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Chapter 1:   Electrons and Holes in Semiconductors
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Course slides are prepared with the aid of 
the following materials:
 The lecture slides accompanying the main textbook 

“Hu, Chenming. Modern semiconductor devices for 
integrated circuits. Prentice Hall, 2010.”

http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-
Lecture-Slides-download.html

The lecture slides accompanying of the Semiconductor 
Device Physics course offered by Dr.-Ing. Erwin 
Sitompul, President University, Indonesia.

http://zitompul.wordpress.com/1-ee-lectures/2-
semiconductor-device-physics/

http://www.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html
http://zitompul.wordpress.com/1-ee-lectures/2-semiconductor-device-physics/
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 Provides the basic concepts and terminology for 
understanding semiconductors.

 Understand conduction and valence energy band, and how 
bandgap is formed.

 Understand carriers (electrons and holes), and doping in 
semiconductor

 Use the density of states and Fermi-Dirac statistics to 
calculate the carrier concentration

Chapter Objectives
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 The conductivity (and at the same time the resistivity) of 
semiconductors lie between that of conductors and 
insulators.

 Low resistivity  “conductor”

High resistivity  “insulator”

 Intermediate resistivity  “semiconductor”

What is a Semiconductor?

4EE336 Semiconductor Devices 



ECE Department- Faculty of Engineering - Alexandria University 2015

 Semiconductors are some of the purest solid materials in 
existence, because any trace of impurity atoms called 
“dopants” can change the electrical properties of 
semiconductors drastically.

 Most devices fabricated today employ crystalline 
semiconductors.

What is a Semiconductor? 
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No recognizable

long-range order

Completely ordered

in segments

Entire solid is made up of 

atoms in an orderly 

three- dimensional array

polycrystalline amorphous   crystalline
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Crystal Growth Until Device Fabrication
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Semiconductor Materials
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Elemental: Si, Ge, C

Compound: IV-IV SiC

III-V GaAs, GaN

II-VI CdSe

Alloy: Si1-xGex

AlxGa1-xAs

As : Arsenic

Cd : Cadmium

Se : Selenium

Ga : Gallium
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The Silicon Atom
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14 electrons occupying the first 3 energy 
levels:

1s, 2s, 2p orbitals are filled by 10 
electrons.

3s, 3p orbitals filled by 4 electrons.

To minimize the overall energy, the 3s 
and 3p orbitals hybridize to form four 
tetrahedral 3sp orbital.

Each has one electron and is capable of 
forming a bond with a neighboring atom.
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1.1  Silicon Crystal Structure

 Unit cell of silicon crystal 
is cubic.

 Each Si atom has 4 
nearest neighbors.

 Each cell contains: 
8 corner atoms
6 face atoms
4 interior atoms

 Exercise

How Many Silicon Atoms 
per cm–3?
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Silicon Wafers and Crystal Planes (Miller Indices)
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Silicon wafers are 

usually cut along the 

(100) plane with a flat 

or notch to help orient 

the wafer during IC 

fabrication.



The standard notation 

for crystal planes is 

based on the cubic 

unit cell. 
(100) (011) (111)

x

y y y

z z z

x x

Si (111) plane
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Unit cell:

View in <100> direction

Crystallographic Planes of Si

View in <110> direction

View in <111> direction
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1.2   Bond Model of Electrons and Holes
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Silicon crystal in 

a two-dimensional
representation.

Si Si Si

Si Si Si

Si Si Si

 When an electron breaks loose and becomes a conduction 

electron, a hole is also created.

     (a)                                                             (b)

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si
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Doping - Manipulation of Carrier Numbers

Donors: P, As, Sb

Phosphorus, Arsenic, Antimony

Acceptors: B, Ga, In, Al

Boron, Gallium Indium, Aluminum

 By substituting an Si atom with a special impurity atom 
(elements from Group III or Group V), a hole or conduction electron can be created.
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Doping Silicon with Acceptors
Example: Aluminum atom is doped into the Si crystal.

The Al atom accepts an electron from a neighboring Si atom, 
resulting in a missing bonding electron, or “hole”. 

The hole is free to roam around the Si lattice, and as a moving 
positive charge, the hole carries current.
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Doping Silicon with Donors

Example: Phosphorus atom is doped into the Si crystal.

