Semiconductor Device Physics

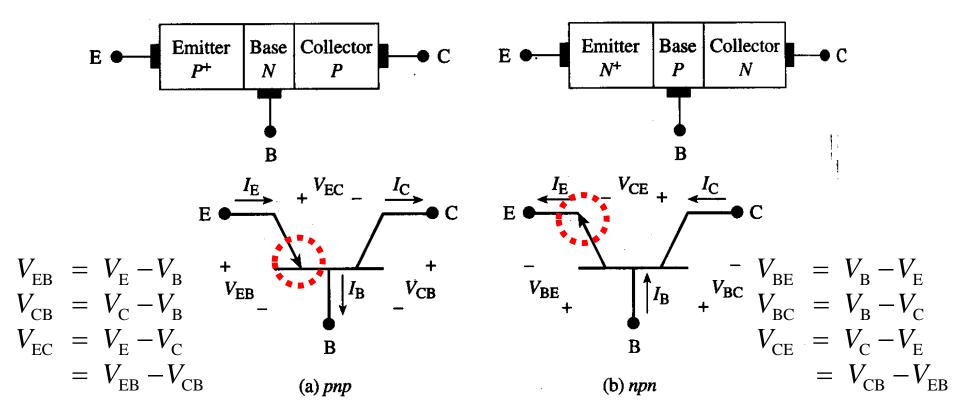
Lecture 9

http://zitompul.wordpress.com

Semiconductor Device Physics

Chapter 10 BJT Fundamentals

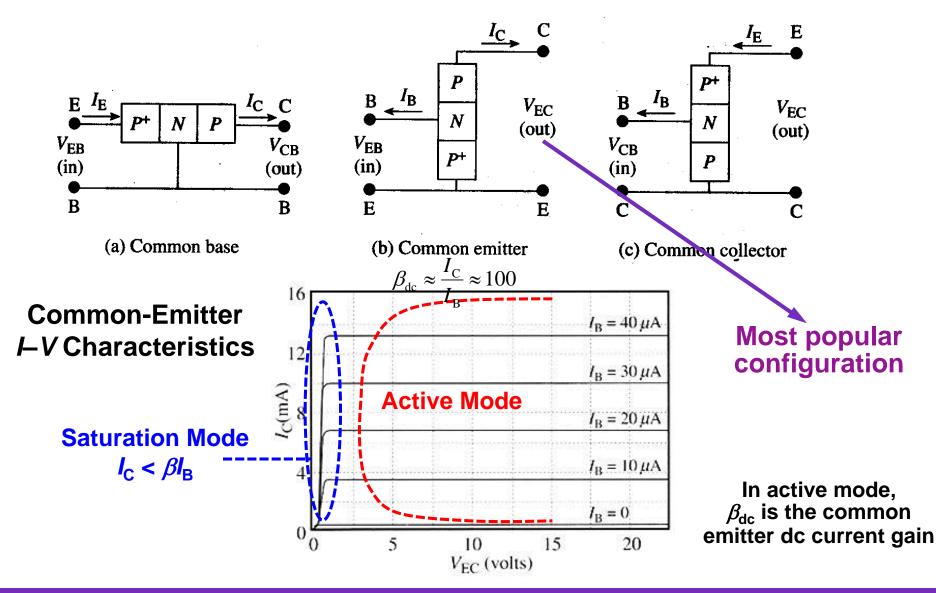
Chapter 10 BJT Fundamentals


Bipolar Junction Transistors (BJTs)

