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Content

You will learn

about the options for tailoring hardware to data/signal processing algorithms.

I General-purpose vs. special-purpose architectures
and all sorts of compromises between the two

I Transforms for optimizing VLSI architectures
I Iterative decomposition, pipelining, replication, time sharing
I Algebraic transforms
I Retiming
I Loop unfolding, pipeline interleaving

I Options for temporary storage of data

I Not so common architectural concepts
I Bit-serial architectures, distributed arithmetic
I Computing in semirings
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The goals of architecture design

I Decide on the necessary hardware resources for carrying out computations
from data and/or signal processing.

I Organize their interplay such as to meet target specifications.

I Concerns:

1. Functional correctness
2. Performance targets (throughput, operation rate, etc.)
3. Circuit size
4. Energy efficiency
5. Agility (wrt to evolving needs, changing specs, future standards)
6. Engineering effort and time to market
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The architectural solution space
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What you ought to know about microprocessors

Instruction set processors execute one program instruction after the other
in consecutive fetch-load-execute-store cycles.

ALU (arithmetic-logic unit) carries out data manipulations.

Datapath vs. Control section

+/− RAM ROM

input data

output data

higher-level control input

higher-level status output

status signals

control signals

datapath section control section

ALU

MUX FSM
data processing units,

data storage, and
data switches

finite state machines, 
instruction sequences, 
hardwired logic, or any
combination thereof

von Neumann architecture common memory space, vs.

Harvard architecture separate memory spaces for data and program code.
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The architectural antipodes I

application-specific
hardware structure

general-purpose
hardware structure

general-purpose hardware
with application-specific
software content

dedicated to
specialized unit

subtask B
dedicated to

specialized unit

subtask A
dedicated to

specialized unit

subtask D

b)

dedicated to
specialized unit

subtask C
output
data

input
data

a)

program
storage controller

data
memory

program-controlled processor

purpose
datapath

general-

output
data

input
data

program-
controlled
processor

input data output data

=

GP

SP

general-purpose

special-purpose
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The architectural antipodes II

Hardware architecture
General purpose Special purpose

Algorithm any, not known a priori fixed, must be known
Architecture instruction set processor dedicated, no single pattern
Execution model fetch-load-execute-store process data item and pass on

“instruction-oriented” “dataflow-oriented”
Datapath ALU(s) plus memory customized design
Controller with program microcode typically hardwired
Performance instructions per second, data throughput,
indicator run time of benchmarks can be anticipated analytically
Strengths highly flexible, room for max. performance,

immediately available, highly energy-efficient,
routine design flow, lean circuitry
low up-front costs
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The architectural antipodes III

Guideline

Before embarking in ASIC design, find out

I Does an architecture dedicated to the application at hand make sense

I or is a program-controlled general-purpose processor more adequate?

I Opting for commercial microprocessors and/or FPL sidesteps
many technical problems that absorb much attention
when a custom IC is to be designed instead.

I Conversely, it is precisely
I the focus on the payload computation,
I the absence of programming and configuration overhead, and
I the full control over architecture, circuit, and layout details

that make it possible to optimize performance and energy efficiency.
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Example: Viterbi decoder
Architecture General purpose Special purpose
Key component DSP ASIC

TI TMS320C6455 sem03w6 sem05w1
without with ETH ETH
Viterbi coprocessor VCP2

Number of chips 1 1 1 1
CMOS process 90 nm 90 nm 250 nm 5Al 250 nm 5Al
Program code 187 Kibyte 242 Kibyte none none
Circuit size n.a. n.a. 73 kGE 46 kGE
Max. throughput 45 kbit/s 9 Mbit/s 310 Mbit/s 54 Mbit/s

@ clock 1 GHz 1 GHz 310 MHz 54 MHz
Power dissipation 2.1 W 2.1 W 1.9 W 50 mW
Year 2005 2005 2004 2006

Reasons:

I DSP optimized for sustained multiply-accumulates, word width 32 bit.
I Viterbi algorithm arranged to do without multiplication.
I Viterbi algorithm arranged to do with words of 6 bit or less.
I Dedicated architectures can exploit full potential for parallelism.
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Example: AES block cipher encrypter/decrypter
(Rijndael algorithm)

Architecture General purpose Special purpose
Key component CISC Processor FPGA Xilinx ASIC (ETH) ASIC (UCLA)

Pentium III Virtex-II CryptoFun Rijndael core
Number of chips motherboard 1 + config. 1 1
CMOS process n.a. 150 nm 8Al 180 nm 4Al2Cu 180 nm 4Al2Cu
Max. throughput 648 Mbit/s 1.32 Gbit/s 2.0 Gbit/s 1.6 Gbit/s

@ clock 1.13 GHz n.a. 172 MHz 125 MHz
Power dissipation 41.4 W 490 mW n.a. 56 mW

@ supply n.a. 1.5 V 1.8 V 1.8 V
Year 2000 ≈ 2002 2007 2002

Reasons:

I Multiple LUTs included in hardware for S-Box function and inverse.

I Ciphering and subkey preparation carried out by concurrent units.

I Rijndael algorithm designed with Pentium III architecture in mind
(MMX instructions, LUTs that fit into cache memory, etc.).

I Power dissipation of general-purpose processor remains daunting.
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When do dedicated architectures make sense?

Dedicated architectures are favored by real-time applications such as

I Data, audio and video (de)compression

I Ciphering & deciphering (primarily for secret key ciphers)

I Error correction coding

I Digital modulation & demodulation
(for modems, wireless communication, and disk drives)

I Adaptive channel equalization for copper lines and optical fibers

I Multipath combiners in broadband wireless access networks

I Computer graphics and video rendering

I Multimedia (e.g. MPEG, HDTV)

I Pattern recognition
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Answer

“Does it make sense to consider dedicated hardware architectures?”

YES Dedicated architectures outperform program-controlled
processors by orders of magnitude (wrt throughput and
energy efficiency) in many transformatorial systems
where data streams get processed in fairly regular ways.

but also

NO Dedicated architectures can not rival the agility and economy
of processor-type designs in applications where the computation
is primarily reactive, very irregular, highly data-dependent,
or memory-hungry.
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Algorithms suitable for dedicated architectures

What makes an algorithm suitable for dedicated VLSI architectures?

Ideally:

1. Loose coupling between major processing tasks
• Well-defined functional specification for each task.
• Manageable interactions between them.

2. Simple control flow
• Course of operation does not depend on the data being processed.
• No need for overly many modes of operations, data formats, etc.

I Makes it possible to anticipate the datapath resources required to meet
throughput goal and to design the architecture accordingly.

I Permits control by counters and simple finite state machines.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes
Digest

Algorithms suitable for dedicated architectures

... continued

3. Regular data flow, recurrence of a few identical operations
I Opens a door for sharing hardware resources in an efficient way.

