Semiconductor Device Physics

Lecture 6

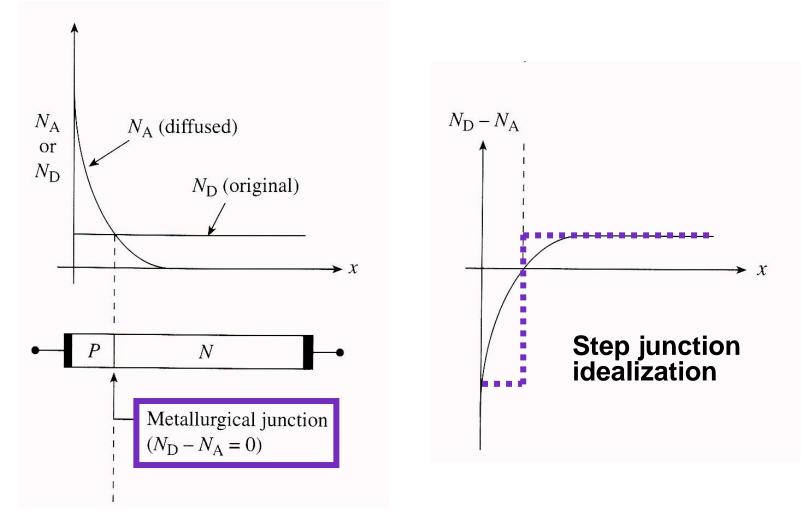
http://zitompul.wordpress.com

Semiconductor Device Physics

Chapter 5 *pn* Junction Electrostatics

Metallurgical Junction

Doping profile



Poisson's Equation

- Poisson's equation is a well-known relationship in electricity and magnetism.
- It is now used because it often contains the starting point in obtaining quantitative solutions for the electrostatic variables.

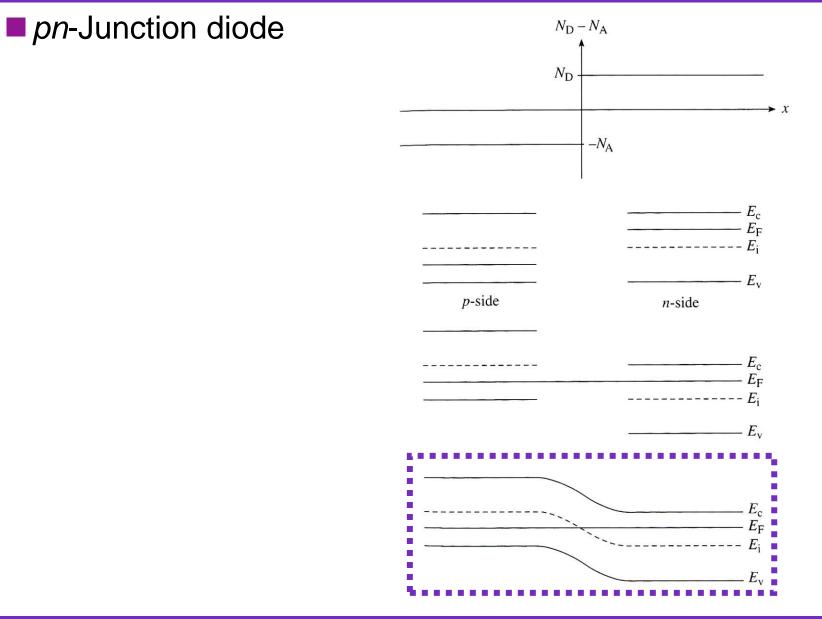
$$\nabla \cdot \boldsymbol{\mathcal{E}} = \frac{\rho}{K_{\rm S} \varepsilon_0}$$

$$\nabla \cdot \mathbf{D} = \rho_{v}$$
$$\mathbf{D} = \varepsilon \mathbf{E}$$
$$\varepsilon = K_{s} \varepsilon_{0}$$

In one-dimensional problems, Poisson's equation simplifies to:

