Semiconductor Device Physics

Lecture 8

http://zitompul.wordpress.com

Semiconductor Device Physics

Chapter 14 MS Contacts and Schottky Diodes

MS Contact

- The metal-semiconductor (MS) contact plays a very important role in solid-state devices.
	- When in the form of a *rectifying contact*, the MS contact is referred to as the Schottky.
	- When in the from of a *non-rectifying* or *ohmic contact*, the MS contact is the critical link between the semiconductor and the outside.
- **The reverse-bias saturation current** I_S of a Schottky diode is 10³ to 10⁸ times larger than that of a *pn*junction diode, depending on the type of material.
	- Schottky diodes are proffered rectifiers for low-voltage highcurrent applications.

MS Contact

- \blacksquare A vacuum energy level, E_0 , is defined as the minimum energy an electron must possess to completely free itself from the material.
- **The energy difference between** E_0 **and** E_F **is known as the** workfunction (Φ).

Workfunction

- Φ_{M} : Metal workfunction
- $\Phi_{\rm S}$: Semiconductor workfunction *E*_{FM}: Fermi level in metal *E*_{FS}: Fermi level in semiconductor $x:$ electron affinity

Ideal MS Contact: Φ_{M} > Φ_{S} , n-type

Ideal MS Contact: Φ_{M} < Φ_{S} , n-type

 $\begin{array}{cc} 0 & \pi \rightarrow 0 \\ 0 & \pi \rightarrow 0 \end{array}$

n-type MS Contact

Forward Bias

■ Current is determined by majoritycarrier flow across the MS junction.

- **Under forward bias, majority**carrier diffusion from the semiconductor into the metal dominates.
- **Under reverse bias, majority**carrier diffusion from the metal into the semiconductor

dominates.

Metal-Semiconductor Contacts

There are 2 kinds of metal-semiconductor (MS) contact:

Metal-Semiconductor Contacts

The Depletion Approximation

The semiconductor is depleted to a depth *W*:

In the depleted region $(0 \le x \le W)$:

$$
\left.\begin{array}{c}\n\rho = q(N_{\rm D} - N_{\rm A}) \\
n = 0, p = 0\n\end{array}\right|
$$

Beyond the depleted region $(x > W)$:

$$
\rho = 0
$$

$$
n = n_0, p = p_0
$$

Poisson's Equation

$\varepsilon_{\rm S} \left[\mathcal{E} (x + \Delta x) - \mathcal{E} (x) \right] A = \rho \Delta x A$ ■ According to Gauss's Law: Or:

$$
\frac{\left[\mathcal{E}(x + \Delta x) - \mathcal{E}(x)\right]}{\Delta x} = \frac{\rho}{\varepsilon_{\text{s}}}
$$

$$
\frac{d\mathcal{E}}{dx} = \frac{\rho}{\varepsilon_{\text{s}}}
$$

$$
-\frac{d^2V}{dx^2} = \frac{\rho}{\varepsilon_{\text{s}}}
$$

- **E** : electric field intensity (V/m)
- $\blacksquare \varepsilon_{\rm S}$: relative permittivity (F/cm)
- \blacksquare ρ : charge density (C/cm³)

\n- $$
\varepsilon_{\rm S} = K_{\rm S} \varepsilon_0
$$
\n- $\varepsilon_0 = 8.854 \times 10 - 14$ F/cm
\n- **For Si,** $K_{\rm S} = 11.8$
\n

MS Contact Electrostatics

Poisson's equation:

$$
\frac{d\mathcal{E}}{dx} = \frac{\rho}{\varepsilon_{\rm S}} \approx \frac{qN_{\rm D}}{\varepsilon_{\rm S}}
$$

The solution is:

D S $f(x) = -\int \mathcal{E}(x) dx = \int \frac{4f(y)}{g(y)} (W - x)$ *W W x x* $V(x) = -\int_{0}^{b} \mathcal{E}(x) dx = \int_{0}^{b} \frac{qN_{\rm D}}{(W - x)dx}$ $=-\int \mathcal{E}(x)dx=\int \frac{qN_{\rm D}}{\varepsilon_{\rm c}}(W-x)$ **Furthermore:** D $(N - r)^2$ S $(W - x)$ 2 $\frac{qN_{\rm D}}{qN_{\rm D}}(W - x)$ $\mathcal{E}_\text{\tiny{A}}$ $=-\frac{q_{IV}}{2}(W-x)$

Depletion Layer Width *W*

$$
V(x) = -\frac{qN_{\rm D}}{2\varepsilon_{\rm S}}(W - x)^2
$$

The potential in the semiconductor side is chosen to be the zero reference.

$$
\blacksquare At x = 0, V = -V_{\text{bi}}
$$

The depletion width is given by

$$
W = \sqrt{\frac{2\epsilon_{\rm S}V_{\rm bi}}{qN_{\rm D}}}
$$

■ *W* decreases as *N*_D increases

Depletion Layer Width *W* for $V_A \neq 0$

Previously,

$$
V(x) = -\frac{qN_{\rm D}}{2\varepsilon_{\rm S}}(W - x)^2
$$

$$
\blacksquare At x = 0, now V = -(V_{bi} - V_{A})
$$

$$
W = \sqrt{\frac{2\mathcal{E}_{\rm S}(V_{\rm bi} - V_{\rm A})}{qN_{\rm D}}}
$$

■ *W* decreases as *N*_D increases ■ *W* increases as $-V_A$ increases

Thermionic Emission Current

- **Thermionic emission** current results from majority carrier injection over the potential barrier.
- **Electrons can cross the** junction into the metal if:

$$
KE_{x} = \frac{1}{2} m_{n}^{*} v_{x}^{2} \ge q(V_{bi} - V_{A})
$$

x min bi A * n $|v_{\rm x}| \ge v_{\rm min} = \sqrt{\frac{2q}{\kappa}}(V_{\rm bi} - V_{\rm A})$ *m* $\geq v$ = $\frac{1}{2} (V_1 -$ Or:

The current for electrons at a certain velocity is:

$$
I_{\mathbf{S}\bullet\rightarrow\mathbf{M},v_{\mathbf{x}}} = -qA v_{\mathbf{x}} n(v_{\mathbf{x}})
$$

The total current over the potential barrier is:

$$
I_{\text{S}\bullet\to\text{M}} = -qA \int_{-\infty}^{-\nu_{\text{min}}} v_{\text{x}} n(v_{\text{x}}) dv_{\text{x}}
$$

I –*V* Characteristics

For a non-degenerate semiconductor, it can be shown that:

$$
n(v_{x}) = \left[\frac{4\pi k T m_{n}^{*2}}{h^{3}}\right] e^{(E_{F}-E_{c})/kT} e^{-(m_{n}^{*}/2kT)v_{x}^{2}}
$$

■We can then obtain

$$
I_{\mathbf{S}\bullet\mathbf{\rightarrow} M} = A\mathbf{\mathcal{B}}^*T^2e^{-\Phi_B/kT}e^{qV_A/kT}
$$

Where
$$
\mathcal{B}^* = \left(\frac{m_{\rm n}^*}{m_0}\right) \mathcal{B}
$$

2 $0^{\prime\prime}$ 120 $\Lambda / (\Omega m^2 V^2)$ 3 $\mathcal{B} = \frac{4\pi q m_0 k^2}{r^3} = 120 \text{ A/(cm}^2 \cdot \text{K}^2)$ *h* π $\mathcal{B} = \frac{m g m_0 c}{r} = 120 \text{ A/(cm}^2 \cdot$ ■And

I –*V* Characteristics

 \blacksquare In the reverse direction and equilibrium condition, the electrons always see the same barrier Φ_{B} , so