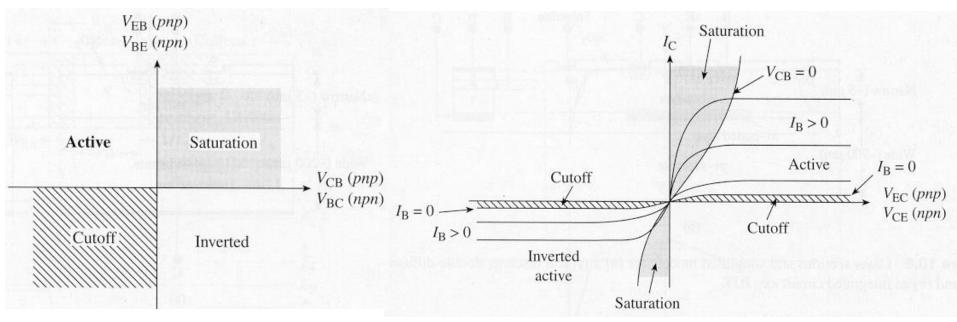
- Over the past decades, the higher layout density and lowpower advantage of CMOS (Complementary Metal–Oxide– Semiconductor) has eroded away the BJT's dominance in integrated-circuit products.
 - **Higher circuit density** \rightarrow better system performance
- BJTs are still preferred in some digital-circuit and analog-circuit applications because of their high speed and superior gain
 - Faster circuit speed (+)
 - Larger power dissipation (–)

• <u>Transistor</u>: current flowing between two terminals is controlled by a third terminal

Introduction

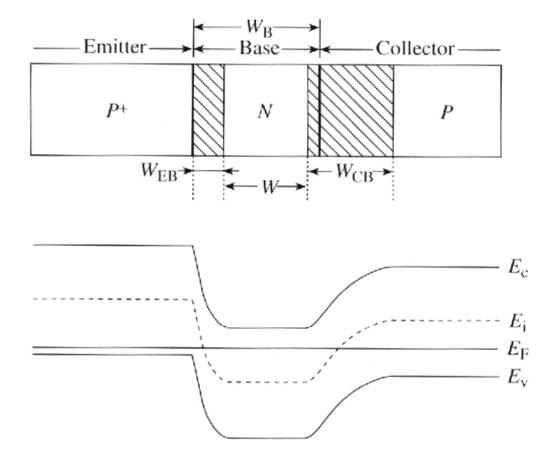

There are two types of BJT: pnp and npn.

- The convention used in the textbook does not follow IEEE convention, where currents flowing into a terminal is defined as positive.
- We will follow the normal convention:


Chapter 10 BJT Fundamentals

Circuit Configurations

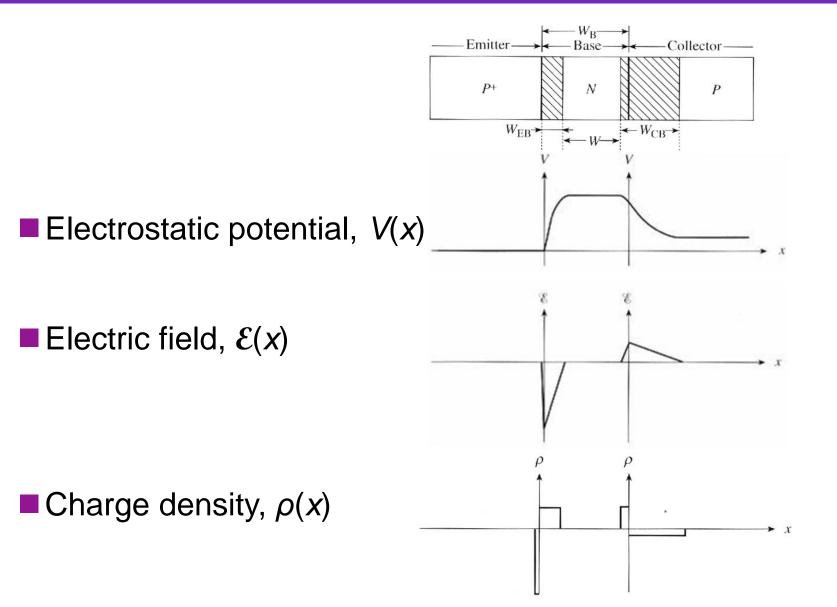
Modes of Operation


Common-Emitter Output Characteristics

Mode	E-B Junction	C-B Junction
Saturation	forward bias	forward bias
Active/Forward	forward bias	reverse bias
Inverted	reverse bias	forward bias
Cutoff	reverse bias	reverse bias

BJT Electrostatics

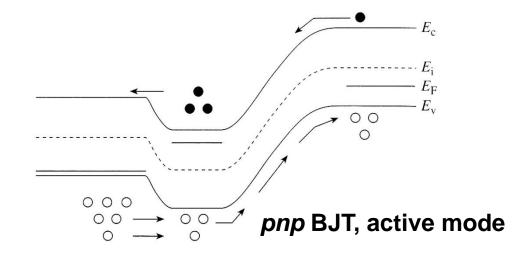
Under equilibrium and normal operating conditions, the BJT may be viewed electrostatically as two independent pn junctions.



