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Chapter 2:  Motion and Recombination
of Electrons and Holes
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2.1  Thermal Motion
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2.1   Thermal Motion
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• Zig-zag motion is due to collisions or scattering

with imperfections in the crystal.  

• Net thermal velocity is zero.

• Mean time between collisions is m ~ 0.1ps
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2.2  Drift
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2.2.1 Electron and Hole Mobilities

• Drift is the motion caused by an electric field.
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 The drift momentum gained between collisions is equal to the 

force, qε, times the mean free time between collisions 𝜏𝑚𝑝. 

2.2.1 Electron and Hole Mobilities
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• p is the hole mobility and n is the electron mobility
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2.2.1  Electron and Hole Mobilities
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Electron and hole mobilities of selected 

semiconductors

Si Ge GaAs InAs

 n (cm
2
/V∙s) 1400 3900 8500 30000

 p (cm
2
/V∙s) 470 1900 400 500

. 
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v = ε ;    has the dimensions of v/ε

Based on the above table alone, which semiconductor and which carriers 

(electrons or holes) are attractive for applications in high-speed devices?
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EXAMPLE:  Given p = 470 cm2/V·s, what is the hole drift velocity 

at ε = 103 V/cm? What is mp and what is the distance traveled 
between collisions (called the mean free path)? Hint: When in 

doubt, use the MKS system of units.

Solution: n = p ε = 470 cm2/V·s  103 V/cm = 4.7 105 cm/s

mp = pmp/q =470 cm2/V ·s  0.39  9.110-31 kg/1.610-19 C

= 0.047 m2/V ·s  2.210-12 kg/C = 110-13s = 0.1 ps

mean free path = mhnth ~ 1 10-13 s  2.2107 cm/s

= 2.210-6 cm = 220 Å = 22 nm

This is smaller than the typical dimensions of devices, but getting 
close.

Drift Velocity, Mean Free Time, Mean Free Path
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2.2.2  Mechanisms of Carrier Scattering
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There are two main causes of carrier scattering:

1.  Phonon Scattering

2.  Ionized-Impurity (Coulombic) Scattering
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Phonon scattering mobility decreases when temperature rises:
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vth  T1/2
 T



ECE Department- Faculty of Engineering - Alexandria University 2015

Impurity (Dopant)-Ion Scattering or Coulombic 
Scattering
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There is less change in the direction of travel if the electron zips by

the ion at a higher speed.
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Total Mobility
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Temperature Effect on Mobility
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1015

Question:

What Nd will make 

dn/dT = 0 at room 

temperature?
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 When the kinetic energy of a carrier exceeds a critical value, 
it generates an optical photon and loses the kinetic energy.

 Therefore, the kinetic energy is capped at large ε, and the 
velocity does not rise above a saturation velocity, vsat .

 Velocity saturation has a deleterious effect on device speed 
as shown in Ch. 6. 

Velocity Saturation
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2.2.3   Drift Current and Conductivity
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J
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+
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Jp = qpv A/cm2 or C/cm2·sec

If p = 1015cm-3 and v = 104 cm/s, then

Jp= 1.610-19C  1015cm-3  104cm/s

= 22 A/cm 1.6cmC/s 6.1 

EXAMPLE:

Hole current density
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2.2.3   Drift Current and Conductivity
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Jp,drift = qpv = qp ε

Jn,drift = –qnv = qn ε

Jdrift = Jn,drift + Jp,drift =  ε =(qnn+qpp) ε

conductivity (1/ohm-cm) of a semiconductor is       

 = qnn + qpp



1/ = is resistivity (ohm-cm)
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Relationship between Resistivity and Dopant 
Density
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P-type
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EXAMPLE:  Temperature Dependence of Resistance
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(a)  What is the resistivity () of silicon doped 

with 1017cm-3 of arsenic?

Solution:

(a) Using the N-type curve in the previous 

figure, we find that  = 0.084 -cm.  

(b)  What is the resistance (R) of a piece of this 

silicon material 1m long and 0.1 m2 in cross-

sectional area?

(b) R = L/A = 0.084 -cm  1 m / 0.1 m2

= 0.084 -cm  10-4 cm/ 10-10 cm2

= 8.4  10-4 
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By what factor will R increase or decrease from T=300 K to T=400 
K?

Solution: The temperature dependent factor in  (and therefore 
) is n.  From the mobility vs. temperature curve for 1017cm-3, 
we find that n decreases from 770 at 300K to 400 at 400K.  As 
a result, R increases by

EXAMPLE:  Temperature Dependence of Resistance
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2.3   Diffusion Current
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Particles diffuse from a higher-concentration location 

to a lower-concentration location.
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2.3  Diffusion Current
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dx

dn
qDJ ndiffusionn ,

dx

dp
qDJ pdiffusionp ,

D is called the diffusion constant. Signs explained:

n p

x x
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Total Current – Review of Four Current Components
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Jn = Jn,drift + Jn,diffusion = qnn ε + 
dx

dn
qDn

Jp = Jp,drift + Jp,diffusion = qpp ε – dx

dp
qDp

JTOTAL = Jn + Jp
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2.4  Relation Between the Energy Diagram and V, ε
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ε(x)=
dx

dE

q
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Ec and Ev vary in the opposite

direction from the voltage. That

is, Ec and Ev are higher where 

the voltage is lower.

