Semiconductor Device Physics

Lecture 3

http://zitompul.wordpress.com

Semiconductor Device Physics

Chapter 3 Carrier Action

Carrier Action

- **Three primary types of carrier action occur inside a** semiconductor:
	- **Drift**: charged particle motion in response to an applied electric field.
	- **Diffusion**: charged particle motion due to concentration gradient or temperature gradient.
	- **Recombination-Generation**: a process where charge carriers (electrons and holes) are annihilated (destroyed) and created.

Carrier Scattering

- Mobile electrons and atoms in the Si lattice are always in random thermal motion.
	- **E** Electrons make frequent collisions with the vibrating atoms.
	- "Lattice scattering" or "phonon scattering" increases with increasing temperature.
	- Average velocity of thermal motion for electrons: ~1/1000 x speed of light at 300 K (even under equilibrium conditions).
- Other scattering mechanisms:
	- Deflection by ionized impurity atoms.
	- Deflection due to Coulombic force between carriers or "carrier-carrier scattering."
	- Only significant at high carrier concentrations.
- **The net current in any direction is zero, if no electric field is** applied.

1 2 3 4 5 electron

Carrier Drift

- When an electric field (*e.g.* due to an externally applied voltage) is applied to a semiconductor, mobile charge-carriers will be accelerated by the electrostatic force.
- **This force superimposes on the random motion of electrons.**

- **Electrons drift in the direction opposite to the electric field** \rightarrow Current flows.
	- **Due to scattering, electrons in a semiconductor do not achieve constant velocity nor acceleration.**
	- **However, they can be viewed as particles moving at a** constant average drift velocity v_d .

Drift Current

- $v_{\rm d}$ t *t* All holes this distance back from the normal plane will cross the plane in a time *t*
- $v_{\rm d} t A$ *t A* All holes in this volume will cross the plane in a time *t*
- p v_{d} tA *t* A Holes crossing the plane in a time *t*
- *q* p v_d *t* A Charge crossing the plane in a time *t*
- $q p v_d A$ Charge crossing the plane per unit time, ⇒ Hole drift current *I*_{Pldrift} (Ampere)
- $q p v_d$ Current density associated with hole drift current, $\mathbf{J}_{\mathsf{P}|\text{drift}}\left(\mathsf{A}/\mathsf{m}^2\right)$

Drift Velocity vs. Electric Field

- $v_{\rm d} = -\mu_{\rm n} \mathcal{E}$
- **Linear relation holds in low field intensity, ~510³ V/cm**

Hole and Electron Mobility

$$
\mu
$$
 has the dimensions of $v\mathcal{E}$:

$$
\left[\frac{\text{cm/s}}{\text{V/cm}} = \frac{\text{cm}^2}{\text{V} \cdot \text{s}}\right]
$$

Electron and hole mobility of selected intrinsic semiconductors (*T* **= 300 K)**

Hole and Electron Mobility

 $I_{\text{Pldrift}} = qpv_{\text{d}}A$ ${\bf J}_{\rm \, pldrift} = qpv_{\rm d}$ **For holes,**

- **Hole current due to drift**
- **Hole current density due to drift**

 $v_{\rm d} = \mu_{\rm p} \mathcal{E}$ $\mathbf{J}_{\text{Pldrift}} = q\mu_{\text{p}}p\boldsymbol{\mathcal{E}}$ \blacksquare In low-field limit,

• *μ***^p : hole mobility**

- Similarly for electrons,
	- $v_{\rm d} = -\mu_{\rm n} \mathcal{E}$ $\mathbf{J}_{\text{N}\mid\text{drift}} = q\mu_{\text{n}}n\boldsymbol{\mathcal{E}}$ $J_{\text{N}\text{drift}} = -qnv_{\text{d}}$
- **Electron current density due to drift**
- *μ***ⁿ : electron mobility**

Temperature Effect on Mobility

Temperature Effect on Mobility

■ Carrier mobility varies with doping:

- **Decrease with increasing total concentration of ionized** dopants.
- Carrier mobility varies with temperature:
	- Decreases with increasing T if lattice scattering is dominant.
	- **Decreases with decreasing T if impurity scattering is** dominant.