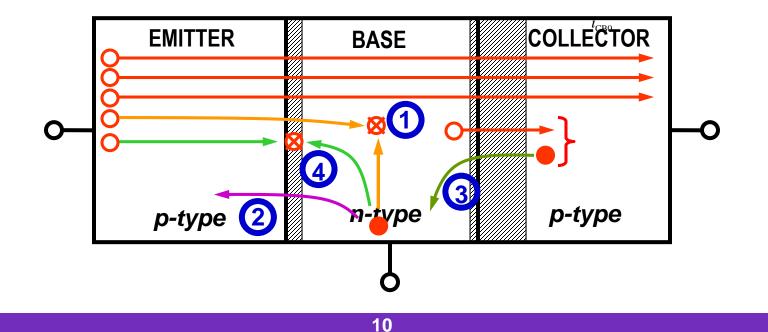
 $N_{\rm AE} >> N_{\rm DB} > N_{\rm AC}$ $W_{\rm CR} > W_{\rm FR}$ $W = W_{\rm B} - x_{\rm nEB} - x_{\rm nCB}$

W: quasineutral base width

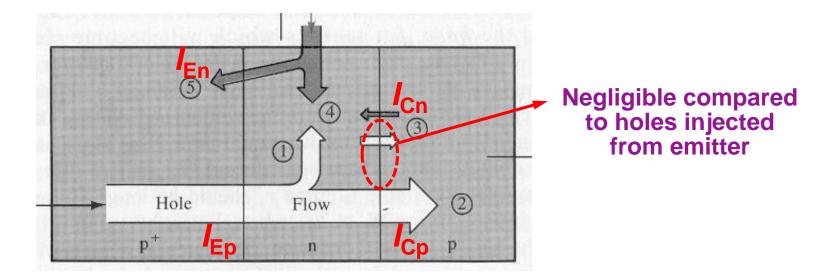
Chapter 10 BJT Fundamentals

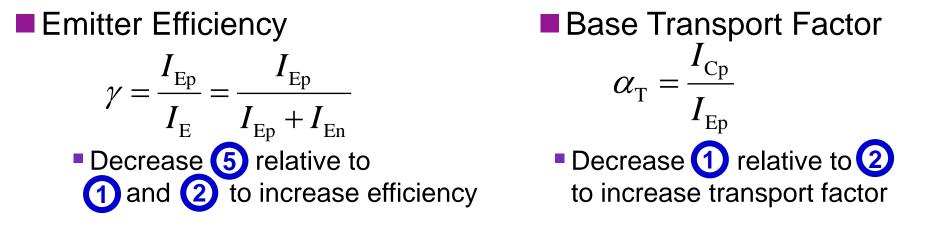

BJT Electrostatics

BJT Design


Important features of a good transistor:

- Injected minority carriers do not recombine in the neutral base region → short base, W << L_p for pnp transistor
- Emitter current is comprised almost entirely of carriers injected into the base rather than carriers injected into the emitter
 the emitter must be doped heavier than the base


Base Current (Active Bias)

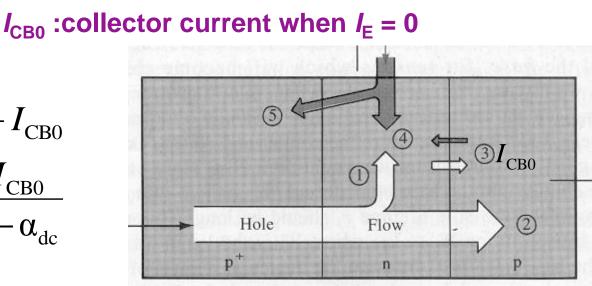

- The base current consists of majority carriers (electrons) supplied for:
 - 1. Recombination of injected minority carriers in the base
 - 2. Injection of carriers into the emitter
 - 3. Reverse saturation current in collector junction
 - 4. Recombination in the base-emitter depletion region