The loosely bounded fifth valence electron of the P atom can 
“break free” easily and becomes a mobile conducting electron.

This electron contributes in current conduction.
EE336 Semiconductor Devices 15



ECE Department- Faculty of Engineering - Alexandria University 2015

Dopants in Silicon
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Si Si Si

Si Si

Si Si Si

Si Si Si

Si Si

Si Si Si

As B

• As, a Group V element, introduces conduction electrons and creates 
N-type silicon,

• B, a Group III element, introduces holes and creates P-type silicon, 
and is called an acceptor.

• Donors and acceptors are known
as dopants. Dopant ionization
energy ~50meV (very low). 

and is called a donor.

Hydrogen: E ion

m0 q4

13.6 eV==
8e0

2h2
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Carrier-Related Terminology

Donor: impurity atom that increases n (conducting 
electron).
Acceptor: impurity atom that increases p (hole).

n-type material: contains more electrons than holes.
p-type material: contains more holes than electrons.

Majority carrier: the most abundant carrier.
Minority carrier: the least abundant carrier.

Intrinsic semiconductor: undoped semiconductor n = 
p = ni.
Extrinsic semiconductor: doped semiconductor.
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1.3   Energy Band Model

EE336 Semiconductor Devices 

· Energy states of Si atom (a) expand into energy bands of Si crystal (b).
· The lower bands are filled and higher bands are empty in a semiconductor.
· The highest filled band is the valence band.
· The lowest empty band is the conduction band.

2p

2s

(a)                                                                    (b)

conduction band)(

(valence band)

Filled lower bands

} Empty upper bands

}
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1.3.1  Energy Band Diagram
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Conduction band
Ec

Ev

Eg

Band gap

Valence band 

· Energy band diagram shows the bottom edge of conduction 
band, Ec , and top edge of valence band, Ev .

· Ec and Ev are separated by the band gap energy, Eg . 
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Measuring the Band Gap Energy by Light Absorption
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photons

photon energy: h v > Eg

Ec

Ev

Eg

electron

hole

Bandgap energies of selected semiconductors

• Eg can be determined from the minimum energy (hn) of 
photons that are absorbed by the semiconductor.

Semi-
conductor InSb Ge Si GaAs GaP ZnSe Diamond

Eg (eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
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E c

Donor Level
ED

Donor ionization energy

E v

Acceptor Level
E A

Acceptor ionization energy

+

▬

▬

+

Ionization energy of selected donors and acceptors

in Silicon (EG = 1.12 eV)

Acceptors

Ionization energy of dopant Sb P As B Al In

EC – ED or EA – EV (meV) 39 45 54 45 67 160

Donors

Donor / Acceptor Levels (Band Model)
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Dopant Ionization (Band Model)

 Donor atoms

 Acceptor atoms

EE336 Semiconductor Devices 22



ECE Department- Faculty of Engineering - Alexandria University 2015

1.4 Semiconductors, Insulators, and Conductors

EE336 Semiconductor Devices 

· Totally filled bands and totally empty bands do not allow 

· Metal conduction band is half-filled.

E c

Ev

Eg=1.1 eV

E c

E g= 9 eV
empty

Si (Semiconductor) SiO
2

(Insulator) Conductor

E c

filled

Top of

conduction band

E v

current flow. (Just as there is no motion of liquid in a   
totally filled or totally empty bottle.)

· Semiconductors have lower E
g

's than insulators and can be 
doped.
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1.5  Electrons and Holes
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· Both electrons and holes tend to seek their lowest 
energy positions. 

· Holes float up like bubbles in water.

· Electrons tend to fall in the energy band diagram. 

Ec

E
v

electron kinetic energy

hole kinetic energy

in
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The electron wave function is the solution of the 
three dimensional Schrodinger wave equation

1.5.1  Effective Mass
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The solution is of the form exp(    k  r)
k = wave vector = 2π/electron wavelength
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For each k, there is a corresponding E.
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In an electric field, ε,  an electron or a hole accelerates.

Electron and hole effective masses

1.5.1  Effective Mass

EE336 Semiconductor Devices 

electrons

holes

Si Ge GaAs InAs AlAs

mn/m0 0.26 0.12 0.068 0.023 2
mp/m0 0.39 0.3 0.5 0.3 0.3
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1.5.2   How to Measure the Effective Mass
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Cyclotron Resonance Technique

Centripetal force = Lorentzian force

B

-

--

Microwave

•fcr is the Cyclotron resonance frequency.

