.36	3.44		6.05	
InN	0.65	1.91	infrared	3.45	
InP	1.36	0.92		5.87	
GaAs	1.42	0.87	Red	5.66	
GaP	2.26	0.55	Green	5.46	
AlP	3.39	0.51		5.45	
GaN	2.45	0.37	↓	3.19	
AIN	6.20	0.20	UV	3.11	

Light-emitting diode materials

compound semiconductors

binary semiconductors:- Ex: GaAs, efficient emitter

ternary semiconductor : - Ex: GaAs_{1-x}P_x, tunable E_g (to vary the color)

quaternary semiconductors: - Ex: AlInGaP, tunable E_g and lattice constant (for growing high quality epitaxial films on inexpensive substrates)

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

Common LEDs

Spectral range	Material System	Substrate	Example Applications	
Infrared	InGaAsP	InP	Optical communication	
Infrared -Red	GaAsP	GaAs	Indicator lamps. Remote control	
Red- Yellow	AlInGaP	GaA or GaP	Optical communication. High-brightness traffic signal lights	
Green- Blue	InGaN	GaN or sapphire	High brightness signal lights. Video billboards	
Blue-UV	AlInGaN	GaN or sapphire	Solid-state lighting	
Red- Blue	Organic semicon- ductors	glass	Displays	

4.13.2 Solid-State Lighting

luminosity (lumen, lm): a measure of visible light energy normalized to the sensitivity of the human eye at different wavelengths

Incandescent	andescent Compact Tube		White	Theoretical limit at peak of eye sensitivity (λ =555nm)	Theoretical limit	
lamp	fluorescent fluorescent LED		LED		(white light)	
17	60	60 50-100 9		683	~340	

Luminous efficacy of lamps in lumen/watt

Organic Light Emitting Diodes (OLED) :

has lower efficacy than nitride or aluminide based compound semiconductor LEDs.

Terms: luminosity measured in lumens. luminous efficacy,

Stimulated emission: emitted photon has identical frequency and directionality as the stimulating photon; light wave is amplified.

4.14.1 Light Amplification in PN Diode

EE336 Semiconductor Devices

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.14.2 Optical Feedback and Laser

Laser threshold is reached (light intensity grows by feedback) when

 $R_1 \times R_2 \times G \ge 1$

•R1, R2: reflectivities of the two ends
•G : light amplification factor (gain) for a round-trip travel of the light through the diode

Light intensity grows until $R_1 \times R_2 \times G = 1$, when the light intensity is just large enough to stimulate carrier recombinations at the same rate the carriers are injected by the diode current.

4.14.2 Optical Feedback and Laser Diode

• Distributed Bragg reflector (DBR) reflects light with multi-layers of semiconductors. •Vertical-cavity surfaceemitting laser (VCSEL) is shown on the left. •Quantum-well laser has smaller threshold current because fewer carriers are needed to achieve population inversion in the small volume of the thin small-*Eg* well.

4.14.3 Laser Applications

Red diode lasers: CD, DVD reader/writer

Blue diode lasers: Blu-ray DVD (higher storage density)

1.55 µm infrared diode lasers: Fiber-optic communication

4.15 Photodiodes

Photodiodes: Reverse biased PN diode. Detects photo-
generated current (similar to Isc of solar cell) for optical
communication, DVD reader, etc.Avalanche
Avalanche
bhotodiodes: Photodiodes operating near avalanche
breakdown amplifies photocurrent by impact ionization.

Part III: Metal-Semiconductor Junction

Two kinds of metal-semiconductor contacts:

• *Rectifying Schottky diodes*: *metal on lightly doped silicon*

•Low-resistance ohmic contacts: metal on heavily doped silicon

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.16 Schottky Barriers

Energy Band Diagram of Schottky Contact

• Schottky barrier height, ϕ_B , is a function of the metal material.

• ϕ_B is the most important parameter. The sum of $q\phi_{Bn}$ and $q\phi_{Bp}$ is equal to E_g .