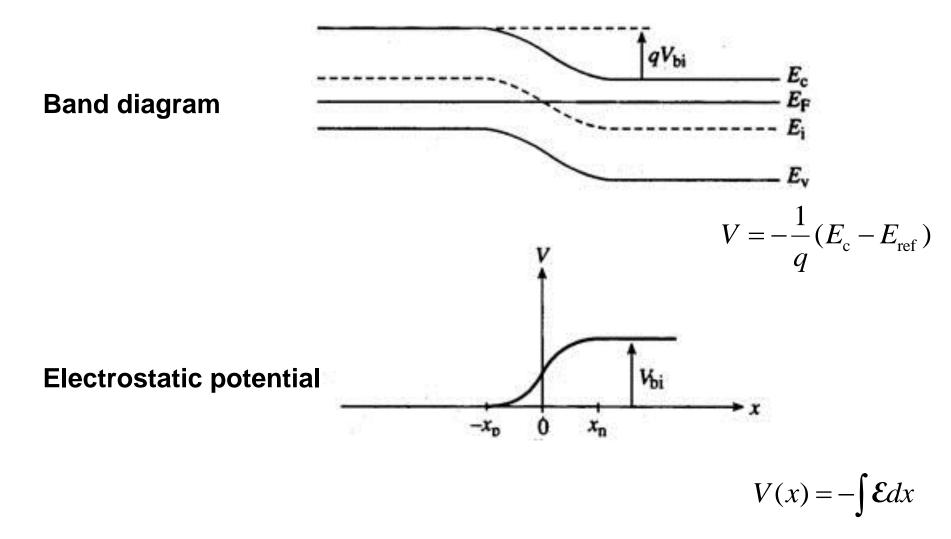
$$\frac{\partial \boldsymbol{\mathcal{E}}}{\partial x} = \frac{\rho}{K_{\rm S} \varepsilon_0}$$