•It is independent of v and r. 

•Electrons strongly absorb microwaves of 

that frequency.

•By measuring fcr, mn can be found.

qvB
r

vmn 
2

nm

qBr
v 

n

cr
m

qB

r

v
f
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1.6   Density of States
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E
D c
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1.7  Thermal Equilibrium and the Fermi Function

1.7.1 An Analogy for Thermal Equilibrium

EE336 Semiconductor Devices 

There is a certain probability for the electrons in the

conduction band to occupy high-energy states under 

the agitation of thermal energy.

Dish

Vibrating Table

Sand particles
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1.7.2  Fermi Function–The Probability of an Energy State 
Being Occupied by an Electron

EE336 Semiconductor Devices 

Remember: there is only 

one Fermi-level in a system 

at equilibrium.

kTEE fe
Ef

/)(
1

1
)(





Ef is called the Fermi energy or

the Fermi level.

  kTEE feEf


)( kTEE f 

  kTEE feEf


1)( kTEE f 

Boltzmann approximation:

f(E)
0.5 1

Ef

Ef – kT

Ef – 2kT

Ef – 3kT

Ef + kT

E
f

Ef + 2kT

Ef + 3kT

E

  kTEE feEf


)(

  kTEE feEf


1)(
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Effect of Temperature on f(E)
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Effect of Temperature on f(E)
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Energy band
diagram

Density of
states

Probability
of occupancy

Carrier 
distribution

Equilibrium Distribution of Carriers - Intrinsic

n(E) is obtained by multiplying gc(E) and f(E),
p(E) is obtained by multiplying gv(E) and 1–f(E).

 Intrinsic semiconductor material
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Energy band
diagram

Density of
States

Probability
of occupancy

Carrier 
distribution

Equilibrium Distribution of Carriers – n-type

 n-type semiconductor material
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Energy band
diagram

Density of
States

Probability
of occupancy

Carrier 
distribution

Equilibrium Distribution of Carriers – p-type

 p-type semiconductor material
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v F c3 3E kT E E kT   

Ec

Ev

3kT

3kT

EF in this range

Nondegenerately Doped Semiconductor

The expressions for n and p will now be derived in the range 
where the Boltzmann approximation can be applied:

The semiconductor is said to be nondegenerately doped (lightly 
doped) in this case.
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Degenerately Doped Semiconductor

 If a semiconductor is very heavily doped, the Boltzmann 
approximation is not valid.

For Si at T = 300 K,
EcEF < 3kT if  ND > 1.6  1018 cm–3

EFEv < 3kT if  NA > 9.1  1017 cm–3

The semiconductor is said to be degenerately doped (heavily 
doped) in this case.

•ND = total number of donor atoms/cm3

•NA = total number of acceptor atoms/cm3
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Important Constants
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1.8  Electron and Hole Concentrations
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1.8.1  Derivation of n and p from D(E) and f(E)
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Electron and Hole Concentrations
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Remember: the closer Ef moves up to Nc , the larger n is; 

the closer Ef moves down to Ev , the larger p is.

For Si, Nc = 2.8 ´1019cm-3 and Nv = 1.04 ´1019 cm-3
.
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Nc is called the effective

density of states (of the 

conduction band) .

Nv is called the effective

density of states of the 

valence band.
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1.8.2  The Fermi Level and Carrier Concentrations
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kTEE

c
fceNn

/)( 


    eV 614.010/108.2ln026.0ln 1719  nNkTEE cfc

    eV 31.010/1004.1ln026.0ln 1419  pNkTEE vvf

Ec
Ef

Ev

0.146 eV

(a)

0.31 eV

Ec

Ef

Ev

(b)

Example: Where is Ef for n =1017 cm-3? And for p = 1014 cm-3?