Schottky barrier heights for electrons and holes

Metal	Mg	Ti	Cr	W	Mo	Pd	Au	Pt
ϕ_{Bn} (V)	0.4	0.5	0.61	0.67	0.68	0.77	0.8	0.9
ϕ_{Bp} (V)		0.61	0.5		0.42		0.3	
Work								
Function	3.7	4.3	4.5	4.6	4.6	5.1	5.1	5.7
$\psi_m(\mathbf{V})$								

 $\phi_{Bn} + \phi_{Bp} \approx \mathbf{E}_{g}$

 ϕ_{Bn} increases with increasing metal work function

Fermi Level Pinning

• A high density of energy states in the bandgap at the metalsemiconductor interface pins E_f to a narrow range and ϕ_{Bn} is typically 0.4 to 0.9 V

• *Question*: What is the typical range of ϕ_{Bp} ?

Schottky Contacts of Metal Silicide on Si

Silicide: A silicon and metal compound. It is conductive similar to a metal.

Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, an annealing step is applied to form a silicide-Si contact. The term *metal-silicon contact* includes and almost always means silicide-Si contacts.

Silicide	ErSi _{1.7}	HfSi	MoSi ₂	ZrSi ₂	TiSi ₂	CoSi ₂	WSi ₂	NiSi ₂	Pd ₂ Si	PtSi
$\phi_{Bn}(V)$	0.28	0.45	0.55	0.55	0.61	0.65	0.67	0.67	0.75	0.87
$\phi_{Bp}(V)$			0.55	0.49	0.45	0.45	0.43	0.43	0.35	0.23

$$q\phi_{bi} = q\phi_{Bn} - (E_c - E_f)$$
$$= q\phi_{Bn} - kT \ln \frac{N_c}{N_d}$$

$$W_{dep} = \sqrt{\frac{2\varepsilon_s(\phi_{bi} + V)}{qN_d}}$$

Question: How should we plot the CV data to extract ϕ_{bi} ?

EE336 Semiconductor Devices

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

Using CV Data to Determine ϕ_{B}

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.17 Thermionic Emission Theory

2015

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

4.18 Schottky Diodes

EE336 Semiconductor Devices

4.18 Schottky Diodes

I

1)

4.19 Applications of Schottly Diodes

- I_0 of a Schottky diode is 10^3 to 10^8 times larger than a PN junction diode, depending on ϕ_B . A larger I_0 means a smaller forward drop V.
- A Schottky diode is the preferred rectifier in low voltage, high current applications.

2015

Switching Power Supply

4.19 Applications of Schottky diodes

Question: What sets the lower limit in a Schottky diode's forward drop?

• *Synchronous Rectifier*: For an even lower forward drop, replace the diode with a wide-W MOSFET which is not bound by the tradeoff between diode *V* and leakage current.

• There is no minority carrier injection at the Schottky junction. Therefore, Schottky diodes can operate at higher frequencies than PN junction diodes.

4.20 Quantum Mechanical Tunneling

Tunneling probability:

$$P \approx \exp\left(-2T\sqrt{\frac{8\pi^2 m}{h^2}(V_H - E)}\right)$$

4.21 Ohmic Contacts

4.21 Ohmic Contacts

70

$$R_{c} \equiv \left(\frac{dJ_{S \to M}}{dV}\right)^{-1} = \frac{2e^{H\phi_{Bn}/\sqrt{N_{d}}}}{qv_{thx}H\sqrt{N_{d}}} \propto e^{H\phi_{Bn}/\sqrt{N_{d}}} \Omega \cdot \mathrm{cm}^{2}$$

EE336 Semiconductor Devices

4.22 Chapter Summary

Part I: PN Junction

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{{n_i}^2}$$

The potential barrier increases by 1 V if a 1 V reverse bias is applied

depletion width

$$W_{dep} = \sqrt{\frac{2\varepsilon_s \cdot potential barrier}{qN}}$$

junction capacitance

$$C_{dep} = A \frac{\mathcal{E}_s}{W_{dep}}$$
• Under forward bias, minority carriers are injected across the jucntion.