4. Reasonable storage requirements
I Renders on-chip memories economically possible.
I Massive storage requirements in conjunction with moderate computational

burdens place dedicated architectures at a disadvantage.

5. Compatible with finite precision arithmetics
I Insensitive to effects from finite precision, no need for floating-point

arithmetics.
I Area, logic delay, interconnect length, parasitic capacitances, and energy

dissipation all grow with word width, they combine into a burden that
multiplies at an overproportional rate.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes
Digest

Algorithms suitable for dedicated architectures

... continued

3. Regular data flow, recurrence of a few identical operations
I Opens a door for sharing hardware resources in an efficient way.

4. Reasonable storage requirements
I Renders on-chip memories economically possible.
I Massive storage requirements in conjunction with moderate computational

burdens place dedicated architectures at a disadvantage.

5. Compatible with finite precision arithmetics
I Insensitive to effects from finite precision, no need for floating-point

arithmetics.
I Area, logic delay, interconnect length, parasitic capacitances, and energy

dissipation all grow with word width, they combine into a burden that
multiplies at an overproportional rate.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Figure: Comparison of hardware divider architectures for a 180 nm CMOS process
under worst-case PTV conditions. Note the impact of quotient width.
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Algorithms suitable for dedicated architectures

... continued

6. Non-recursive linear time-invariant computation
I Opens a door for reorganizing the data processing in many ways.
I High-speed operation, in particular, is much easier to obtain.

7. No transcendental functions
I Roots, logarithmic, exponential, or trigonom. functions, translations

between incompatible number systems are expensive in hardware.
◦ Results must either be stored in large lookup tables (LUTs) or
◦ get calculated on-line in lengthy computation sequences.

8. Extensive usage of operations unavailable from instruction sets
I Replace lengthy instruction sequences by dedicated datapath units.
I Fixed arguments often allow for some form of preprocessing, e.g.
• drop unit factors and/or zero sum terms,
• adopt special number representation schemes,
• take advantage of symmetries and precomputed lookup tables.
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... continued

9. No divisions and multiplications on very wide data words
I Much more expensive than addition and subtraction.
I Vast numerical range of results gives rise to scaling issues.
I Matrix inversion is a particularly nasty case in point as it involves

divisions and often brings about numerical instability.

10. Throughput rather than latency is what matters
I Tight latency requirements rule out pipelining
I but are not in favor of microprocessors either as program-controlled

operation can not normally guarantee fixed response times,
even less so when a complex operating system is involved.
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The architectural solution space
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Have a look at typical electronic devices
Subfunctions primarily characterized by

irregular control flow and/or repetitive control flow and
Application need for flexibility need for comput. efficiency

DVD user interface, track seeking, 16-to-8 bit demodulation,
player tray and spindle control, error correction,

processing of non-video data MPEG-2 decompression
(directory, title, author, (discrete cosine transform),
subtitles, region codes) video signal processing

Smartphone user interface, SMS, intermediate frequency
directory management, filtering, (de)modulation,
battery monitoring, channel (de)coding,
communication protocol, error correction (de)coding,
channel allocation, (de)ciphering, speech and
roaming, accounting video (de)compression

Guideline

Segregate the needs for computational efficiency from those of agility!
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1. Dedicated satellites and 2. Host with helper engines
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Figure: Chain of general-purpose processor and dedicated satellites (a),
host computer with specialized fixed-function blocks or coprocessors (b).
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Example: System on a chip for smartphones (by Texas Instr.)
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3. Application-specific instruction set processor (ASIP)
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I Program-controlled operation  highly flexible

I Application-specific features confined to datapath circuitry

I Single thread of execution (concurrency limited to SIMD),
easily extended to multiple threads (by including multiple ASIP cores)
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Example: AES cipher encrypter/decrypter revisited
General purpose Special purpose ASIP
CISC Processor FPGA Xilinx ASIC (ETH) ASIC (UCLA) Cryptoprocessor
Pentium III Virtex-II CryptoFun Rijndael core core UCLA
motherboard 1 + config. 1 1 1
Assembler none none none Assembler
n.a. n.a. 76 kGE 173 kGE 73.2 kGE
n.a. 150 nm 8Al 180 nm 4Al2Cu 180 nm 4Al2Cu 180 nm 4Al2Cu
648 Mbit/s 1.32 Gbit/s 2.0 Gbit/s 1.6 Gbit/s 3.43 Gbit/s
1.13 GHz n.a. 172 MHz 125 MHz 295 MHz
41.4 W 490 mW n.a. 56 mW 86 mW
n.a. 1.5 V 1.8 V 1.8 V 1.8 V
2000 ≈ 2002 2007 2002 2004

Observation

ASIP combines excellent throughput and low power
with the agility of a program-controlled architecture.

Catch: proprietary instruction set  special assembler, libraries, debuggers, ...
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A framework for accelerating ASIP design

LISA = Language for Instruction Set Architectures
(developed by CoWare Inc. acquired by Synopsys in 2010)

The design flow essentially goes

1. Define the most adequate instruction set for a target application,

2. Refine the architecture into a cycle-accurate model (optional),

3. Cast your architecture into an RTL-type model (optional)

using the LISA language.

System-level software tools then generate

I Assembler, linker, and simulator tools.

I VHDL synthesis code (from the RTL model).

Predefined processor templates also available.
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4. Reconfigurable computing (promoted by FPL vendors)
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Figure: General-purpose processor with juxtaposed reconfigurable coprocessor.

General procedure:
1. Designers come up with a specific circuit structure

for each major piece of suitable computation.
2. All configurations get stored in memory.
3. Whenever the host encounters a call to one of those computations,

it downloads the pertaining configuration file into the FPL
4. Host feeds coprocessor with data and fetches results.
5. Host proceeds after computation completes.

 dead time!
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5. Extendable instruction set processor (by Stretch Inc.)

program
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data
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handles subtasks A, B, C, and D with a combination of fixed and configurable datapaths 

output
data

input
data

datapath

general
purpose

datapath logic
configurable
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General procedure:

1. System developers write application programs in C or C++.

2. Proprietary EDA tools identify instruction sequences
that are executed many times over (hot spots).

3. For each such sequence, reconfigurable logic is synthesized into
a parallel computation network that completes within one clock cycle.

4. Each occurrence of the original instruction sequence gets replaced
by a function call that activates the custom-made logic.
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6. Domain-specific programmable platform (DSPP) (new)

I Generous and heterogenous circuit resources in one malleable platform

I Specification using a domain-specific high-level language

I Developer tools assign
most adequate
execution units
such as to meet
performance target
at minimum energy

I Little or no on-the-fly
reconfiguration
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+ good performance

+ energy-efficient

+ agile, fast turnaround

+ one design covers many applications
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Reality check
− Platform ICs circuitry uses transistors lavishly,

many subcircuits may never be used in a given application or product.
− Software tools are in their infancy (but design simplifies to platform

selection and assignment of subfunctions to the on-chip resources).