Solution: (a)

(b) For p = 1014cm-3, from Eq.(1.8.8),
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1.8.2  The Fermi Level and Carrier Concentrations

EE336 Semiconductor Devices 

1013 1014 1015 1016 1017 1018 1019 1020

Ev

Ec

Na or Nd (cm-3)

kTEE

c
fceNn

/)( 


 nNkTEE ccf ln
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1.8.3  The np Product and the Intrinsic Carrier Concentration
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• In an intrinsic (undoped) semiconductor, n = p = ni .

kTE

vci
geNNn

2/


2

innp 

kTEE

c
fceNn
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kTEE

v
vfeNp

/)( 
andMultiply
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kTEE
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gvc eNNeNNnp

//)( 


• ni is the intrinsic carrier concentration, ~1010 cm-3 for Si.
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 In an intrinsic semiconductor, n = p = ni and EF = Ei, where Ei 
denotes the intrinsic Fermi level.

v i v F( )  ( )  

i

E E kT E E kT
p n e e

  
 i c F c( )  ( )

i

E E kT E E kT
n n e e

  
 

Alternative Expressions: n(ni, Ei) and p(ni, Ei)
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i c v i( ) ( )  

C V

E E kT E E kT
N e N e

 


Intrinsic Fermi Level, Ei

c v V
i

C

ln
2 2

E E NkT
E

N
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EG = 1.12 eV

Si

Ei

*

pc v
i *

n

3
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2 4

mE E kT
E

m

 
    

 

To find EF for an intrinsic semiconductor, we use the 
fact that n = p.

c v
i

2

E E
E


 • Ei lies (almost) in the middle 

between Ec and Ev
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EXAMPLE: Carrier Concentrations

EE336 Semiconductor Devices 

Question:  What is the hole concentration in an N-type 
semiconductor with 1015 cm-3 of donors?

Solution: n = 1015 cm-3. 

After increasing T by 60C, n remains the same at 1015 cm-3

while p increases by about a factor of 2300 because   

Question: What is n if p = 1017cm-3 in a P-type silicon wafer?

Solution:

3-5

315

-3202

cm10
cm10

cm10


n

n
p i

/2 gE kT

in e




3-3

317

-3202

cm10
cm10

cm10


p

n
n i
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Example: Energy-Band Diagram

17
5

10

10
0.56 8.62 10 300 ln  eV

10

  
      

 

F i

i

ln
n

E E kT
n

 
   

 

For Silicon at 300 K, where is EF if n = 1017 cm–3 ?

Silicon at 300 K, ni = 1010 cm–3

0.56 0.417 eV 

0.977 eV
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Nd = 1017 cm-3. What fraction of the donors are not ionized?

Solution: First assume that all the donors are ionized.

EXAMPLE: Complete ionization of the dopant atoms

EE336 Semiconductor Devices 

Probability of not 

being ionized
04.0

2

1
1

1

2

1
1

1

meV26/)meV)45146((/)(







 
ee

kTEE fd

Therefore, it is reasonable to assume complete ionization, i.e., n = Nd .

meV146cm10 317  

cfd EENn

Ec

Ef

Ev

146 meV

Ed

45meV

1.9  General Theory of n and p
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2

innp 

da NpNn Charge neutrality:

2/1

2

2

22 
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1.9  General Theory of n and p (2)
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I. (i.e., N-type) 

If , 

II. (i.e., P-type) 

If , 

ad NNn 

nnp i

2


iad nNN 

ad NN  dNn  di Nnp
2

and

ida nNN  da NNp 

pnn i

2


da NN  aNp  ai Nnn
2

and

1.9  General Theory of on n and p (3)
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EXAMPLE: Dopant Compensation
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What are n and p in Si with (a) Nd = 61016 cm-3 and Na = 
21016 cm-3 and (b) additional 61016 cm-3 of Na?

(a)

(b) Na = 21016 + 61016 = 81016 cm-3 > Nd

316 cm104  ad NNn

3316202
cm105.2104/10/  nnp i

3161616 cm102106108  da NNp

3316202
cm105102/10/  pnn i

+ + + + + + . . . . . .

. . . . . . . . . . .

Nd = 61016 cm-3

Na = 21016 cm-3

n = 41016 cm-3

+ + + + + +

- - - - - - - -

. . . . . .

. . . . . .

Nd = 61016 cm-3

Na = 81016 cm-3

p = 21016 cm-3
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Carrier Concentration vs. Temperature
Phosphorus-doped Si 

ND = 1015 cm–3

• n : number of majority 
carrier

• ND : number of donor 
electron

• ni : number of intrinsic 
conductive electron
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1.11   Chapter Summary

Energy band diagram. Acceptor. Donor. mn, mp. 
Fermi function. Ef .
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