■ Therefore
\n
$$
I_{\text{M}\bullet\to\text{S}}(V_{\text{A}}=0) = -I_{\text{S}\bullet\to\text{M}}(V_{\text{A}}=0)
$$
 $-I_{\text{S}}$:reverse bias
\nsaturation current

Finally, combining the total current at an arbitrary V_A **,**

$$
I=I_{\rm S}(e^{qV_{\rm A}/kT}-1)
$$

Where

$$
I_{\rm S} = A \mathcal{B}^* T^2 e^{-\Phi_{\rm B}/kT}
$$

Small-Signal Capacitance

- ■In an MS contact, charge is stored on either side of the MS junction.
	- The applied bias V_A affects this charge and varies the depletion width.
- **If an a.c. voltage** v_a **is applied in series** with the d.c. bias V_{A} , the charge stored in the MS contact will be modulated at the frequency of the a.c. voltage.

Displacement current will flow.

$$
i = C \frac{dv_a}{dt} \implies C = A \frac{\varepsilon_s}{W}
$$

Small-Signal Capacitance

Since in general

$$
W = \sqrt{\frac{2\mathcal{E}_{\rm S}(V_{\rm bi} - V_{\rm A})}{qN_{\rm D}}}
$$

Then

$$
C = A \frac{\varepsilon_{\rm S}}{W} = A \frac{\varepsilon_{\rm S}}{\sqrt{\frac{2\varepsilon_{\rm S}}{qN_{\rm D}}(V_{\rm bi} - V_{\rm A})}} = A \sqrt{\frac{qN_{\rm D}\varepsilon_{\rm S}}{2(V_{\rm bi} - V_{\rm A})}}
$$

$$
\frac{1}{\varepsilon_{\rm S}} = \frac{2}{\sqrt{\frac{Q}{V_{\rm E}}(V_{\rm bi} - V_{\rm A})}}
$$

$$
\text{or} \quad \frac{1}{C^2} = \frac{2}{qN_{\text{D}}\varepsilon_{\text{S}}A^2}(V_{\text{bi}} - V_{\text{A}})
$$

Practical Ohmic Contact

■ In practice, most MS-contacts are rectifying.

 \blacksquare In order to achieve a contact that can conduct easily in both directions, the semiconductor is to be doped very heavily. Depletion width W becomes so narrow that the carriers can tunnel directly through the barrier.

Voltage Drop Across the MS Contact

Under equilibrium conditions $(V_A = 0)$, the voltage drop across the semiconductor depletion region is the builtin voltage $V_{\rm bi}$.

If $V_A \neq 0$, the voltage drop across the semiconductor depletion region is $V_{\rm bi} - V_{\rm A}$.

MS Contact with *p*-type Semiconductor

If p-type semiconductor is used, the depletion layer width W of the MS contact for $V_A \neq 0$ is given by

$$
V(x) = \frac{qN_{\rm A}}{2\varepsilon_{\rm s}}(W - x)^2
$$

$$
W = \mathbf{A} \cdot \mathbf{X} = \mathbf{0}, \quad V = V_{\text{bi}} + V_{\text{A}},
$$
\n
$$
W = \sqrt{\frac{2\varepsilon_{\text{S}}(V_{\text{A}} + V_{\text{bi}})}{qN_{\text{A}}}}
$$

■ *W* increases as *V*_A increases ■ *W* decrease as *N*_A increases

Homework 9

1. (Nea.EC.10.27) An MS-junction is formed between a metal with a work function of 4.3 eV and *p*-type Si with an electron affinity of 4 eV. The doping concentration in semiconductor is 5×10¹⁶ cm–3 . Assume *T* = 300 K.

- (a) Sketch the thermal equilibrium energy band diagram;
- (b) Determine the height of the Schottky barrier;
- (c) Sketch the energy band diagram with an applied reverse-bias voltage of $V_{A} = -3V$;
- (d) Sketch the energy band diagram with an applied forward-bias voltage of $V_{\rm A} = 0.25$ V.