Technological progress tends to make such concerns less and less relevant.

I Viability stands or falls with the tool chain.
I specification languages under development
I standards required to ensure code reuse and portability

I In line with trends from general-purpose computing and high-end FPGAs.
I costs per transistor ↓ mask costs ↑ verification costs ↑
I energy-efficient computing has become a prime concern
I CPU + GPU + FPL + fixed-function blocks + memory all on same chip

Conclusion

Much remains to be done before platform ICs can dominate digital VLSI,
but the concept benefits from numerous technological and economic trends.
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Forerunner: Extensible Processing Platform (by Xilinx Inc.)

“CPU and GPU cores are the new gates (EE Times 2011)
... and platform ICs are the new gate arrays (H. Kaeslin).”
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Insight gained

GP

SP

There is plenty of land
between the antipodes

general-purpose
architectures

special-purpose
architectures

everything
program-controlled

everything
hardwired

design productivity

towards
agility and

(above all wrt energy)

towards
computational efficiency

Guideline

I Rely on dedicated hardware only for those subfunctions
that are called many times and are unlikely to change.

I Keep the rest programmable (via software or reconfiguration).
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 limited design effort, short turnaround times 
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Figure: Tradeoffs between computational efficiency, agility, and design productivity.
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Example:
Yet another SoC

Note the coexistence of
• general-purpose processors
• ASIPs, and
• hardwired helper engines
on the same die.

Figure: Tegra II chip for smartphones and tablet computers (source Nvidia).
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Subject

How to design dedicated VLSI architectures
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Why do we focus on dedicated architectures?

Many techniques for obtaining high performance at low cost are shared
between general- and special-purpose architectures.

Yet, our emphasis is on dedicated architectures because

I A priori knowledge of a computational problem offers room for ideas
that do not apply to instruction-set processors architectures.

I Utmost performance requirements often ask for special-purpose designs.

I Industry provides us with an extremely vast selection of micro- and signal
processors so that proprietary designs are hard to justify.

I There exists a comprehensive literature on general-purpose architectures.
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Most processing algos must be reworked for hardware I

Departures from some mathematically ideal algorithm are almost always
necessary to arrive at an economically feasible solution. Examples follow.

Digital filter Tolerate a somewhat lower stopband suppression in exchange
for a reduced computational burden.
(e.g. lower order, smaller coefficients replaced by zeros.)

Viterbi decoder (for convolutional codes) Sacrifice 0.1 dB or so of coding gain
for the benefit of doing computations in a more economic way.
(e.g. truncated dynamic range, frequent rescaling, restricted
traceback.)
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Most processing algos must be reworked for hardware II

Autocorrelation function

Replace computation of

ACFxx (k) = rxx (k) =
∞∑

n=−∞
x(n) · x(n + k)

by the average magnitude difference function

AMDFxx (k) = r ′xx (k) =
N−1∑
n=0

|x(n)− x(n + k)|
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Most processing algos must be reworked for hardware III

Magnitude function

I Approximated with shift, add and compare.

Name aka Formula
lesser `−∞-norm l = min(|a|, |b|)
sum `1-norm s = |a|+ |b|
magnitude (reference) `2-norm m =

√
a2 + b2

greater `∞-norm g = max(|a|, |b|)
Approximation 1 m ≈ 3

8 s + 5
8 g

Approximation 2 m ≈ max(g , 7
8 g + 1

2 l)

I Simply replaced by `1- or `∞-norm.
(finds applications in MIMO decoders, for instance.)
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Finding an optimal hardware organization

Guideline

There is room for remodelling computations in two distinct domains:

I Processing algorithm.

I Hardware architecture.

Alternative choices in the algorithmic domain. How to tailor an algorithm
such as to cut the computational burden, to trim down
memory requirements, and/or to speed up calculations
without incurring unacceptable implementation losses?

Equivalence transforms in the architectural domain. How to (re)organize a
computation such as to optimize throughput, circuit size, energy
efficiency and overall costs while leaving the input-to-output
relationship unchanged except, possibly, for latency?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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design
architecture technology-

specific
implementation

algorithm
design IC fabrication dataproduct idea

evaluation of
functional needs
and specification

a)

design
architecture

technology-
specific

implementation
algorithm

design IC fabrication data

evaluation of
functional needs
and specification

product idea

b)

competence of systems engineers

competence of systems engineers

competence of VLSI designers

competence of VLSI designers

Figure: Sequential thinking (a) versus networked team (b).
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Insight gained

Observation

It is always necessary to balance many contradicting requirements
to arrive at a working and marketable embodiment of an algorithm.

I There is more to VLSI design than accepting a given algorithm and
turning that into hardware with the aid of some HDL synthesizer.

I Algorithm design is not covered in this course, but nevertheless
extremely important for VLSI design.
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Example: Sequence estimation for EDGE receiver
Algorithm Delayed Max-log-MAP Soft output

decision feedback Viterbi equalizer

Soft output no yes yes

Forward recursion yes yes yes
Backward recursion no yes no
Backtracking step yes no no

Memory requirements 1x 50x 0.13x

Key design targets:

I soft output

I less than 577 µs per burst

I small circuit, low power

I min. block error rate at any
given signal-to-noise ratio

Which option would you go for?  
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Data dependency graphs (DDG)

edge transport weight indicates latency in computation cycles

Definitions vertex operation
memoryless

fan out expressed as
"no operation" vertex

illegal!

0

Danger of race conditions

0

0

00

0

circular paths
of edge weight zero
are not admitted!

x(k)

time-varying data source
variable input expressed as

c

constant data source
constant input expressed as

y(k)

data sink
output expressed as

Shorthand notations

introduced for convenience
0   =

1   =

2   =
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The isomorphic architecture

a)

y(k) =Σ
n=0

N=3
bn x(k-n)

b)

b20b 1b

x(k)

y(k)

b3

y(k) = Σ
n=0

3
bn(k) x(k-n)

c)

b20b 1b

x(k)

y(k)

b3

z-1 z-1 z-1

d)

b21b

x(k)

b3

multiplier
parallel

* * **

y(k)

adder

+ + +

0b

1:1

Figure: Example: A third order transversal filter in various notations.
Equation (a), DDG (b), and isomorphic architecture (d). SFG for comparison (c).
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Figures of merit for hardware architectures I (Perform.-related)

Cycles per data item Γ , number of computation cycles between releasing two
subsequent data items.

Longest path delay tlp , the lapse of time required for data to propagate along
the longest path. A circuit cannot function correctly unless
tlp ≤ Tcp.