Chapter 10 BJT Fundamentals

BJT Performance Parameters (*pnp*)

Common base dc current gain: $\alpha_{dc} = \gamma \alpha_{T}$

Collector Current (Active Bias)

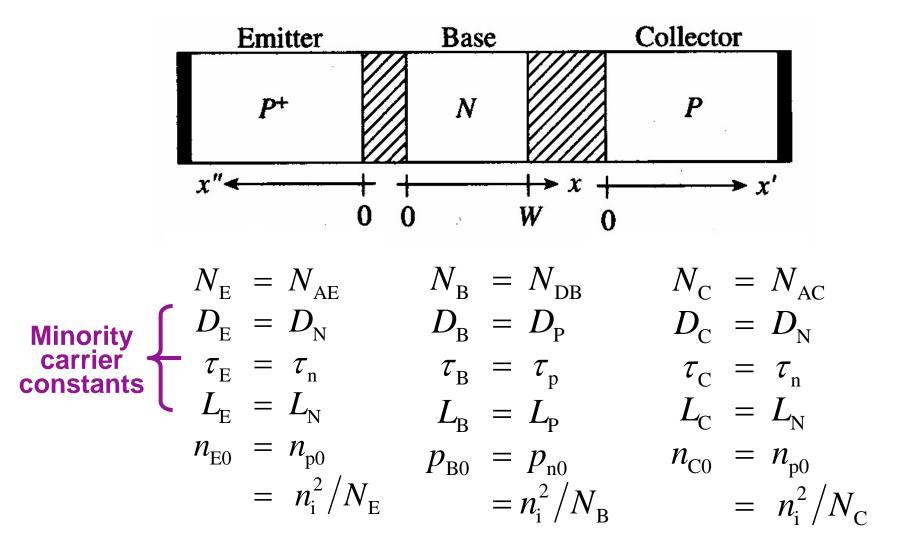

The collector current is composed of:

- Holes injected from emitter, which do not recombine in the base 2
- Reverse saturation current of collector junction 3

$$I_{\rm C} = \alpha_{\rm dc} I_{\rm E} + I_{\rm CB0}$$

$$I_{\rm C} = \alpha_{\rm dc} (I_{\rm C} + I_{\rm B}) + I_{\rm CB0}$$
$$I_{\rm C} = \frac{\alpha_{\rm dc}}{1 - \alpha_{\rm dc}} I_{\rm B} + \frac{I_{\rm CB0}}{1 - \alpha_{\rm dc}}$$

$$I_{\rm C} = \beta_{\rm dc} I_{\rm B} + I_{\rm CE0}$$

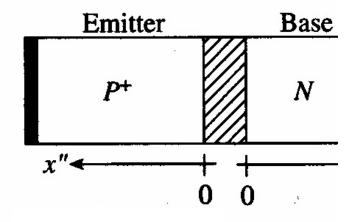


Common emitter dc current gain:

$$\beta_{\rm dc} = \frac{\alpha_{\rm dc}}{1 - \alpha_{\rm dc}} \approx \frac{I_{\rm C}}{I_{\rm B}}$$

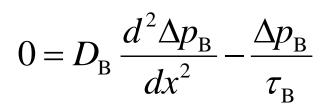
Chapter 11 BJT Static Characteristics

Notation (pnp BJT)


Emitter Region

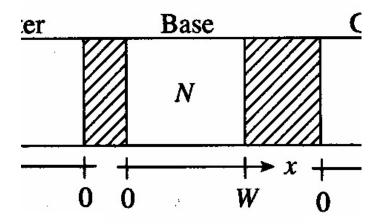
Diffusion equation:

$$0 = D_{\rm E} \frac{d^2 \Delta n_{\rm E}}{dx''^2} - \frac{\Delta n_{\rm E}}{\tau_{\rm E}}$$