Equilibrium Energy Band Diagram



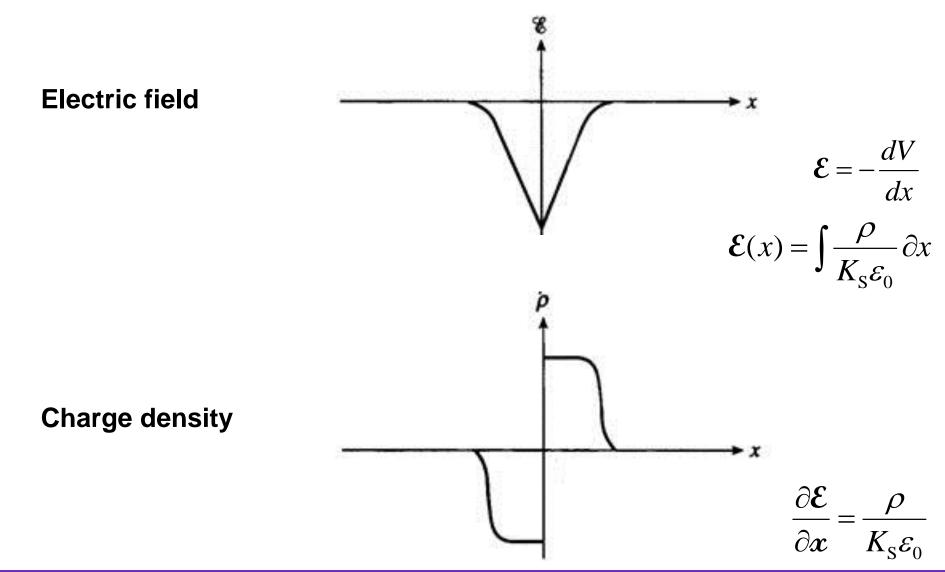
Qualitative Electrostatics

Equilibrium condition

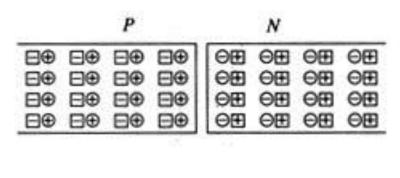


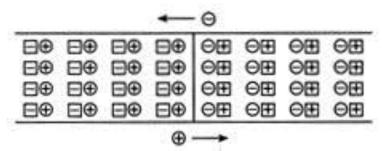
Qualitative Electrostatics

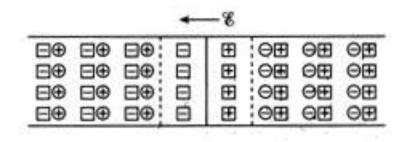
Equilibrium condition



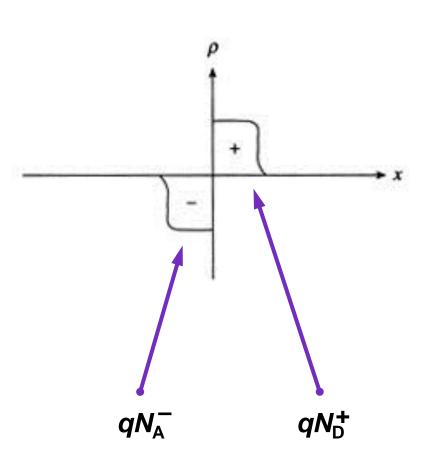
Formation of pn Junction and Charge Distribution



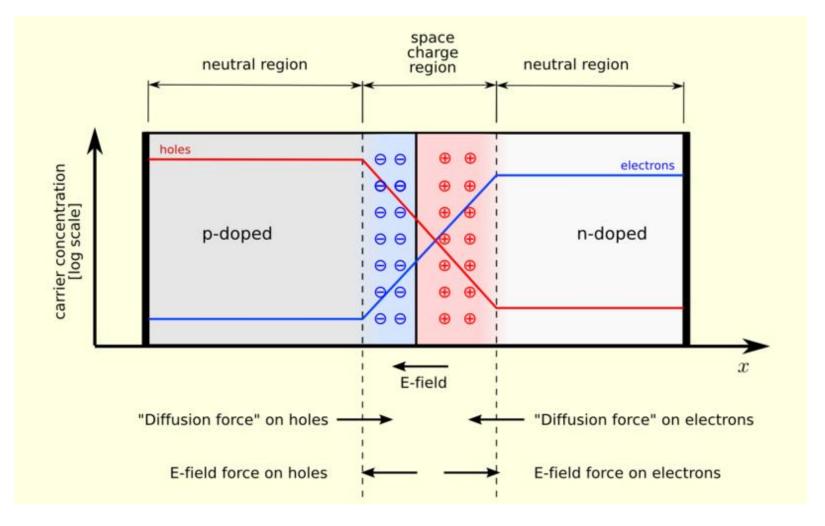




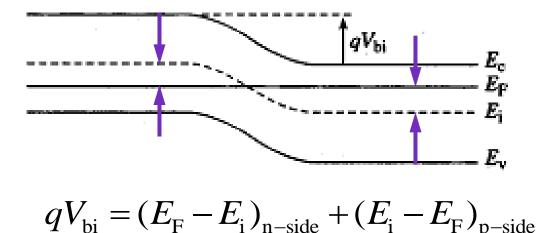
 $\rho = q(p - n + N_{\rm D}^+ - N_{\rm A}^-)$



