EE336 SEMICONDUCTOR DEVICES

Dr. Mohammed M. Farag

Faculty of Engineering Alexandria University

1

2014

Course Staff

Instructor:

- Dr. Mazhar Tayel
- Dr. Mohammed M. Farag (mmorsy@ieee.org)
 4th Floor ECE Building
- □TA: Eng. Mohamed Megahed
- □Office hours :
 - Saturday: 11:00 AM 1:00 PM
 - Thursday: 11:00 AM 1:00 PM
- Course Website:

http://eng.alexu.edu.eg/~mmorsy/Courses/Undergr aduate\EE336_Semiconductor_Devices\EE336.html

Course Text

Textbook

"Semiconductor Device Fundamentals 2nd Edition", Robert F. Pierret

Reference books

- "Solid State Electronic Devices 6th Edition", Ben Streetman, Sanjay K. Banerjee
- "Semiconductor Devices Physics and Technology", S. M. Sze, M. K. Lee

Course Objectives

Learn and understand the following topics:

- Semiconductor physics
 - Energy bands and carrier transportation in semiconductors
- Semiconductor Devices
 - pn-Junction Diode, Bipolar Junction Transistor (BJT), Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
- Semiconductor Technology
 - Material growth, film formation, photolithography, and fabrication process.
- Learn to use Spice to model and simulate semiconductor devices and circuits

Course Outline

- Describe fundamental principles of wafer fabrication processes in semiconductor technology
- Understand fundamental concepts of solid state physics applied to the semiconductor devices
- Explain general electrical behaviors of semiconductor devices and construct appropriate physical models
- Illustrate structural details and current-voltage characteristics of diode, BJT, and MOSFET devices
- Apply the fundamental understanding of semiconductor devices with knowledge on the limitations of physical models
- Practice modeling and simulation SPICE CAD tools to increase understanding of semiconductor devices taught in the course

Course Organization

Dr. Mohammed Farag

Semiconductor physics:

- Energy Bands and Carrier Concentration in Thermal Equilibrium
- Carrier Transport Phenomena
- p-n Junctions
- Mid-term Exam
- Semiconductor Devices:
 - Bipolar Transistors and Related Devices
 - MOS Capacitor and MOSFET
 - MESFET and Related Devices

Dr. Mazhar Tayel

- Semiconductor Technology:
 - Crystal Growth and Epitaxy
 - Film Formation
 - Lithography and Etching
 - Impurity Doping
 - Integrated Devices

Course Work

- 5-6 LabsA Midterm exam
- A project
- A Final Exam
- □ Tools:
 - Pspice

http://www.electronics-lab.com/downloads/schematic/013/

Project

- The topic of the project can be selected from a suggested list of topics or desired topics (in case of desired topic, the new topic need to be approved by instructor).
- The project includes reading about the selected topic and writing a scientific paper-like survey highlighting the origin, history, and state-of-the art works addressing the topic.
- The paper organization should be as follows: Executive Summary, Intro, Body (start, progress, state of the art), CAD Tools, Conclusions and Future Work
- The report submission deadline is 15/1/20115 and maximum number of pages is 12 (IEEE double column format).
- The project grading will be based on these criteria: organization, technical writing quality, language usage quality material relevance, comprehensiveness, and conclusions.

Suggested Topics

- Micro-Electro Mechanical Systems (MEMS)
- Nano Technology applications in the electronic devices
- 3D MOSFETs and 3D Ics
- Photonic semiconductors
- Quantum Computing
- Ultimate limits of integrated electronics
- Integrated strategy for foundry industry
- Carbon nanotube field effect transistor
- Quantum effects in nanoscale electronic devices
- Non-silicon semiconductor devices

Steady and persistent effort is rewarded

- Labs: 30 marks
 - Attendance: 5 marks
 - Lab work: 10 marks
 - Lab exam / project: 15 marks
- Midterm exam: 30 marks (Equally distributed over the two parts)
- Final exam: 90 marks (Equally distributed over the two parts)

About the Lectures

- Lectures will make use of slides
 - Slides are great !
 - Nice pictures to explain concepts
 - Good addition for course text
 - I can annotate them with a tablet PC
 - I can switch to the tools and listings mid-lecture
 - □ Slides are horrible !
 - They make me teach 30% faster (really)
 - They give you the sense that this is all easy stuff (it's not)
 - They make you fall a sleep
 - They make me lazy
 - They make me waste time looking for clipart
 - Slides are a two-edged sword
 - I encourage you to be active and take notes
 - I may fall back to blackboard-based teaching occasionally

Useful Links

- https://nanohub.org/
- http://scpd.stanford.edu/search/publicCourseSearchDetails.d o?method=load&courseId=12036
- http://www.optiqueingenieur.org/en/courses/OPI_ang_M05_C02/co/Grain_OPI_a ng_M05_C02.html
- http://www-inst.eecs.berkeley.edu/~ee130/sp13/
- https://nanohub.org/groups/ece606lundstrom