Boundary conditions:

$$\Delta n_{\rm E}(x'' \to \infty) = 0$$

$$\Delta n_{\rm E}(x'' = 0) = n_{\rm E0}(e^{qV_{\rm EB}/kT} - 1)$$

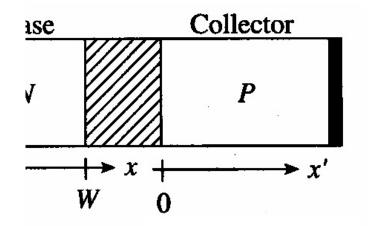

Base Region

Diffusion equation:

Boundary conditions:

$$\Delta p_{\rm B}(0) = p_{\rm B0}(e^{qV_{\rm EB}/kT} - 1)$$

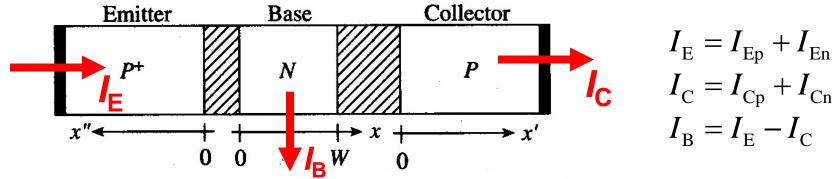
$$\Delta p_{\rm B}(W) = p_{\rm B0}(e^{qV_{\rm CB}/kT} - 1)$$


Collector Region

Diffusion equation:

$$0 = D_{\rm C} \frac{d^2 \Delta n_{\rm C}}{dx'^2} - \frac{\Delta n_{\rm C}}{\tau_{\rm C}}$$

Boundary conditions:


$$\Delta n_{\rm C}(x' \to \infty) = 0$$

$$\Delta n_{\rm C}(x'=0) = n_{\rm C0}(e^{qV_{\rm CB}/kT} - 1)$$

Ideal Transistor Analysis

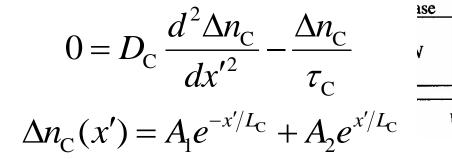
Solve the minority-carrier diffusion equation in each quasi-neutral region to obtain excess minority-carrier profiles
 Each region has different set of boundary conditions
 Evaluate minority-carrier diffusion currents at edges of depletion regions

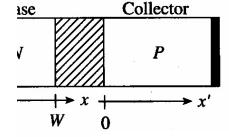
$$I_{\rm En} = -qAD_{\rm E} \left. \frac{d\Delta n_{\rm E}}{dx''} \right|_{x'=0} \qquad I_{\rm Ep} = -qAD_{\rm B} \left. \frac{d\Delta p_{\rm B}}{dx} \right|_{x=0}$$
$$I_{\rm Cn} = qAD_{\rm C} \left. \frac{d\Delta n_{\rm C}}{dx'} \right|_{x'=0} \qquad I_{\rm Cp} = -qAD_{\rm B} \left. \frac{d\Delta p_{\rm B}}{dx} \right|_{x=W}$$

Emitter Region Solution

Boundary conditions: $\Delta n_{\rm E}(x'' \to \infty) = 0$ $\Delta n_{\rm E}(x'' = 0) = n_{\rm E0}(e^{qV_{\rm EB}/kT} - 1)$

Solution


$$\Delta n_{\rm E}(x'') = n_{\rm E0}(e^{qV_{\rm EB}/kT} - 1)e^{-x''/L_{\rm E}}$$


$$I_{\rm En} = -qAD_{\rm E} \left. \frac{d\Delta n_{\rm E}}{dx''} \right|_{x''=0} = qA \frac{D_{\rm E}}{L_{\rm E}} n_{\rm E0} (e^{qV_{\rm EB}/kT} - 1)$$

Collector Region Solution

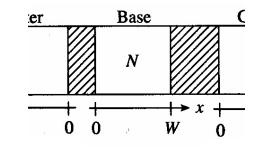
Diffusion equation:

Solution

General solution:

Boundary conditions:
$$\Delta n_{\rm C}(x' \to \infty) = 0$$

 $\Delta n_{\rm C}(x'=0) = n_{\rm C0}(e^{qV_{\rm CB}/kT}-1)$


$$\Delta n_{\rm C}(x') = n_{\rm C0} (e^{qV_{\rm CB}/kT} - 1)e^{-x'/L_{\rm C}}$$

$$I_{\rm Cn} = qAD_{\rm C} \left. \frac{d\Delta n_{\rm C}}{dx'} \right|_{x'=0} = -qA \frac{D_{\rm C}}{L_{\rm C}} n_{\rm C0} (e^{qV_{\rm CB}/kT} - 1)$$

Base Region Solution

Diffusion equation:

$$0 = D_{\rm B} \frac{d^2 \Delta n_{\rm B}}{dx^2} - \frac{\Delta p_{\rm B}}{\tau_{\rm B}}$$

General solution:

$$\Delta p_{\rm B}(x) = A_{\rm l} e^{-x/L_{\rm B}} + A_{\rm 2} e^{x/L_{\rm B}}$$

Boundary conditions:
$$\Delta p_{\rm B}(0) = p_{\rm B0}(e^{qV_{\rm EB}/kT} - 1)$$

 $\Delta p_{\rm B}(W) = p_{\rm B0}(e^{qV_{\rm CB}/kT} - 1)$

Solution

$$\Delta p_{\rm B}(x) = p_{\rm B0} (e^{qV_{\rm EB}/kT} - 1) \left(\frac{e^{(W-x)/L_{\rm B}} - e^{-(W-x)/L_{\rm B}}}{e^{W/L_{\rm B}} - e^{-W/L_{\rm B}}} \right)$$
$$+ p_{\rm B0} (e^{qV_{\rm CB}/kT} - 1) \left(\frac{e^{x/L_{\rm B}} - e^{-x/L_{\rm B}}}{e^{W/L_{\rm B}} - e^{-W/L_{\rm B}}} \right)$$

Base Region Solution

Since
$$\sinh(\xi) = \frac{e^{\xi} - e^{-\xi}}{2}$$

• We can write $\Delta p_{\rm B}(x) = p_{\rm B0}(e^{qV_{\rm EB}/kT} - 1)\left(\frac{e^{(W-x)/L_{\rm B}} - e^{-(W-x)/L_{\rm B}}}{e^{W/L_{\rm B}} - e^{-W/L_{\rm B}}}\right)$

$$+p_{B0}(e^{qV_{CB}/kT}-1)\left(rac{e^{x/L_{B}}-e^{-x/L_{B}}}{e^{W/L_{B}}-e^{-W/L_{B}}}
ight)$$

as

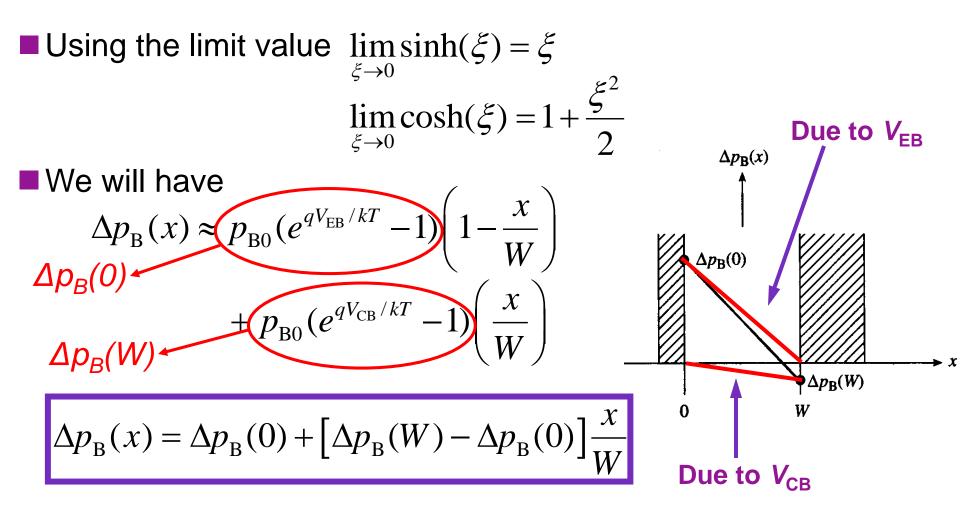
$$\Delta p_{\rm B}(x) = p_{\rm B0} (e^{qV_{\rm EB}/kT} - 1) \frac{\sinh[(W - x)/L_{\rm B}]}{\sinh(W/L_{\rm B})} + p_{\rm B0} (e^{qV_{\rm CB}/kT} - 1) \frac{\sinh(x/L_{\rm B})}{\sinh(W/L_{\rm B})}$$