Formation of *pn* Junction and Charge Distribution



Built-In Potential $V_{\rm bi}$

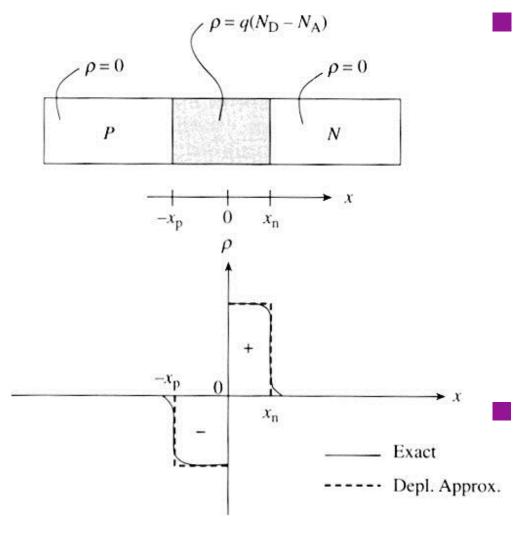


 V_{bi} for several materials: Ge ≤ 0.66 V Si ≤ 1.12 V GeAs ≤ 1.42 V

For **non-degenerately doped** material,

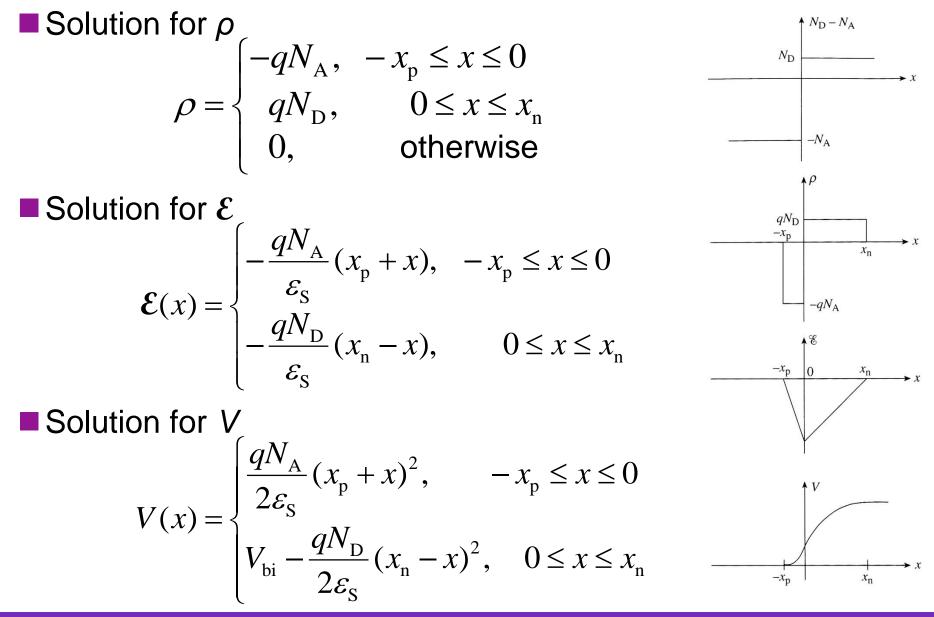
$$(E_{\rm F} - E_{\rm i})_{\rm n-side} = kT \ln\left(\frac{n}{n_{\rm i}}\right) = kT \ln\left(\frac{N_{\rm D}}{n_{\rm i}}\right)$$
$$(E_{\rm i} - E_{\rm F})_{\rm p-side} = kT \ln\left(\frac{p}{n_{\rm i}}\right) = kT \ln\left(\frac{N_{\rm A}}{n_{\rm i}}\right)$$
$$qV_{\rm bi} = kT \ln\left(\frac{N_{\rm A}N_{\rm D}}{n_{\rm i}^2}\right)$$

The Depletion Approximation



• On the **p-side**, $\rho = -qN_{\Delta}$ $\frac{d\boldsymbol{\mathcal{E}}}{dx} = -\frac{qN_{\rm A}}{\varepsilon_{\rm S}}$ $\mathcal{E}(x) = -\frac{qN_{\rm A}}{\varepsilon_{\rm S}}x + c_{\rm 1}$ $\mathcal{E}(x) = -\frac{qN_{\rm A}}{\varepsilon_{\rm S}}(x+x_{\rm p})$ with boundary $\mathcal{E}(-x_{p}) = 0$ • On the *n*-side, $\rho = qN_{\rm D}$ $\mathcal{E}(x) = -\frac{qN_{\rm D}}{2}(x_{\rm n} - x)$ \mathcal{E}_{S} with boundary $\mathcal{E}(x_n) = 0$

Step Junction with $V_A = 0$



Relation between $\rho(x)$, $\mathcal{E}(x)$, and V(x)

1. Find the profile of the built-in potential $V_{\rm bi}$

- 2.Use the depletion approximation $\rightarrow \rho(x)$ With depletion-layer widths x_p , x_n unknown
- 3. Integrate $\rho(x)$ to find $\mathcal{E}(x)$

Boundary conditions $\mathcal{E}(-x_p) = 0$, $\mathcal{E}(x_n) = 0$

4. Integrate $\mathcal{E}(x)$ to obtain V(x)

Boundary conditions $V(-x_p) = 0$, $V(x_n) = V_{bi}$

5. For $\mathcal{E}(x)$ to be continuous at x = 0, $N_A x_p = N_D x_n$ Solve for x_p , x_n

- Answer the following questions in a report.
- Can the built-in potential of a pn junction in equilibrium be measured directly. Justify your answer.
- What happens if V_A is increased beyond the built in potential V_{bi} in the forward biased region.
 - Keep all bonus reports and submit them upon requesting that.
 - Only non-cheated reports will be rewarded while students who will submit copied reports will be punished.

