Alexandria University Faculty of Engineering Electrical Engineering Department Spring Final Exam, January 2015

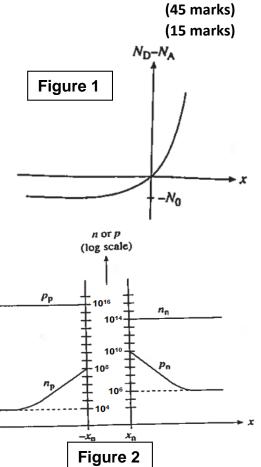
Course Title and Code Number: Semiconductor Devices (EE336) Third Year (Communications and Electronics) Time Allowed: 90 Mins امتحان نهاية الفصل الدراسي الأول (يناير ٢٠١٥) اسم المقرر والرقم الكودي له: النبأنط شبه الموصلة (EE336) السنة الدراسية الثالثة (اتصالات و الكترونيات) الزمن: ٩٠ دقيقة

جامعة الإسكند كلية الهندسة

قسم الهندسة الكهر ببة

Info and Equation Sheets Are Allowed:

Attempt All Questions:


Question 1:

- a) A pn junction diode has the doping profile sketched in Figure 1. Mathematically $N_D - N_A = N_0(e^{\alpha x} - 1)$, where N_0 and α are constants.
 - I. Give a concise statement of the depletion approximation.
 - II. Invoking the depletion approximation, sketch the charge density inside the diode.
 - III. Establish an expression for the electric field $\mathcal{E}(x)$ inside the depletion region.
- b) Figure 2 is a dimensioned plot of the steady state carrier concentrations inside a step pn junction diode maintained at room temperature.
 - I. Is the diode forward or reverse biased? Do low level injection conditions prevail in the quasineutral regions of the diode? Explain how you arrived at your answer.
 - II. What are the p-side and n-side doping concentrations?
 - III. Determine the diode current I and applied voltage V_A assuming $I_0=100nA$.

(15 marks)

- a) The doping profile inside the semiconductor component of an MS diode is linearly graded; i.e., $N_D(x) = ax$.
 - I. Derive solution for $\rho(x)$, $\mathcal{E}(x)$, V(x), and W inside the semiconductor.
 - II. Indicate how V_{bi} is to be determined and computed.
 - III. Establish an expression for the junction depletion region capacitance.
- b) The electron and hole currents inside a pnp BJT biased in the active mode are plotted in Figure 3. All the currents are referenced to I_1 , the hole current injected into the base. Determine:
 - I. The emitter efficiency (γ), the base transport factor (α_7), the common emitter d.c. current gain (β_{dc}).
 - II. The base current (I_B) .

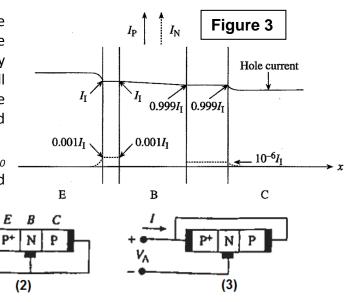
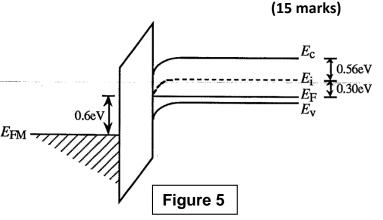
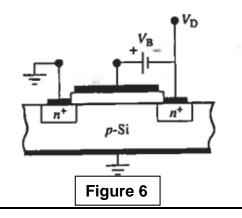

- III. Derive the I- V_A relationship for the above transistor connected in the configurations shown in Figure 4 by appropriately using the Ebers-Moll model. The current I should be expressed only in terms of V_A and the Ebers-Moll parameters.
- IV. Develop expressions for $\Delta p_B(O)/\Delta p_{BO}$ and $\Delta p_B(W)/\Delta p_{BO}$ in terms of V_A and the Ebers-Moll parameters.

Figure 4

EBC


P⁺ N

(1)



Question 3:

a) The energy band diagram for an ideal $x_o = 0.2 \mu m$ MOS-C operated at T = 300° K is sketched in Figure 5. Note that the applied gate voltage causes band bending in the semiconductor such that $E_F = E_i$ at the Si-SiO₂ interface. Invoke the delta-depletion approximation as required in answering the questions that follow.

- I. Sketch ρ , \mathcal{E} , V inside the semiconductor as a function of position.
- II. What is the electron concentration at the Si-SiO₂ interface?
- III. Calculate N_D , ϕ_s , V_G , and the voltage drop ($\Delta \phi_{ox}$) across the oxide at the pictured bias point.
- IV. What is the normalized small-signal capacitance, C/C_0 , of the MOS-C at the pictured bias point?
- b) Suppose a battery $V_B \ge 0$ is connected between the gate and drain of an ideal n-channel MOSFET as pictured in Figure 6. Using the square law results,
 - I. Sketch I_D versus V_D ($V_D \ge 0$) for $V_B = V_T/2$, $2V_T$;
 - II. Sketch I_D versus V_B ($0 \ge V_B \ge 5V$) for $V_D=0$, 5V.

Good Luck

Examiner: Dr. Mohammed Morsy