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Chapter 1

Semiconductors: A General Introduction




Chapter 1

What I1s a Semiconductor?

B | ow resistivity — “conductor”
H High resistivity = “Insulator”
B Intermediate resistivity = "semiconductor”

B The conductivity (and at the same time the resistivity) of
semiconductors lie between that of conductors and insulators.
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Chapter 1

What I1s a Semiconductor?

B Semiconductors are some of the purest solid materials In
existence, because any trace of impurity atoms called
“dopants” can change the electrical properties of
semiconductors drastically.

® Unintentional impurity level:
1 impurity atom per 10° semiconductor atom.

B Intentional impurity ranging from 1 per 108 to 1 per 103.

No recognizable
long-range order
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Entire solid is made up of
atoms in an orderly
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Completely ordered
in segments

polycrystalline amorphous crystalline

B Most devices fabricated today employ crystalline
semiconductors.



Chapter 1

Semiconductor Materials
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Chapter 1

From Hydrogen to Silicon

# of Electrons
1 2 3
Z |Name]ls|2s|2p|3s|3p|3d Notation
1|H 1 1s?
2|He 2 1s2
3|Li 2| 1 1s% 2st
4|Be 2| 2 1s? 2s?
5|B 2| 2| 1 1s% 252 2p*
6|C 2| 2| 2 1s% 252 2p?
7IN 2l 2| 3 1s? 2s% 2p®
glo 2| 2| 4 1s? 2s% 2p”
™ o|F 2l 2| 5 1s® 2s° 2p°
AN 10{Ne 2| 2] 6 152 252 2p°
n=2 11|Na 2| 2| 6] 1 1s%2s? 2p° 3st
8 Electrons 12| Mg 2l 2| 6l 2 1s2 252 2p6 3s?
f:’;:rﬂg‘:ﬁgrfje's 13[al of 2 6| 2| 1| [1s?2s22p®3s?3p!
14]si 2| 2 6] 2| 2| |1s%2s?2p®3s?3p?
Two allowed levels 15|P 2] 2] 6 2] 3 1s® 2s° 2p6 3s? 3p3
at same energy 16|S 2| 2| 6| 2| 4] |1s®2s®2p®3s?3p*
n= SP 17]cl ol 2| 6| 2| 5| [1s?2s%2p°3s23p°
2 Electrons n=3 i 18| Ar ol 2l 6l 2l 6 1s% 252 2p° 3s? 3p°




Chapter 1
The Silicon Atom

M 14 electrons occupying the first 3 energy
levels:

M 1s, 2s, 2p orbitals are filled by 10
electrons.

M 3s, 3p orbitals filled by 4 electrons.

B To minimize the overall energy, the 3s
and 3p orbitals hybridize to form four
tetrahedral 3sp orbital.

M Each has one electron and is capable of
forming a bond with a neighboring atom.

Tetrahedral sificate unit

0

|
PENYN

O




The Si Crystal

* EFach Si atom has 4 nearest
neighbors.

* Atom lattice constant
(length of tf(\)e ungt cell side)

a=>5.431A, 1A=10"1m

* Each cell contains:
8 corner atoms
6 face atoms
4 interior atoms

“Diamond Lattice”




Chapter 1

How Many Silicon Atoms per cm—3?
B Number of atoms in a unit cell:

M 4 atoms completely inside cell

M Each of the 8 atoms on corners are shared among 8 cells
-> count as 1 atom inside cell

® Each of the 6 atoms on the faces are shared among 2 cells
-> count as 3 atoms inside cell

= Total number inside thecell=4+1+3 =8

HCell volume = (.543 nm)3=1.6 x 10722 cm?

B Density of silicon atom
= (8 atoms) / (cell volume)
=5 x 10%? atoms/cm?3

« What is density of silicon in g/cm3?



Chapter 1
Crystallographic Notation

Miller Indices Notation Interpretation
(hkl) crystal plane
{hkl} equivalent planes
[h k] crystal direction
I <hkl> equivalent directions

- h: inverse x-intercept of plane
A1 k: inverse y-intercept of plane

<L | inverse Z-intercept of plane
[0T0] ~— g ?
— e (h, k and | are reduced to 3
e / Integers having the same ratio.)
A

[100] [110]

Sample direction vectors and their comresponding Miller indices.



Chapter 1
Crystallographic Planes
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Chapter 1
Crystallographic Planes




Crystallographic Planes of SiI Wafers

B Silicon wafers are usually cut along a {100} plane with a flat or
notch to orient the wafer during integrated-circuit fabrication.

B The facing surface is polished and etched yielding mirror-like
finish.
{011] Direction
:4 “*Notch”

{011] Direction

“Flat” 1 (100) Surface
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Crystal Growth Until Device Fabrication

Seed

Single Silicon Crystal
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Chapter 1

Crystallographic Planes of Si

Unit cell:

View in <111> direction

View in <100> direction View in <110> direction




Chapter 2

Carrier Modeling
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Electronic Properties of Si

M Silicon is a semiconductor material.

® Pure Si has a relatively high electrical resistivity at room
temperature.

B There are 2 types of mobile charge-carriers in Si:

W Conduction electrons are negatively charged,
e=-1.602 x101°9C

M Holes are positively charged,
p=+1.602 x 1019 C

B The concentration (number of atoms/cm?) of conduction
electrons & holes in a semiconductor can be influenced In
several ways:

B Adding special impurity atoms (dopants)
® Applying an electric field

B Changing the temperature

M [rradiation




Chapter 2

Bond Model of Electrons and Holes

M 2-D Representation

Hole
B \When an electron breaks e
loose and becomes a "~ Si* Si/ S
conduction electron, then a .. .
hole is created. . i s SH\

** *e °e Conduction
. Si. Si. Si. celectron
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Chapter 2
What i1s a Hole?

B A hole is a positive charge associated with a half-filled covalent
bond.

M A hole is treated as a positively charged mobile particle in the
semiconductor.




Chapter 2

Conduction Electron and Hole of Pure Si
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Chapter 2

Si: From Atom to Crystal

E
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Chapter 2

Energy Band Diagram

>

EG’ band gap energy

Electron energy

—E

\Y

 For Silicon at 300 K, E5 =1.12 eV
*1eV=16x101J

B Simplified version of energy band model, indicating:
B | owest possible conduction band energy (E.)
H Highest possible valence band energy (E,)

B E_and E, are separated by the band gap energy E.



Chapter 2

Measuring Band Gap Energy

B E can be determined from the minimum energy (hv) of photons
that can be absorbed by the semiconductor.

B This amount of energy equals the energy required to move a
single electron from valence band to conduction band.

Electron
®
A EC
Photon
AN\ >
photon energy: hv=Eg
EV
@)
Hole
Band gap energies
Semiconductor Ge Si GaAs | Diamond

Band gap (eV) 0.66 1.12 1.42 6.0




Chapter 2
Carriers
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B Completely filled or empty bands do not allow current flow,
because no carriers available.

B Broken covalent bonds produce carriers (electrons and holes)
and make current flow possible.

B The excited electron moves from valence band to conduction
band.

B Conduction band is not completely empty anymore.
M Valence band is not completely filled anymore.



Chapter 2

Band Gap and Material Classification

EG: ~8 eV

Sio, Si Metal

M Insulators have large band gap E.
B Semiconductors have relatively small band gap E.
B Metals have very narrow band gap E; .

® Even, in some cases conduction band is partially filled,
E,>E..
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Carrier Numbers in Intrinsic Material

B More new notations are presented now:
®n : number of electrons/cm?
B p : number of holes/cm3
H N, : Intrinsic carrier concentration

M In a pure semiconductor, n = p =n.

B At room temperature,

=2 x 108 /cm?3 in GaAs _
n — 1 X 1010 /Cm3 in S| Conduction Band

n; = 2 x 103 /cm3 in Ge -

t
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