EE336 SEMICONDUCTOR DEVICES

Mohammed M. Farag, PhD

Faculty of Engineering Alexandria University

Course Staff

Instructor:

- Dr. Noha Korany
- Dr. Mohammed M. Farag (mmorsy@ieee.org)
- 4th Floor ECE Building
- □TA:
 - Eng. Mohamed Megahed
- □Office hours :
 - Thursday 2:00-3:20PM

Course Text

Textbook

"Semiconductor Devices – Physics and Technology", S. M. Sze, M. K. Lee

Reference books

- "Solid State Electronic Devices 6th Edition", Ben Streetman, Sanjay K. Banerjee
- "Semiconductor Device Fundamentals 2nd Edition", Robert F. Pierret

Course Objectives

Learn and understand the following topics:

- Semiconductor physics
 - Energy bands and carrier transportation in semiconductors
- Semiconductor Devices
 - pn-Junction Diode, Bipolar Junction Transistor (BJT), Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
- Semiconductor Technology
 - Material growth, film formation, photolithography, and fabrication process.
- Learn to use Spice to model and simulate semiconductor devices and circuits

Outcome

- Describe fundamental principles of wafer fabrication processes in semiconductor technology
- Understand fundamental concepts of solid state physics applied to the semiconductor devices
- Explain general electrical behaviors of semiconductor devices and construct appropriate physical models
- Illustrate structural details and current-voltage characteristics of diode, BJT, and MOSFET devices
- Apply the fundamental understanding of semiconductor devices with knowledge on the limitations of physical models
- Practice modeling and simulation SPICE CAD tools to increase understanding of semiconductor devices taught in the course

Course Organization

Dr. Noha Korany

Semiconductor physics:

- Energy Bands and Carrier Concentration in Thermal Equilibrium
- Carrier Transport Phenomena
- Mid-term Exam
- Semiconductor Devices:
 - p-n Junction
 - Bipolar Transistors and Related Devices

Dr. Mohammed Farag

- Semiconductor
 - Technology:
 - Crystal Growth and Epitaxy
 - Film Formation
 - Lithography and Etching
 - Impurity Doping
 - Integrated Devices
- Mid-term Exam
- Semiconductor Devices:
 - MOS Capacitor and MOSFET
 - MESFET and Related Devices

Course Work

- □ 5-6 Labs
- □ A Midterm exam
- A Final Exam
- □ Tools:
 - Pspice

http://www.electronics-lab.com/downloads/schematic/013/

Grading

Steady and persistent effort is rewarded

- Labs: 30 marks
 - Attendance: 10 marks
 - Lab work: 10 marks
 - Lab exam: 10 marks
- Midterm exam: 30 marks (Equally distributed over the two parts)
- Final exam: 90 marks (Equally distributed over the two parts)

About the Lectures

- Lectures will make use of slides
 - Slides are great !
 - Nice pictures to explain concepts
 - Good addition for course text
 - I can annotate them with a tablet PC
 - I can switch to the tools and listings mid-lecture
 - □ Slides are horrible !
 - They make me teach 30% faster (really)
 - They give you the sense that this is all easy stuff (it's not)
 - They make you fall a sleep
 - They make me lazy
 - They make me waste time looking for clipart
 - Slides are a two-edged sword
 - I encourage you to be active and take notes
 - I may fall back to blackboard-based teaching occasionally