Step Junction with $V_A=0$

At x = 0, expressions for *p*-side and *n*-side for the solutions of \mathcal{E} and *V* must be equal:

$$N_{\rm A} x_{\rm p} = N_{\rm D} x_{\rm n}$$
$$\frac{q N_{\rm A}}{2\varepsilon_{\rm S}} (x_{\rm p})^2 = V_{\rm bi} - \frac{q N_{\rm D}}{2\varepsilon_{\rm S}} (x_{\rm n})^2$$

Depletion Layer Width

Eliminating
$$x_{p}$$
, $x_{n} = \sqrt{\frac{2\varepsilon_{s}}{q}} \frac{N_{A}}{N_{D}(N_{A} + N_{D})} V_{bi}$

Eliminating
$$x_{n}$$
, $x_{p} = \sqrt{\frac{2\varepsilon_{s}}{q}} \frac{N_{D}}{N_{A}(N_{A} + N_{D})} V_{bi}} = \frac{N_{D}}{N_{A}} x_{n}$

Summing
$$x_{n} + x_{p} = W \equiv \sqrt{\frac{2\varepsilon_{s}}{q} \left(\frac{1}{N_{A}} + \frac{1}{N_{D}}\right)} V_{bi}$$

Exact solution,

One-Sided Junctions

If $N_A >> N_D$ as in a p^+n junction,

$$W \approx x_{\rm n} \approx \sqrt{\frac{2\varepsilon_{\rm S}}{q} \frac{V_{\rm bi}}{N_{\rm D}}} , \ x_{\rm p} = x_{\rm n} \frac{N_{\rm D}}{N_{\rm A}} \approx 0$$

If $N_D >> N_A$ as in a n^+p junction,

$$W \approx x_{\rm p} \approx \sqrt{\frac{2\varepsilon_{\rm S}}{q} \frac{V_{\rm bi}}{N_{\rm A}}} , x_{\rm n} = x_{\rm p} \frac{N_{\rm A}}{N_{\rm D}} \approx 0$$

Simplifying,

$$W \approx \sqrt{\frac{2\varepsilon_{\rm S}}{q} \frac{V_{\rm bi}}{N}}$$

where N denotes the lighter dopant density

Example: Depletion Layer Width

A p^+n junction has $N_A = 10^{20} \text{ cm}^{-3}$ and $N_D = 10^{17} \text{ cm}^{-3}$, at 300 K.

a) What is
$$V_{\text{bi}}$$
?
 $V_{\text{bi}} = \frac{kT}{q} \ln \left(\frac{N_{\text{D}} N_{\text{A}}}{n_{\text{i}}^2} \right) = 25.86 \text{ mV} \times \ln \left(\frac{10^{17} \cdot 10^{20}}{(10^{10})^2} \right) = \underline{1.012 \text{ V}}$

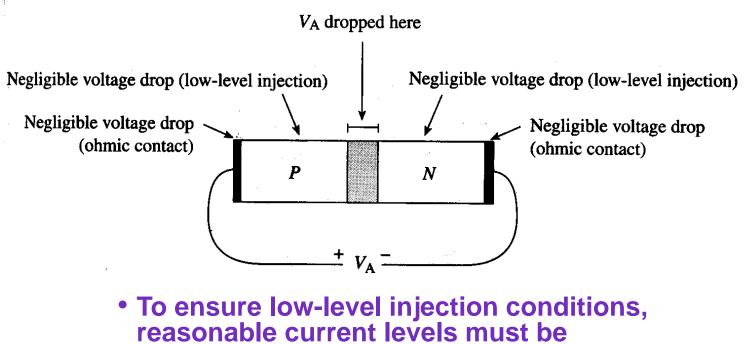
b) What is *W*?

$$W \approx \sqrt{\frac{2\varepsilon_{\rm S}V_{\rm bi}}{qN_{\rm D}}} = \left(\frac{2\times11.9\times8.854\times10^{-14}\times1.012}{1.602\times10^{-19}\times10^{17}}\right)^{1/2} = \underline{0.115\ \mu\rm{m}}$$

c) What is x_n ? $x_n \approx W \approx 0.115 \ \mu m$

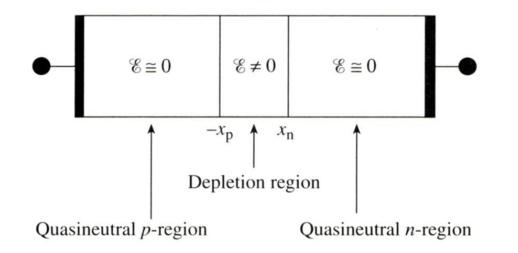
d) What is
$$x_p$$
?
 $x_p = x_n \frac{N_D}{N_A} = 0.115 \,\mu \text{m} \times 10^{-3} = \underline{1.15 \text{ Å}}$