Time per data item T , the lapse of time between releasing two subsequent
data items, e.g. in µs/sample, ms/frame, or s/computation.
T = Γ · Tcp ≥ Γ · tlp.

Data throughput Θ = 1
T =

fcp

Γ expressed in pixel/s, sample/s, frame/s,
record/s, FFT/s, or the like.

Latency L , number of computation cycles from a data item entering a
circuit until the pertaining result becomes available.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

There is room for remodelling in the algorithmic domain ...
... and there is room in the architectural domain
Systems engineers and VLSI designers must collaborate
Relative merits of architectural alternatives
Computation cycle versus clock period

Figures of merit for hardware architectures I (Perform.-related)

Cycles per data item Γ , number of computation cycles between releasing two
subsequent data items.

Longest path delay tlp , the lapse of time required for data to propagate along
the longest path. A circuit cannot function correctly unless
tlp ≤ Tcp.

Time per data item T , the lapse of time between releasing two subsequent
data items, e.g. in µs/sample, ms/frame, or s/computation.
T = Γ · Tcp ≥ Γ · tlp.

Data throughput Θ = 1
T =

fcp

Γ expressed in pixel/s, sample/s, frame/s,
record/s, FFT/s, or the like.

Latency L , number of computation cycles from a data item entering a
circuit until the pertaining result becomes available.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Figures of merit for hardware architectures II (Cost-related)

Circuit size A expressed in mm2, F 2 or GE (gate equivalent).

Size-time product AT , the hardware resources spent to obtain a given
throughput. AT = A

Θ .

Energy per data item E , the amount of energy dissipated for a given
computation on a data item e.g. in pJ/MAC, nJ/sample,
µJ/datablock, or in mWs/frame.

Can also be understood as power-per-throughput ratio E = P
Θ

measured in mW/ Mbit
s or W/GOPS.

because energy
data item = energy per second

data item per second = power
throughput

Energy-time product ET indicates how much energy gets spent for achieving
a given throughput (synonym “energy-per-throughput ratio”).
ET = E

Θ = P
Θ2 , e.g. in µJ/ datablock

s or mWs2/videoframe.
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Circuit size A expressed in mm2, F 2 or GE (gate equivalent).

Size-time product AT , the hardware resources spent to obtain a given
throughput. AT = A

Θ .

Energy per data item E , the amount of energy dissipated for a given
computation on a data item e.g. in pJ/MAC, nJ/sample,
µJ/datablock, or in mWs/frame.

Can also be understood as power-per-throughput ratio E = P
Θ

measured in mW/ Mbit
s or W/GOPS.

because energy
data item = energy per second

data item per second = power
throughput

Energy-time product ET indicates how much energy gets spent for achieving
a given throughput (synonym “energy-per-throughput ratio”).
ET = E

Θ = P
Θ2 , e.g. in µJ/ datablock

s or mWs2/videoframe.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Example

b)

b20b 1b

x(k)

y(k)

b3

Approximations
I Interconnect delays neglected (overly optimistic).
I Delays of arithmetic operations summed up (sometimes pessimistic).
I Glitching ignored (optimistic).

A = 3Areg + 4A∗ + 3A+

Γ = 1

tlp = treg + t∗ + 3t+

AT = (3Areg + 4A∗ + 3A+)(treg + t∗ + 3t+)

L = 0

E = 3Ereg + 4E∗ + 3E+
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A symbolic representation of hardware

f

a)

x(k)

y(k) c)

size

throughput

latency

longest path

b)

register

input stream

output stream

datapath
section

combinational
logic

no control
section

Figure: DDG (a), reference hardware configuration (b), key characteristics (c).

Reference hardware = isomorphic architecture + output register(s)
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Computation cycle versus clock period

I A computation period Tcp is the time span that separates
two consecutive computation cycles.

I During each computation cycle, fresh data emanate from a register,
propagate through combinational circuitry before the result gets stored
in the next analogous register.

I It is the combinational circuitry that performs all arithmetic, logic,
and data routing operations.

I Computation rate fcp = 1
Tcp

denotes the inverse.

I For all circuits that adhere to single-edge-triggered one-phase clocking,
computation cycle and clock period are the same.

fcp = fclk ⇔ Tcp = Tclk
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Subject

Transforms for combinational computations
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Darwin stepping off the boat at Galapagos

 Diversity and evolution in biology suggest a transform approach
to VLSI architecture design.
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What do we mean by combinational computation?

A computation is termed combinational if

I Result depends on the present arguments exclusively.

I All edges in the DDG have weight zero.

I DDG is free of circular paths.
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Example: 8-point FFT
0x (k)

1x (k)

2x (k)

3x (k)

4x (k)

5x (k)

7x (k)

6x (k)

0y (k)

1y (k)

2y (k)

3y (k)

4y (k)

5y (k)

7y (k)

6y (k)

a) 1st round 2nd round 3rd round

b)

=
butterfly

If the combinational function f complex (8�n-point FFT, AES, JPEG) then

the isomorphic architecture is a rather expensive proposition.
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Architectural options

Three options for improving this unsophisticated arrangement exist:

Decomposing function f into a sequence of subfunctions that get executed
one after the other on same hardware.

Pipelining of the functional unit for f to improve computation rate
by cutting down combinational depth.

Replicating the hardware for f and having all units work concurrently.

Open questions:

I Does it make sense to combine pipelining with iterative decomposition
in spite of their contrarian effects?

I How do replication and pipelining compare?
Are there situations where one should be preferred over the other?
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Iterative decomposition

Paradigm: Step-by-step execution

f

b)

datapath
section

f1 3f2f control
section

decomposition
iterative

a)

f1

3f

2ff

Figure: DDG (a) and hardware configuration for d = 3 (b).
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Performance and cost analysis

As a first-order approximation, iterative decomposition by a factor of d leads
to the following figures of merit:

Af

d
+ Areg + Actl ≤ A(d) ≤ Af + Areg + Actl

Γ(d) = d

tlp(d) ≈ tf

d
+ treg

d(Areg + Actl )treg + (Areg + Actl )tf + Af treg +
1

d
Af tf

≤ AT (d) ≤
d(Af + Areg + Actl )treg + (Af + Areg + Actl )tf

L(d) = d

E (d) ≷ Ef + Ereg
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Insight gained

Iterative decomposition

I Is attractive when a computation makes repetitive use of a single
subfunction because a lot of area can then be saved.

Example: multiplication 7→ repeated shift & add operations

I Is unattractive when subfunctions are very disparate and, therefore,
cannot be made to share much hardware resources.

Example: square root, logarithm, multiplication modulo some prime

I Does not impact throughput much as long as treg � tlp .