Chapter 11 BJT Static Characteristics

Base Region Solution

Since
$$\frac{d}{d\xi} \sinh(\xi) = \frac{d}{d\xi} \left(\frac{e^{\xi} - e^{-\xi}}{2} \right) = \frac{e^{\xi} + e^{-\xi}}{2} = \cosh(\xi)$$

 $I_{\rm Ep} = -qAD_{\rm B} \left. \frac{d\Delta p_{\rm B}}{dx} \right|_{x=0}$
 $= qA \frac{D_{\rm B}}{L_{\rm B}} p_{\rm B0} \left[\frac{\cosh(W/L_{\rm B})}{\sinh(W/L_{\rm B})} (e^{qV_{\rm EB}/kT} - 1) - \frac{1}{\sinh(W/L_{\rm B})} (e^{qV_{\rm CB}/kT} - 1) \right]$

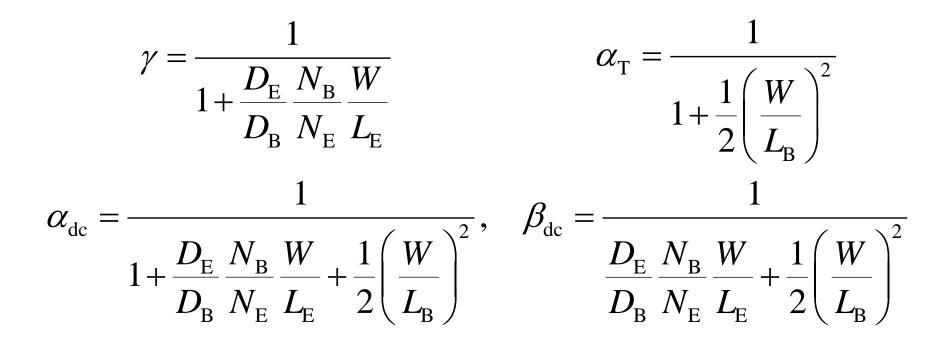

$$I_{Cp} = -qAD_{B} \frac{d\Delta p_{B}}{dx} \Big|_{x=W}$$

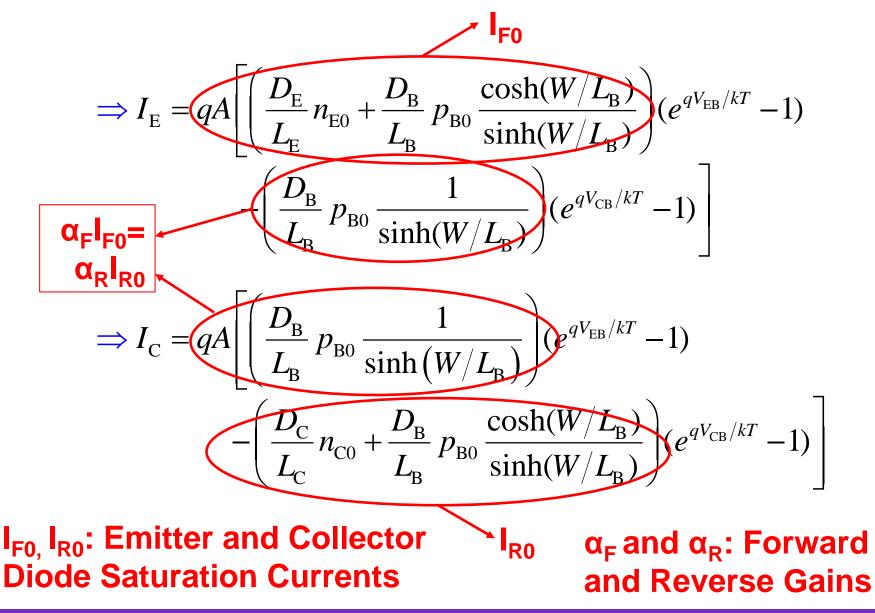
= $qA \frac{D_{B}}{L_{B}} p_{B0} \left[\frac{1}{\sinh(W/L_{B})} (e^{qV_{EB}/kT} - 1) - \frac{\cosh(W/L_{B})}{\sinh(W/L_{B})} (e^{qV_{CB}/kT} - 1) \right]$