• When a voltage is applied across a 

piece of semiconductor as shown in 

Figure, it alters the band diagram

• S positive voltage raises the potential 

energy of a positive charge and lowers 

the energy of a negative charge
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2.5  Einstein Relationship between D and 
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2.5  Einstein Relationship between D and 
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What is the hole diffusion constant in a piece of silicon 
with p = 410 cm2 V-1s-1 ?

Solution:

EXAMPLE:  Diffusion Constant
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Remember:  kT/q = 26 mV at room temperature.
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The equilibrium carrier concentrations are denoted 

with n0 and p0.  

The total electron and hole concentrations can be 

different from n0 and p0 . 

The differences are called the excess carrier 

concentrations n’ and p’.  

2.6   Electron-Hole Recombination
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Charge neutrality is satisfied at equilibrium (n’= p’= 
0).

 When a non-zero n’ is present, an equal p’ may be 
assumed to be present to maintain charge equality 
and vice-versa.  

 If charge neutrality is not satisfied, the net charge 
will attract or repel the (majority) carriers through 
the drift current until neutrality is restored.

Charge Neutrality
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'p'n 
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Assume light generates n’ and p’.  If the light is 
suddenly turned off, n’ and p’ decay with time until 
they become zero.  

The process of decay is called recombination. 
The time constant of decay is the recombination time 

or carrier lifetime,  . 
Recombination is nature’s way of restoring 

equilibrium (n’= p’= 0). 

Recombination Lifetime

27EE336 Semiconductor Devices 
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  ranges from 1ns to 1ms in Si and depends on the 
density of metal impurities (contaminants) such as 
Au and Pt.  

These deep traps capture electrons and holes to 
facilitate recombination and are called
recombination centers.

Recombination Lifetime

28EE336 Semiconductor Devices 

Ec

Ev

Direct 

Recombination 

is unfavorable in 

silicon

Recombination 

centers



ECE Department- Faculty of Engineering - Alexandria University 2015

Direct and Indirect Band Gap
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Direct band gap

Example: GaAs

Direct recombination is efficient 
as k conservation is satisfied.

Indirect band gap
Example: Si

Direct recombination is rare as k 

conservation is not satisfied

Trap
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Rate of recombination (s-1cm-3)
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A bar of Si is doped with boron at 1015cm-3.  It is 
exposed to light such that electron-hole pairs are 
generated throughout the volume of the bar at the 
rate of 1020/s·cm3.  The recombination lifetime is 10s.  
What are (a) p0 , (b) n0 , (c) p’, (d) n’, (e) p , (f) n, and 
(g) the np product? 

EXAMPLE:  Photoconductors
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Solution:

(a) What is p0?
p0 = Na = 1015 cm-3

(b) What is n0 ?
n0 = ni

2/p0 = 105 cm-3

(c) What is p’?
In steady-state, the rate of generation is equal to the 

rate of recombination.
1020/s-cm3 = p’/

 p’= 1020/s-cm3 · 10-5s = 1015 cm-3

EXAMPLE: Photoconductors

32EE336 Semiconductor Devices 
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(d) What is n’?
n’= p’= 1015 cm-3

(e) What is p?
p = p0 + p’= 1015cm-3 + 1015cm-3 = 2×1015cm-3

(f) What is n?
n = n0 + n’= 105cm-3 + 1015cm-3 ~ 1015cm-3 since n0 << n’

(g) What is np?
np ~ 21015cm-3 ·1015cm-3 = 21030 cm-6 >> ni

2 = 1020 cm-6.
The np product can be very different from ni

2.

EXAMPLE: Photoconductors

33EE336 Semiconductor Devices 



ECE Department- Faculty of Engineering - Alexandria University 2015

If n’ is negative, there are fewer electrons than the 
equilibrium value.

As a result, there is a net rate of thermal generation at 
the rate of |n|/ .  

2.7   Thermal Generation
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2.8  Quasi-equilibrium and Quasi-Fermi Levels
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• Whenever n’ = p’  0, np  ni
2. We would like to preserve 

and use the simple relations:

• But these equations lead to np = ni
2.  The solution is to 

introduce two quasi-Fermi levels Efn and Efp such that
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Even when electrons and holes are not at equilibrium, within 
each group the carriers can be at equilibrium. Electrons are 
closely linked to other electrons but only loosely to holes.
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Consider a Si sample with Nd=1017cm-3 and n’=p’=1015cm-3.

(a) Find Ef .  
n = Nd = 1017 cm-3 = Ncexp[–(Ec– Ef)/kT]
 Ec– Ef = 0.15 eV.   (Ef is below Ec by 0.15 eV.)

Note:  n’ and p’ are much less than the majority carrier
concentration.  This condition is called low-level
injection.

EXAMPLE:  Quasi-Fermi Levels and Low-Level 
Injection
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