I May or may not improve energy efficiency.
I yes, if cutting overly long signal propagation paths mitigates

excessive glitching and the associated energy losses.
I no, if the extra activity of data registers, control logic, and

data recycling circuitry dominates.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

Iterative decomposition
Pipelining
Replication
Time sharing
Associativity and other algebraic transforms
Digest

Example: block cipher IDEA

first round

seven more
identical rounds

output transformation

x(k)

y(k)

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

sub-
key

=
modulo 2
addition
bitwise

= modulo 2
addition 16

=
multiplication
modulo 2 +116
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Pipelining

Paradigm: Assembly line operated by specialized workers
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2ff datapath
section
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3f
2f no control

section

pipelining

b)

Figure: DDG (a) and hardware configuration for p = 3 (b).
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Performance and cost analysis

Pipelining by a factor of p changes performance and cost figures as follows

A(p) = Af + pAreg

Γ(p) = 1

tlp(p) ≈ tf

p
+ treg

AT (p) ≈ pAreg treg + (Areg tf + Af treg ) +
1

p
Af tf

L(p) = p

E (p)
fine grain

≷
coarse grain

Ef + Ereg
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Coarse grain versus fine grain pipelining
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Insight gained

Must distinguish between two regimes of pipelining:

Coarse grain pipelining.

Few registers evenly inserted into a deep combinational network.

+ Little extra area for much better throughput.

+ AT -product lowered dramatically.

+ Long reconvergent fanout paths cut  reduced glitching.

Fine grain pipelining.

Combinational delay in each stage approaches register delay.

∼ Diminishing speedup for more and more overhead.

− AT -product augments significantly.

− Significant register activity added  waste of energy.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

Iterative decomposition
Pipelining
Replication
Time sharing
Associativity and other algebraic transforms
Digest

Theoretical bound

I Pipeline stage must accomodate at least one 2-input nand or nor.
 Computation rate and clock frequency are bounded.

Tcp ≥ min(tlp) = min(tgate) + treg = min(tnand , tnor ) + tsu ff + tpd ff

Numerical example:

I Standard cell library for a 130 nm CMOS process.

I Computation period bounded from below to

Tcp ≥ tNAN2D1 + tDFFPB1 = 18 ps + 249 ps ≈ 267 ps

 Absolute maximum computation rate ≈ 3.7 GHz.
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A side glance at microprocessors I
year clock FO4 inverter delays

CPU [MHz] per pipeline stage

Intel 80386 1989 33 ≈ 80
Intel Pentium 4 2003 3200 12...16
Core 2 Duo 2007 2167 ≈ 40
Core i7 980X 2011 3333...3600 42...46
IBM POWER5 2004 1650...1900 22
IBM POWER6 2007 3500...5000 13
IBM Cell Processor 2006 3200 11

FO4 = fanout 4

Observations

I Pipelining has been instrumental in pushing processor clock frequencies.

I 12 or so FO4 inverter delays per stage is close to practical limit.

I Trend towards ever deeper pipelines reversed in the Intel Core family
to reclaim energy efficiency.
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Core i7 980X 2011 3333...3600 42...46
IBM POWER5 2004 1650...1900 22
IBM POWER6 2007 3500...5000 13
IBM Cell Processor 2006 3200 11

FO4 = fanout 4

Observations

I Pipelining has been instrumental in pushing processor clock frequencies.

I 12 or so FO4 inverter delays per stage is close to practical limit.

I Trend towards ever deeper pipelines reversed in the Intel Core family
to reclaim energy efficiency.
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A side glance at microprocessors II

Figure: Evolution of pipeline depth over the years (source Stanford CPU database).
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Pipelining in the presence of multiple feedforward paths
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enciphering
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function

function

a)

r(k)

w(k)

c1
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.....

dc

.....shimming
registers

pipeline
registers

u(k,1)

l(k)

v(k)

.....

b)

u(k,2)

u(k,3)

=
modulo 2
addition
bitwise

=c memoryless
mapping

arbitrary

pipelining

Figure: Involutory cipher algorithm. DDG before (a) and after pipelining (b).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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A brute force approach to performance I

Figure: If one functional unit does not meet your performance goals ...
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A brute force approach to performance II

Figure: ... then try to get more of them.
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Replication

Paradigm: Multi-piston pump

f

a)

datapath
section

b)

distributor

recollector

control
section

replication

Figure: DDG (a) and hardware configuration for q = 3 (b).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Performance and cost analysis

The key characteristics of replication by a factor of q are

A(q) = q(Af + Areg ) + Actl

Γ(q) =
1

q

tlp(q) ≈ tf + treg

AT (q) ≈ (Af + Areg +
1

q
Actl )(tf + treg ) ≈ (Af + Areg )(tf + treg )

L(q) = 1

E (q) ≈ Ef + Ereg + Ectl
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Replication versus pipelining
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Example: Microprocessor architectures I
I Superscalar 7→ multiple ALUs, FPUs, etc. under common control.
I Multicore 7→ multiple processor cores working independently.

Figure: Floorplan of a Sun Microsystems UltraSPARC T2 CPU (Niagara 2)
that combines 8 cores on a single die (separate integer and floating point units
in each core, 8 threads/core, 1831 pins, 65 nm CMOS, 342 mm2, 1.4 GHz).
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Example: Microprocessor architectures II

Computer industry has been pushed towards replication because

I CMOS offered more room for increasing circuit complexity
than for pushing clock frequencies higher.

I The faster the clock, the smaller the region on a semiconductor die
that can be reached within a single clock period.

I Fine grain pipelines dissipate a lot of energy
for relatively little computation.

I Reusing a well-tried subsystem benefits design productivity
and lowers risks.

I A multicore processor can still be of commercial value
even if one of its CPUs is found to be defective.
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Time sharing

I Many applications ask for the simultaneous processing
of multiple parallel data streams.

Paradigm: Student sharing his time between various subjects

a)

hf g

b)

datapath
section hf g

collector

redistributor

output streams

input streams

f  g  h control
section

sharing
time

Figure: DDG (a) and hardware configuration for s = 3 (b).
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Performance and cost analysis

Time sharing by a factor of s yields the following picture

max
f ,g ,h

(A) + Areg + Actl ≤ A(s) ≤
∑
f ,g ,h

A + Areg + Actl

Γ(s) = s

tlp(s) ≈ max
f ,g ,h

(t) + treg

s(max
f ,g ,h

(A) + Areg + Actl )(max
f ,g ,h

(t) + treg ) ≤ AT (s) ≤

s(
∑
f ,g ,h

A + Areg + Actl )(max
f ,g ,h

(t) + treg )

L(s) = s

E (s) ≈ s max
f ,g ,h

(E ) + Ereg + Ectl
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Insight gained

Time sharing

I is most favorable when one monofunctional datapath proves sufficient
because all streams are to be processed in exactly the same way

I is unattractive when subfunctions are very disparate because no
substantial savings can be obtained from concentrating their processing
into one multifunctional datapath