Terminal Currents

Since
$$I_{\rm E} = I_{\rm En} + I_{\rm Ep}$$
, $I_{\rm C} = I_{\rm Cn} + I_{\rm Cp}$
Then $\Rightarrow I_{\rm E} = qA \left[\left(\frac{D_{\rm E}}{L_{\rm E}} n_{\rm E0} + \frac{D_{\rm B}}{L_{\rm B}} p_{\rm B0} \frac{\cosh(W/L_{\rm B})}{\sinh(W/L_{\rm B})} \right) (e^{qV_{\rm EB}/kT} - 1) - \left(\frac{D_{\rm B}}{L_{\rm B}} p_{\rm B0} \frac{1}{\sinh(W/L_{\rm B})} \right) (e^{qV_{\rm CB}/kT} - 1) \right]$
 $\Rightarrow I_{\rm C} = qA \left[\left(\frac{D_{\rm B}}{L_{\rm B}} p_{\rm B0} \frac{1}{\sinh(W/L_{\rm B})} \right) (e^{qV_{\rm EB}/kT} - 1) - \left(\frac{D_{\rm C}}{L_{\rm C}} n_{\rm C0} + \frac{D_{\rm B}}{L_{\rm B}} p_{\rm B0} \frac{\cosh(W/L_{\rm B})}{\sinh(W/L_{\rm B})} \right) (e^{qV_{\rm CB}/kT} - 1) \right]$
 $\Rightarrow I_{\rm B} = I_{\rm E} - I_{\rm C}$

Simplified Relationships

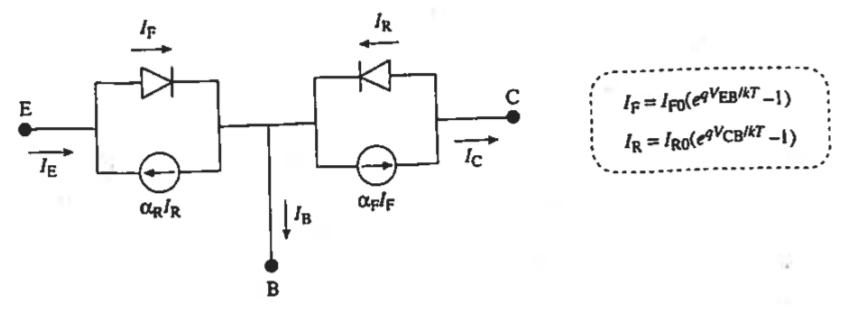

To achieve high current gain, a typical BJT will be constructed so that W << L_B.


Performance Parameters

- For specific condition of
 - "Active Mode": emitter junction is forward biased and collector junction is reverse biased

$$\blacksquare$$
 W << L_B, $n_{\rm E0}/p_{\rm B0} = N_{\rm B}/N_{\rm E}$

Ebers-Moll BJT Equations


Ebers-Moll BJT Model

• Rewriting I_E and I_C equations yields:

$$I_{\rm E} = I_{\rm F0}(e^{qV_{\rm EB}/kT} - 1) - \alpha_{\rm R}I_{\rm R0}(e^{qV_{\rm CB}/kT} - 1)$$

$$I_{\rm C} = \alpha_{\rm F} I_{\rm F0} (e^{qV_{\rm CB}/kT} - 1) - I_{\rm R0} (e^{qV_{\rm CB}/kT} = 1)$$

 Those equations can be represented by the Ebers-Moll BJT model shown below:

