Semiconductor Device Physics

Lecture 1

http://zitompul.wordpress.com

Textbook and Syllabus

Textbook: "Semiconductor Device Fundamentals", Robert F. Pierret, International Edition, Addison Wesley, 1996.

Syllabus:

- Chapter 1: Semiconductors: A General Introduction
- Chapter 2: Carrier Modeling
- Chapter 3: Carrier Action
- Chapter 5: *pn* Junction Electrostatics
- Chapter 6: *pn* Junction Diode: *I*-*V* Characteristics
- Chapter 7: *pn* Junction Diode: Small-Signal Admittance
- Chapter 8: pn Junction Diode: Transient Response
- Chapter 14: MS Contacts and Schottky Diodes
- Chapter 9: Optoelectronic Diodes
- Chapter 10: BJT Fundamentals
- Chapter 11: BJT Static Characteristics
- Chapter 12: BJT Dynamic Response Modeling

References

The class materials are the Lecture note slides of the Semiconductor Device Physics course offered by Dr.-Ing. Erwin Sitompul, President University, Indonesia.

http://zitompul.wordpress.com/1-ee-lectures/2semiconductor-device-physics/ **Semiconductor Device Physics**

Chapter 1 Semiconductors: A General Introduction

What is a Semiconductor?

- Low resistivity \Rightarrow "conductor"
- High resistivity \Rightarrow "insulator"
- Intermediate resistivity \Rightarrow "semiconductor"

The conductivity (and at the same time the resistivity) of semiconductors lie between that of conductors and insulators.

What is a Semiconductor?

Semiconductors are some of the purest solid materials in existence, because any trace of impurity atoms called "dopants" can change the electrical properties of semiconductors drastically.

Unintentional impurity level:

1 impurity atom per 10⁹ semiconductor atom.

Intentional impurity ranging from 1 per 10⁸ to 1 per 10³.

Most devices fabricated today employ crystalline semiconductors.

Semiconductor Materials

Elemental:	Si, Ge	e, C		
<u>Compound</u> :	IV-IV III-V II-VI	SiC GaAs, GaN CdSe		
<u>Alloy</u> :	Si _{1-x} Ge _x Al _x Ga _{1-x} As			

- As : Arsenic
- Cd : Cadmium
- Se : Selenium
- Ga : Gallium

11	12	13	14	15	16	17	18
							2 He
		S B	6 C	7 N	8 O	9 F	10 Ne
		13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
in all	i		0	1	-		

65	66	67	68	69	70
Tb	Dy	Ho	Er	Tm	Yb
97	98	99	100	101	102
Bk	Cf	Es	Fm	Md	No

From Hydrogen to Silicon

The Silicon Atom

- 14 electrons occupying the first 3 energy levels:
 - 1s, 2s, 2p orbitals are filled by 10 electrons.
 - 3s, 3p orbitals filled by 4 electrons.
- To minimize the overall energy, the 3s and 3p orbitals hybridize to form four tetrahedral 3sp orbital.
- Each has one electron and is capable of forming a bond with a neighboring atom.

Tetrahedral silicate unit

The Si Crystal

- Each Si atom has 4 nearest neighbors.
- Atom lattice constant (length of the unit cell side) a = 5.431Å, 1Å=10⁻¹⁰m

• Each cell contains: 8 corner atoms 6 face atoms 4 interior atoms

"Diamond Lattice"

Chapter 1 Semiconductors: A General Introduction

How Many Silicon Atoms per cm⁻³?

Number of atoms in a unit cell:

- 4 atoms completely inside cell
- Each of the 8 atoms on corners are shared among 8 cells → count as 1 atom inside cell
- Each of the 6 atoms on the faces are shared among 2 cells → count as 3 atoms inside cell

 \Rightarrow Total number inside the cell = 4 + 1 + 3 = 8

Density of silicon atom

- = (8 atoms) / (cell volume)
- = 5 × 10²² atoms/cm³
- What is density of silicon in g/cm³?