• The quasi-equilibrium boundary condition of minority carrier densities is:

$$n(x_p) = n_{P0} e^{qV/kT}$$
$$p(x_N) = p_{N0} e^{qV/kT}$$

• Most of the minority carriers are injected into the more lightly doped side.

• Steady-state continuity equation:

$$\frac{d^2 p'}{dx^2} = \frac{p'}{D_p \tau_p} = \frac{p'}{L_p^2}$$

$$L_p \equiv \sqrt{D_p \tau_p}$$

- Minority carriers diffuse outward $\propto e^{-|x|/L_p}$ and $e^{-|x|/L_n}$
- L_p and L_n are the diffusion lengths

$$I = I_0 (e^{qV/kT} - 1)$$
$$I_0 = Aqn_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a}\right)$$

Charge storage:

Diffusion capacitance:

Diode conductance:

$$Q = I\tau_s$$

$$C = \tau_s G$$

$$G = I_{DC} / \frac{kT}{q}$$

EE336 Semiconductor Devices

Part II: Optoelectronic Applications

Solar cell power = $I_{sc} \times V_{oc} \times FF$

•~100um Si or <1um direct–gap semiconductor can absorb most of solar photons with energy larger than E_g .

•Carriers generated within diffusion length from the junction can be collected and contribute to the Short Circuit Current I_{sc} .

•Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV >E_g>1.2eV. Larger E_g lead to too low I_{sc} (low light absorption); smaller E_g leads to too low Open Circuit VoltageVoc.

•Si cells with ~15% efficiency dominate the market. >2x cost reduction (including package and installation) is required to achieve cost parity with base-load non-renewable electricity.

Part II: Optoelectronic Applications

Solar cell power = $I_{sc} \times V_{oc} \times FF$

•~100um Si or <1um direct–gap semiconductor can absorb most of solar photons with energy larger than E_g .

•Carriers generated within diffusion length from the junction can be collected and contribute to the Short Circuit Current I_{sc} .

•Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV >E_g>1.2eV. Larger E_g lead to too low I_{sc} (low light absorption); smaller E_g leads to too low Open Circuit VoltageVoc.

•Si cells with ~15% efficiency dominate the market. >2x cost reduction (including package and installation) is required to achieve cost parity with base-load non-renewable electricity.

Laser Diodes

•Light is amplified under the condition of population inversion – states at higher E have higher probability of occupation than states at lower E.

•Population inversion occurs when diode forward bias $qV > E_g$.

•Optical feedback is provided with cleaved surfaces or distributed Bragg reflectors.

•When the round-trip gain (including loss at reflector) exceeds unity, laser threshold is reached.

•Quantum-well structures significantly reduce the threshold currents.

•Purity of laser light frequency enables long-distance fiber-optic communication. Purity of light direction allows focusing to tiny spots and enables DVD writer/reader and other application.

Part III: Metal-Semiconductor Junction

$$I_0 = AKT^2 e^{-q\phi_B/kT}$$

•Schottky diodes have large reverse saturation current, determined by the Schottky barrier height ϕ_B , and therefore lower forward voltage at a given current density.

•Ohmic contacts relies on tunneling. Low resistance contact requires low ϕ_B and higher doping concentration.

$$R_c \propto e^{-(rac{4\pi}{h}\phi_B\sqrt{arepsilon_s m_n/qN_d})} \Omega \cdot \mathrm{cm}^2$$

ECE DEPARTMENT- FACULTY OF ENGINEERING - ALEXANDRIA UNIVERSITY

ϕ_{Bn} Increases with Increasing Metal Work Function Vacuum level, E_0 $\chi_{Si} = 4.05 \text{ eV}$ Ideally, $q\psi_M$ $\phi_{Bn} = \psi_M - \chi_{Si}$ $q \phi_{Bn}$ E_c E_f

 E_{v}

EE336 Semiconductor Devices

80