I refrains from taking advantage of the parallelism inherent
in the original problem

I may be viewed as complementary to replication
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Example: 8-point FFT
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=
butterfly

Figure: DDG of 8-point FFT (a) and DDG of butterfly operator (b).
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A roadmap for tailoring combinational hardware
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Example: Two cryptochip architectures compared

Rijndael
architecture

q=2

replication p=2

pipelining
intraround lean but slow

architecture:
iterative
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2 hardware rounds
2 regs per round

1 hardware round
1 register2 registers

1 hardware round

full iterative 
decomposition
into a single round

d=4

Serpent
architecture

p=4

interround
pipelining

near-optimum
architectures:

tailor-made

compromises

4 hardware rounds
1 register

p=8
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pipelining

p=2

pipelining
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configuration:
isomorphic

slow and fat
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architecture:
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cipher
rounds

8 hardware rounds
1 register

starting point

16 registers, i.e. 
2 regs per round

8 registers, i.e.
1 reg per round

partial iterative 
decompositiond=2

area A

4 registers, i.e.
1 reg per round

time per

T
data item

available area

required throughput

acceptable solutions

Figure: Two competing teams have taken different routes but have arrived at similar
compromises between throughput and area (ETH CHES 2002).
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Universal versus algebraic transforms

Universal transforms. Whether and how to apply them can be decided
from a DDG’s connectivity and weights alone,
no matter what operations the vertices stand for.

Examples: Iterative decomposition, pipelining, replication,
time sharing, more to follow.

Algebraic transforms. Take advantage of specific algebraic properties
of the operations involved.

Examples: Associativity transform, commutativity transform,
Horner’s scheme, method of finite differences
(Charles Babbage, 1822), etc.
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Example: Associativity transform

a)

0-th term

x(k)

y(k) minmin min min minminmin

I-th term

b)

x(k)

y(k)

min

min min min

minmin

min

0-th termI-th term

chain/tree
conversion

Figure: 8-way minimum function. Chain-type DDG (a), tree-type DDG (b).
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Recapitulation

Equivalence transforms that help optimize combinational computations

Iterative decomposition, pipelining, replication and algebraic transforms,
plus time sharing in the presence of parallel data streams.

I Iterative decomposition and time sharing are most effective
when a computational unit can be reused several times.

I Pipelining is generally superior to replication.
While coarse grain pipelining improves throughput dramatically,
benefits decline as more and more stages are included.

I Pipelining and iterative decomposition are complementary
in that they both can contribute to lowering the size-time product.

I Lowering the size-time product AT always implies cutting down
the longest path tlp.
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Subject

Options for temporary storage of data
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Why and when do we need to stora data?

Except for trivial SSI/MSI circuits, any IC includes some form of memory.

This is either because

I the data processing algorithm is of sequential nature and,
therefore, asks for functional memory,

or because

I nonfunctional storage got introduced into the circuit
as a consequence from architectural transformations.
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Options for temporary storage of data

Architectural options for temporary storage of data:

On-chip registers built from individual flip-flops or latches.

On-chip memory i.e. SRAM macrocell (or possibly embedded DRAM).

Off-chip memory i.e. SRAM or DRAM catalog part.

Differences that impact high-level design decisions:

I One-at-a-time versus all-at-a-time data access patterns

I Available memory configurations and area occupation

I Storage capacities

I Wiring and the costs of going off-chip

I Energy efficiency

I Latency and timing
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Options for temporary storage of data

Architectural options for temporary storage of data:

On-chip registers built from individual flip-flops or latches.

On-chip memory i.e. SRAM macrocell (or possibly embedded DRAM).

Off-chip memory i.e. SRAM or DRAM catalog part.

Differences that impact high-level design decisions:

I One-at-a-time versus all-at-a-time data access patterns

I Available memory configurations and area occupation

I Storage capacities

I Wiring and the costs of going off-chip

I Energy efficiency

I Latency and timing
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

Data access patterns
Available memory configurations and area occupation
Wiring and the costs of going off-chip
Digest

Data access patterns

RAMs impose access one data word after the other
Fine in architectures obtained from

I iterative decomposition and
I time sharing.

Perfect match for microprocessors
(“fetch, load, execute, store”).

Registers allow for simultaneous access to all data words stored
Mandatory in high-throughput architectures obtained from

I pipelining,
I retiming, to be introduced later in this chapter

I loop unfolding idem

where data are kept moving in every computation cycle.
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Available memory configurations

Figure: Area occupation of registers and on-chip RAMs for a 130 nm CMOS.
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Wiring and the costs of going off-chip
Off-chip memories add to pin count, package count, and board space.

I Extra parasitic capacitances

I Extra delays

I Extra energy dissipation

I Commodity RAMs impose bidirectional pads which require
special attention.

I Stationary and transient drive conflicts must be avoided.
I ATE must be made to alternate between read and write modes

with no physical access to any control signal within the chip.
I Test patterns must address bidirectional operation and

high-impedance states.
I Electrical and timing measurements become more complicated.

Conclusion

Off-chip data storage is associated with important penalties.
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Options for temporary data storage compared

architectural option o n - c h i p off-chip
bistables embedded commodity

flip-flop latch SRAM DRAM DRAM

fabrication process compatible with logic optimized
devices in each cell 20...30T 12...16T 6T 1T1C 1T1C
cell area per bit [F 2] 1700...2800 1100...1800 135...170 18...30* 6...8
extra circuit overhead none 1.3 ≤ factor ≤ 2 off-chip
memory refresh cycles n o n e y e s
extra package pins none none addr. & data bus
nature of wiring multitude of local lines on-chip busses package & board
bidirectional busses none optional mandatory
access to data words all at a time one at a time
available configurations any restricted
energy efficiency good fair poor very poor
latency and paging none no fixed rules yes
impact on clock period minor substantial severe

* As low as 6...8 for processes that accomodate 3D capacitors (4 to 6 extra masks)
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Example: RAMs in a CMOS ASIC technology

Cu-11 is an ASIC technology by IBM (2002)

I gate length 110 nm, supply voltage 1.2 V

I Cu interconnect combined with low-k interlevel dielectrics

SRAM macrocell generator from 128 bit to 1 Mibit

Embedded DRAM megacells up to 16 Mibit (with trench caps)

I cycle time of 1 Mibit eDRAM is 15 ns
(equivalent to 555 · tpd of a 2-input nand)

I eDRAM bit cell area is 0.31 µm2

I 1 Mibit eDRAM occupies an area of 2.09 mm2 (84% overhead)

I 16 Mibit eDRAM occupies 14.1 mm2 (63% overhead)
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Recapitulation

Observation

There is no such thing as an optimal solution for temporary storage of data,
what is best strongly depends on the situation and requirements.