Crystallographic Notation

Miller Indices

Notation	Interpretation		
(<i>h k l</i>)	crystal plane		
{ <i>hkl</i> }	equivalent planes		
[<i>h k l</i>]	crystal direction		
< h k l >	equivalent directions		

h: inverse *x*-intercept of plane *k*: inverse *y*-intercept of plane *l*: inverse *z*-intercept of plane

(*h*, *k* and *l* are reduced to 3 integers having the same ratio.)

Sample direction vectors and their corresponding Miller indices.

Crystallographic Planes

Crystallographic Planes

Crystallographic Planes of Si Wafers

Silicon wafers are usually cut along a {100} plane with a flat or notch to orient the wafer during integrated-circuit fabrication.

The facing surface is polished and etched yielding mirror-like finish.

Chapter 1 Semiconductors: A General Introduction

Crystal Growth Until Device Fabrication

Crystallographic Planes of Si

Unit cell:

View in <111> direction

View in <100> direction

View in <110> direction

Electronic Properties of Si

Silicon is a semiconductor material.

Pure Si has a relatively high electrical resistivity at room temperature.

There are 2 types of mobile charge-carriers in Si:

- Conduction electrons are negatively charged, $e = -1.602 \times 10^{-19} \text{ C}$
- Holes are positively charged,

 $p = +1.602 \times 10^{-19} \text{ C}$

- The concentration (number of atoms/cm³) of conduction electrons & holes in a semiconductor can be influenced in several ways:
 - Adding special impurity atoms (dopants)
 - Applying an electric field
 - Changing the temperature
 - Irradiation

Bond Model of Electrons and Holes

2-D Representation

When an electron breaks loose and becomes a conduction electron, then a hole is created.

What is a Hole?

- A hole is a positive charge associated with a half-filled covalent bond.
- A hole is treated as a positively charged mobile particle in the semiconductor.

Conduction Electron and Hole of Pure Si

- Covalent (shared e⁻) bonds exists between Si atoms in a crystal.
- Since the e⁻ are loosely bound, some will be free at any *T*, creating hole-electron pairs.

*n*_i = intrinsic carrier concentration

 $n_{\rm i} \approx 10^{10} \, {\rm cm}^{-3}$ at room temperature

Si: From Atom to Crystal

24

• 1 eV = 1.6 x 10⁻¹⁹ J

Simplified version of energy band model, indicating:
Lowest possible conduction band energy (*E*_c)
Highest possible valence band energy (*E*_v)
*E*_c and *E*_v are separated by the band gap energy *E*_G.

Measuring Band Gap Energy

- E_G can be determined from the minimum energy (*hv*) of photons that can be absorbed by the semiconductor.
- This amount of energy equals the energy required to move a single electron from valence band to conduction band.

Band gap energies

Semiconductor	Ge	Si	GaAs	Diamond
Band gap (eV)	0.66	1.12	1.42	6.0

Carriers

- Completely filled or empty bands do not allow current flow, because no carriers available.
- Broken covalent bonds produce carriers (electrons and holes) and make current flow possible.
- The excited electron moves from valence band to conduction band.
 - Conduction band is not completely empty anymore.
 - Valence band is not completely filled anymore.

Band Gap and Material Classification

Insulators have large band gap $E_{\rm G}$.

Semiconductors have relatively small band gap E_{G} .

• Metals have very narrow band gap $E_{\rm G}$.

Even, in some cases conduction band is partially filled, $E_v > E_c$.

Carrier Numbers in Intrinsic Material

More new notations are presented now:

- n : number of electrons/cm³
- *p* : number of holes/cm³
- \square *n*_i : intrinsic carrier concentration

In a pure semiconductor, $n = p = n_i$.

At room temperature,

 $n_{\rm i} = 2 \times 10^6$ /cm³ in GaAs $n_{\rm i} = 1 \times 10^{10}$ /cm³ in Si $n_{\rm i} = 2 \times 10^{13}$ /cm³ in Ge