Step Junction with $V_A \neq 0$



reasonable current levels must be maintained $\rightarrow V_A$ should be small

Step Junction with $V_A \neq 0$



In the quasineutral, regions extending from the contacts to the edges of the depletion region, minority carrier diffusion equations can be applied since $\mathcal{E} \approx 0$.

In the depletion region, the continuity equations are applied.

Step Junction with $V_A \neq 0$

Built-in potential V_{bi} (non-degenerate doping):

$$V_{\rm bi} = \frac{kT}{q} \ln\left(\frac{N_{\rm A}}{n_{\rm i}}\right) + \frac{kT}{q} \ln\left(\frac{N_{\rm D}}{n_{\rm i}}\right) = \frac{kT}{q} \ln\left(\frac{N_{\rm A}N_{\rm D}}{n_{\rm i}^2}\right)$$

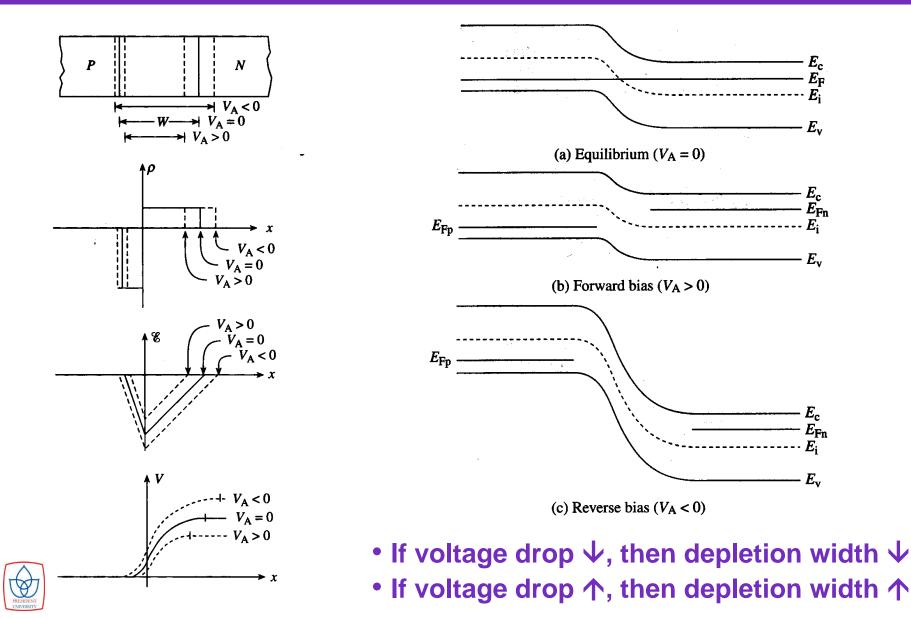
Depletion width *W*:

$$W \equiv x_{\rm p} + x_{\rm n} = \sqrt{\frac{2\varepsilon_{\rm S}}{q} \left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right) \left(V_{\rm bi} - V_{\rm A}\right)}$$

$$x_{p} = \sqrt{\frac{2\varepsilon_{s}}{q} \frac{N_{D}}{N_{A} \left(N_{A} + N_{D}\right)} \left(V_{bi} - V_{A}\right)}, \quad x_{n} = \sqrt{\frac{2\varepsilon_{s}}{q} \frac{N_{A}}{N_{D} \left(N_{A} + N_{D}\right)} \left(V_{bi} - V_{A}\right)}$$
$$x_{p} = \frac{N_{D}}{N_{A} + N_{D}} W, \quad x_{n} = \frac{N_{A}}{N_{A} + N_{D}} W$$

Effect of Bias on Electrostatics

 $E_{\rm c}$



Linearly-Graded Junction