I Only registers allow for simultaneous access to all data,
but occupy a lot of die area per bit.

I SRAMs can hold more significant quantities of data than registers
but are slower than registers, yet faster than DRAMs.

I DRAMs require periodical refresh  power dissipated even when idle.

I DRAM and Flash memories are cost-efficient for large data quantities.

I Flash is used for permanent storage, but is much slower than RAM.

I Commodity memories offer virtually unlimited capacities at low costs,
but are is associated with speed, energy and other penalties.
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Subject

Transforms for non-recursive computations
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What do we mean by non-recursive computation?

A computation is termed (sequential and) non-recursive if

I Result is dependent on past arguments, not just present.

I Edges with weights greater than zero are present in the DDG.

I DDG is free of circular paths.
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Example: Nonlinear time-invariant third order correlator
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I Pipelining helps boost throughput but is rather inefficient in this case.

Can you do better
in terms of speed and area?
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Retiming

Paradigm: Repartition workloads evenly for all workers on an assembly line
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Figure: DDG (a) and hardware configuration for l = 1 (b).
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Formal rules

To be legal, any retiming must observe the following rules:

1. Neither outputs nor sources of time-varying inputs may be part
of a supervertex that is to be retimed.

2. When a supervertex is assigned a lag (lead) by l computation cycles,
the weights of all its incoming edges are in- (de-)cremented by l and
the weights of all its outgoing edges are de- (in-)cremented by l .

3. No edge weight may be changed to assume a negative value.

4. Any circular path must always include at least one edge
of strictly positive weight (roundtrip weights will never change).
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Pipelining revisited

Same rules as for retiming except

1. Any supervertex to be assigned a lag (lead) must include all outputs
(all time-varying inputs).

Comparison

I Both transforms aim at shortening the longest path.

I Pipelining increases latency as registers get added.

I Retiming leaves latency unchanged as registers get relocated.
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Example:
Nonlinear
time-
invariant
third order
correlator
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Example: Nonlinear time-invariant third order correlator

The subsequent transforms change the circuit’s performance as follows:

Architectural variant
original reversed + retimed + pipelined

Key characteristics (a) (b) (c) (d)

arithmetic units (N + 1)Ah + NA+ idem idem idem
functional registers NAreg idem idem idem
nonfunctional registers 0 idem idem (N + 1)Areg

cycles per data item Γ 1 idem idem idem
longest path delay tlp treg + th + N t+ idem treg + th + t+ treg + max(th, t+)

for N = 3 [ns] 9.5 idem 5.5 3.5
for N = 30 [ns] 63.5 idem 5.5 3.5

latency L 0 idem idem 1

Net benefits:

I Long path delay greatly reduced at little hardware costs.

I Maximum operating speed no longer a function of correlation order N.
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Iterative decomposition and time sharing revisited

I Decomposing and time sharing sequential computations is straightforward
and can significantly reduce datapath hardware.

I Functional memory requirements remain the same as in the isomorphic
architecture (memory bound).

I Mixed blessing energy-wise.

+ More uniform combinational depth reduces glitching activity.
− Extra multiplexers necessary to route, recycle, collect and/or redistribute

data.
− Extra counter or finite state machine required to control the datapath.
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Example: Third order transversal filter
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Figure: Isomorphic architecture (a) and a more economic alternative (b).
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Recapitulation

Retiming

can help to optimize datapath architecture for sequential computations
without affecting functionality nor latency.

I Retiming, pipelining and combinations of the two can improve throughput
of arbitrary feedforward computations.

I The associative law allows one to take full advantage of the above
transforms by having a DDG rearranged beforehand.

I Iterative decomposition and time sharing are the two options available
for reducing circuit size.

I Highly time-multiplexed architectures dissipate energy on ancillary
activities that do not directly contribute to data computation.
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Subject

Transforms for recursive computations
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What do we mean by recursive computation?

A computation is termed (sequential and) recursive if

I Result is dependent on earlier outcomes of the computation itself.

I Edges with weights greater than zero are present in the DDG.

I Circular paths (of non-zero weight) exist in the DDG.
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Linear time-invariant first-order feedback loop I

Recursions such as
y(k) = ay(k − 1) + x(k)

which in the z domain corresponds to transfer function

H(z) =
Y (z)

X (z)
=

1

1− az−1

have many technical applications.

Examples:

I IIR filters

I Differential pulse code modulation encoders (DPCM)

I Servo loops

They impose a stiff timing constraint, however.
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Linear time-invariant first-order feedback loop II
a

x(k) y(k)

y(k-1)

a)

*

+
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x(k)
y(k)
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Figure: DDG (a) and isomorphic architecture (b).

Iteration bound:
∑
loop

t = treg + t∗ + t+ = tlp ≤ Tcp

◦ No problem as long as long path constraint can be met
with available and affordable technology.
◦ No obvious solution otherwise, recursiveness is a real bottleneck.
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Linear time-invariant first-order feedback loop III
Have a second look!

Key idea

Relax the timing constraint by inserting additional latency registers
into the feedback loop.

A tentative solution must look like

H(z) =
Y (z)

X (z)
=

N(z)

1− apz−p

where N(z) is here to compensate for the changes due to the new denominator.

Recalling the sum of geometric series we easily establish N(z) as

N(z) =
1− apz−p

1− az−1
=

p−1∑
n=0

anz−n
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Linear time-invariant first-order feedback loop IV

The new transfer function can then be completed to become

H(z) =

∑p−1
n=0 anz−n

1− apz−p

and the new recursion in the time domain follows as

y(k) = apy(k − p) +

p−1∑
n=0

anx(k − n)
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Linear time-invariant first-order feedback loop V

After unfolding by a factor of p = 4, the original recursion takes on the form

y(k) = a4y(k − 4) + a3x(k − 3) + a2x(k − 2) + ax(k − 1) + x(k)

which corresponds to transfer function

H(z) =
1 + az−1 + a2z−2 + a3z−3

1− a4z−4
in lieu of

1

1− az−1

Net result:

I Denominator has been widened to include p unit delays rather than one.

I Numerator stands for a feedforward circuit that is amenable to pipelining.
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Linear time-invariant first-order feedback loop VI

Particularly elegant and efficient solutions exist when p is
an integer power of 2 because of the lemma

p−1∑
n=0

anz−n =

log2 p−1∏
m=0

(a2m

z−2m

+ 1) p = 2, 4, 8, 16, ...

With p = 4, for instance, the numerator can be factorized into

H(z) =
(1 + az−1)(1 + a2z−2)

1− a4z−4
in lieu of

1

1− az−1

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Linear time-invariant first-order feedback loop VII
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Figure: DDG unfolded by p = 4 (a) and high-performance architecture (b).
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The feedback bottleneck
Unfolding of first-order loops
Higher-order loops
Time-variant loops
Nonlinear or general loops
Pipeline interleaving, not quite an equivalence transform
Digest

Higher-order loops

Guideline

Do not attempt to unfold loops of arbitrary order directly.
Make use of a common technique from digital filter design.

