جامعة اإلسكندرية University Alexandria Faculty of Engineering

قسم الهندسة الكهربية Department Engineering Electrical امتحان نصف الفصل الدراسي الثاني (نوفمبر ٢٠١٥) مستحكان نصف الفصل الدراسي الثاني (نوفمبر ٢٠١٥) 1356 Mid-term Exam, November 2

Course Title and Code Number: Semiconductor Devices (EE336) (EE336) الموصلة شبه النبآئط السنة الدراسية الثالثة)اتصاالت و الكترونيات((Electronics and Communications (Year Third Time Allowed: 45 Mins دقيقة ٤٥ :الزمن`

Attempt All Questions: PART II (15 marks)

Question 1: (8 marks)

The Maxwell–Boltzmann distribution function $f(E) = e^{-(E-E_f)/kT}$ is often used as an approximation to the Fermi–Dirac function. Use this approximation and the densities of the states in the conduction band $D_c(E) = A(E - E_c)^{1/2}$ to find:

- a) The energy at which one finds the most electrons $(1/cm^3 \cdot eV)$.
- b) The conduction-band electron concentration (explain any approximation made).
- c) The ratio of the peak electron concentration at the energy of (a) to the electron concentration at $E = E_c + 40kT$ (about 1eV above E_c at 300 K). Does this result justify one of the approximations in part(b)?
	- d) The average kinetic energy, $E E_c$ of the electrons. Hint: These relationships may be useful:

 $\int_0^\infty x^{n-1} e^{-x} dx = \Gamma(n)$ (Gamma function) $\Gamma(2) = \Gamma(1) = 1, \Gamma(3) = 2, \Gamma(4) = 6$ $\Gamma(1/2) = \sqrt{\pi}, \ \Gamma(3/2) = 1/2\sqrt{\pi}, \ \Gamma(5/2) = 3/4\sqrt{\pi}.$

Question 2: (4 marks)

A non-degenerate n-type silicon semiconductor sample has $E_c - E_f = 4KT$ at room temperature.

- a) Calculate the donor concentration N_D and the material resistivity.
- b) To make this sample becomes degenerate (heavily doped), either the temperature or dopant concentration must be changed:
	- i. Calculate the required donor concentration N_D at room temperature.
	- ii. Calculate the required temperature assuming that N_D calculated in (a) is fixed.

Question 3: (3 marks)

A general relationship for the current density carried by electrons of density *n* is $J = qnv$, here *q* is the electron charge and *v* is the electron velocity.

- a) Find the velocity of electrons, *v(x)*, that are moving only by diffusion if they have a density distribution of $n(x) = n_0 e^{-x/\lambda}$. The electric field is zero.
- b) What would be the electric field, $\mathcal{E}(x)$, that would lead to an electron drift velocity equal to that of the diffusion velocity in part (a)?
- c) At 300 K, what value of *λ* would make the field in part (b) to be 1000 V/cm?

Good Luck

Examiner: Dr. Mohammed Morsy

Key Equations, Constants, and Curves

$$
v = \mu_{p} \mathcal{E}
$$

\n
$$
\mu_{p} = \frac{q\tau_{mp}}{m_{p}}
$$

\n
$$
\mu_{p} = \frac{q\tau_{mp}}{m_{p}}
$$

\n
$$
\mu_{p} = \frac{q\tau_{mp}}{m_{p}}
$$

\n
$$
J_{n} = J_{n, drift} + J_{n, diffusion} = qn\mu_{n} \mathcal{E} + qD_{n} \frac{dn}{dx}
$$

\n
$$
J_{p} = J_{p, drift} + J_{p, diffusion} = qp\mu_{p} \mathcal{E} - qD_{p} \frac{dp}{dx}
$$