Conductivity and Resistivity

$$
\mathbf{J}_{N|drift} = -qnv_d = q\mu_n n \mathbf{\mathcal{E}}
$$

$$
\mathbf{J}_{\mathrm{P|drift}} = qpv_{\mathrm{d}} = q\mu_{\mathrm{p}}p\mathbf{\mathcal{E}}
$$

$$
\mathbf{J}_{\text{drift}} = \mathbf{J}_{\text{N}|\text{drift}} + \mathbf{J}_{\text{P}|\text{drift}} = q(\mu_{\text{n}}n + \mu_{\text{p}}p)\mathbf{\mathcal{E}} = \sigma\mathbf{\mathcal{E}}
$$

Resistivity of a semiconductor: $\rho = 1/\sigma$ **Conductivity** of a semiconductor: $\sigma = q(\mu_n n + \mu_p p)$

Resistivity Dependence on Doping

Carrier Mobility as Function Doping Level

Example

■ Consider a Si sample at 300 K doped with 10¹⁶/cm³ Boron. What is its resistivity?

 $\frac{1}{\sqrt{1-p^2}}$
 $(6 \times 10^{-19})(437)(10^{16})$
 $\frac{30 \Omega \cdot cm}{15}$ 1 $q\mu_{\scriptscriptstyle \mathrm{n}} n + q\mu_{\scriptscriptstyle \mathrm{n}} p$ ρ = $N_A = 10^{16}$ cm⁻³, $N_D = 0$ $(N_A >> N_D \rightarrow p$ -type) $p\approx 10^{16}$ cm⁻³, $\;$ $\;$ \sim 10⁴ cm⁻³ $\approx [(1.6{\times}10^{-19})(437)(10^{16})]^{-1}$ \approx 1.430 Ω ·cm $q\mu_{_{\rm P}} p$ 1 $\boldsymbol{\approx}$

Example

■ Consider the same Si sample, doped additionally with 10¹⁷/cm³ Arsenic. What is its resistivity now?

$$
N_{A} = 10^{16} \text{ cm}^{-3}, N_{D} = 10^{17} \text{ cm}^{-3} \text{ (N}_{D} > N_{A} \rightarrow n\text{-type)}
$$
\n
$$
n \approx N_{D} - N_{A} = 9 \times 10^{16} \text{ cm}^{-3}, \quad p \approx n_{i}^{2}/n = 1.11 \times 10^{3} \text{ cm}^{-3}
$$
\n
$$
\rho = \frac{1}{q\mu_{n}n + q\mu_{p}p} \qquad \downarrow \mu_{n} \text{ is to be taken for the value at}
$$
\n
$$
\approx \frac{1}{q\mu_{n}n} \qquad \qquad \downarrow \mu_{n} \approx 790 \text{ cm}^{2}/\text{V} \cdot \text{s}
$$
\n
$$
\approx [(1.6 \times 10^{-19})(790)(9 \times 10^{16})]^{-1}
$$
\n
$$
\approx \frac{0.0879 \ \Omega \cdot \text{cm}}{16}
$$

Example

■ Consider a Si sample doped with 10^{17} cm⁻³ As. How will its resistivity change when the temperature is increased from $T = 300$ K to $T = 400$ K?

The temperature dependent factor in σ (and therefore ρ) is $\mu_{\sf n}$.

From the mobility vs. temperature curve for 10¹⁷cm⁻³, we find that $\mu_{\sf n}$ decreases from 770 at 300 K to 400 at 400 K.

As a result, ρ increases by a factor of:

$$
\frac{770}{400} = 1.93
$$

Potential vs. Kinetic Energy

18

 $P.E. = E_c - E_{reference}$

Band Bending

- **Until now,** E_c **and** E_v **have always been drawn to be** independent of the position.
- When an electric field *E* exists inside a material, the band energies become a function of position.

Band Bending

The potential energy of a particle with charge *–q* is related to the electrostatic potential *V*(*x*):

$$
P.E. = -qV
$$

$$
P.E. = -qV
$$

$$
V = -\frac{1}{q}(E_c - E_{reference})
$$

$$
\mathcal{E} = -\nabla V
$$

$$
= -\frac{dV}{dx}
$$

$$
\mathcal{E} = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx} = \frac{1}{q} \frac{dE_i}{dx}
$$

• Since E_c , E_v , and E_i differ **only by an additive constant**

Diffusion

Particles diffuse from regions of higher concentration to regions of lower concentration region, due to random thermal motion (Brownian Motion).

1-D Diffusion Example

Thermal motion causes particles to move into an adjacent compartment every *τ* seconds.

Diffusion Currents

$$
\mathbf{J}_{\text{Pldiff}} = -qD_{\text{P}} \frac{dp}{dx}
$$

Total Currents

$$
\mathbf{J}_{\mathrm{N}} = \mathbf{J}_{\mathrm{N|drift}} + \mathbf{J}_{\mathrm{N|diff}} = q\mu_{\mathrm{n}}n\mathbf{\mathcal{E}} + qD_{\mathrm{N}}\frac{dn}{dx}
$$

$$
\mathbf{J}_{\mathrm{P}} = \mathbf{J}_{\mathrm{P|drift}} + \mathbf{J}_{\mathrm{P|diff}} = q\mu_{\mathrm{P}}p\mathbf{\mathcal{E}} - qD_{\mathrm{P}}\frac{dp}{dx}
$$

Drift current flows when an electric field is applied. **Diffusion current** flows when a gradient of carrier concentration exist.

Current Flow Under Equilibrium Conditions

In equilibrium, there is no net flow of electrons or :

 $\mathbf{J}_N = 0$, $\mathbf{J}_P = 0$

■ The drift and diffusion current components must balance each other exactly.

A built-in electric field of <u>ionized atoms</u> exists, such that the drift current exactly cancels out the diffusion current due to the concentration gradient.

$$
\mathbf{J}_{\mathrm{N}} = q\mu_{\mathrm{n}}n\mathbf{\mathcal{E}} + qD_{\mathrm{N}}\frac{dn}{dx} = 0
$$

Current Flow Under Equilibrium Conditions

■ Consider a piece of non-uniformly doped semiconductor:

• Under equilibrium, E_F **inside a material or a group of materials in intimate contact**

Einstein Relationship between *D* **and**

But, under equilibrium conditions, $J_N = 0$ **and** $J_P = 0$

$$
\mathbf{J}_{\text{N}} = q\mu_{\text{n}}n\mathbf{\mathcal{E}} + qD_{\text{N}}\frac{dn}{dx} = 0
$$

$$
qn\mathbf{\mathcal{E}}\mu_{\text{n}} - qn\mathbf{\mathcal{E}}\frac{q}{kT}D_{\text{N}} = 0 \longrightarrow \frac{D_{\text{N}}}{\mu_{\text{n}} - \frac{kT}{q}}
$$

Similarly,
$$
\frac{D_{\text{P}}}{\mu_{\text{P}} - \frac{kT}{q}}
$$

• **Einstein Relationship**

Further proof can show that the Einstein Relationship is valid for a non-degenerate semiconductor, both in equilibrium and non-equilibrium conditions.

Example: Diffusion Coefficient

■ What is the hole diffusion coefficient in a sample of silicon at 300 K with $\mu_{\rm p}$ = 410 cm² / V.s ?

$$
D_{P} = \left(\frac{kT}{q}\right) \mu_{p}
$$

= $\frac{25.86 \text{ meV}}{1 \text{e}} \cdot 410 \text{ cm}^{2} \text{V}^{-1} \text{s}^{-1}$
= 25.86 mV \cdot 410 $\frac{\text{cm}^{2}}{\text{V} \cdot \text{s}}$
= $\frac{10.603 \text{ cm}^{2}/\text{s}}{\text{s}}$

$$
\frac{1 \text{ eV}}{1 \text{ e}} = 1 \text{ V}
$$

1 eV = 1.602×10⁻¹⁹ J
• Remark: kT/q = 25.86 mV

at room temperature

Recombination–Generation

- **Recombination**: a process by which conduction electrons and holes are annihilated in pairs.
- **Generation**: a process by which conduction electrons and holes are created in pairs.
- Generation and recombination processes act to change the carrier concentrations, and thereby indirectly affect current flow.

Generation Processes

• **Only occurs in the presence of large E**

Recombination Processes

- **minority carrier trapping**
- **Primary recombination way for Si**
- **Occurs in heavily doped material**

Homework 2

1. (4.17) Problem 3.6, Pierret's "Semiconductor Device Fundamentals".

2. (4.27) Problem 3.12, from (a) until (f), for Figure P3.12(a) and Figure P3.12(f), Pierret's "Semiconductor Device Fundamentals".

3. (5.28) The electron concentration in silicon at $T = 300$ K is given by

$$
n(x) = 10^{16} \exp\left(\frac{-x}{18}\right) \text{cm}^{-3}
$$

where *x* is measured in *μ*m and is limited to 0 ≤ *x* ≤ 25 *μ*m. The electron diffusion coefficient is $D_N = 25$ cm²/s and the electron mobility is $\mu_n = 960$ cm²/(Vs). The total electron current density through the semiconductor is constant and equal to $J_N = -40$ A/cm². The electron current has both diffusion and drift current components.

Determine the electric field as a function of *x* which must exist in the semiconductor. Sketch the function.