I Any higher-order transfer function can be factored into a product
of second- and first-order terms.

I The resulting DDG takes the form of cascaded second- and first-order
sections.

I As an added benefit, cascade structures are known to be less sensitive
to quantization of coefficients and signals than direct forms.
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Linear time-invariant second-order feedback loop I
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Figure: DDG (a) and isomorphic architecture (b).
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The feedback bottleneck
Unfolding of first-order loops
Higher-order loops
Time-variant loops
Nonlinear or general loops
Pipeline interleaving, not quite an equivalence transform
Digest

Linear time-invariant second-order feedback loop II

A second-order recursive function goes

y(k) = ay(k − 1) + by(k − 2) + x(k)

or, in the z domain,

H(z) =
Y (z)

X (z)
=

1

1− az−1 − bz−2

Unfolding is obtained from multiplying numerator and denominator
by an adequate factor. For p = 4, the transfer function becomes

H(z) =
(1 + az−1 − bz−2) (1 + (a2 + 2b)z−2 + b2z−4)

1− ((a2 + 2b)2 − 2b2)z−4 + b4z−8
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Linear time-invariant second-order feedback loop III
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Figure: DDG unfolded by p = 4 (a) and high-performance architecture (b).
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Example: Fourth-order ARMA filter 1

I Two second-order sections cascaded, loops unfolded with p=4.

I Pipelined multiply-add units with carry-save and carry-ripple adders.

I Fabricated in standard 0.9 µm CMOS technology (1992).

I Sampling frequency fs = fclk = 85 MHz, Γ = 1.

I Computation rate ≈ 1.5 GOPS.

I One to two extra data bits added to maintain similar roundoff noise.

I Circuit size approximately 20 kGE.

I Supply 5 V, power dissipation 2.2 W at full speed.

 Loop unfolding allows to push out the need for fast but costly
fabrication technologies such as GaAs, then and now.

1ARMA stands for “auto recursive moving average”, i.e. for IIR filters
that comprise both recursive (AR) and non-recursive computations (MA).
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I Sampling frequency fs = fclk = 85 MHz, Γ = 1.

I Computation rate ≈ 1.5 GOPS.

I One to two extra data bits added to maintain similar roundoff noise.

I Circuit size approximately 20 kGE.

I Supply 5 V, power dissipation 2.2 W at full speed.
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fabrication technologies such as GaAs, then and now.

1ARMA stands for “auto recursive moving average”, i.e. for IIR filters
that comprise both recursive (AR) and non-recursive computations (MA).
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Linear time-variant first-order feedback loop

x(k) y(k)

a(k)
coefficient calculation

output computation

Figure: DDG after unfolding by a factor of p = 4.

I Coefficient terms must be calculated on-line requiring extra hardware.
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Nonlinear or general loops I

The most general case of a first-order recursion goes

y(k) = f (y(k − 1), x(k))

and can be unfolded an arbitrary number of times,
e.g. with p = 2 to become

y(k) = f (f (y(k − 2), x(k − 1)), x(k))
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Nonlinear or general loops II
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Figure: Original DDG (a) and isomorphic architecture (b), DDG after unfolding
by a factor of p = 2 (c), same DDG with retiming added on top (d).
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The feedback bottleneck
Unfolding of first-order loops
Higher-order loops
Time-variant loops
Nonlinear or general loops
Pipeline interleaving, not quite an equivalence transform
Digest

Nonlinear or general loops III
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Figure: DDG with the two functional blocks for f combined into f ” (g),
pertaining architecture after pipelining and retiming (h).
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Limits to loop unfolding

Observation

I All successful architectural transforms for recursive computations take
advantage of algorithmic properties such as linearity, fixed coefficients,
associativity, limited word width or of a very limited set of register states.

I When the state size is large and the recurrence is not a closed-form
function of specific classes, our methods for generating a high degree
of concurrency cannot be applied.
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Example: Ciphering I

In electronic codebook mode, a block of ciphertext y(k) gets computed
from the present block of plaintext x(k) and from key u(k)
using some complex and non-analytical cipher function c .

cx(k) y(k)

u(k)

Figure: Block cipher in electronic codebook (ECB) mode.

I In search of throughput, the door is wide open for pipelining.
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Example: Ciphering II

Figure: A computer graphics image in clear text.
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Example: Ciphering III

Figure: Same image ciphered in electronic codebook mode (ECB).
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Example: Ciphering IV

Figure: Same image ciphered in cipher back chaining mode (CBC).
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Example: Ciphering V

Remedy: Cipher block chaining (CBC).

10

cx(k) y(k)

u(k)

a)

cryptographic
improvement

b)

x(k) y(k)c

u(k)

Figure: Combinational operation in ECB mode (a) vs. recursion in CBC mode (b).

I The nonlinear feedback introduced to improve cryptographic security
vetoes pipelining.
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Pipeline interleaving I

In search of higher throughput for a cipher in CBC mode, 2

none of our architectural transforms applies.

Think the unthinkable!

I “What is the effect of inserting an extra register into a first-order
recursive loop with the idea of pipelining the datapath?”

2Operating a cipher in counter mode (CTR) manages without feedback and still avoids
the leakage of plaintext into ciphertext that plagues ECB. This asks for a modification at the
algorithmic level, though.
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Pipeline interleaving II
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Figure: Nonlinear time-variant first-order feedback loop with one extra register
inserted (a,b). Interpretation as two interleaved data streams (c,d).
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The feedback bottleneck
Unfolding of first-order loops
Higher-order loops
Time-variant loops
Nonlinear or general loops
Pipeline interleaving, not quite an equivalence transform
Digest

Example: Ciphering revisited
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Figure: ECB mode (a), CBC mode with feedback (b), and CBC-8 operation (c).

Observation

Pipeline interleaving removes the bottleneck but alters functionality.

I Acceptable where data can be viewed as separate time-multiplexed
streams that are to be processed independently from each other.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

The feedback bottleneck
Unfolding of first-order loops
Higher-order loops
Time-variant loops
Nonlinear or general loops
Pipeline interleaving, not quite an equivalence transform
Digest

Example: Sphere decoding in a MIMO OFDM receiver I 3

I Sphere decoding is a key subfunction in a MIMO OFDM receiver and
essentially a sophisticated tree-traversal algorithm of low average search
complexity.

Observation

I OFDM operates on many subcarriers at a time (typically 48 to 108).

I Each subcarrier poses an independent tree-search problem.

3MIMO = Multi Input Multi Output, OFDM = Orthogonal Freq. Division Multiplex
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Example: Sphere decoding in a MIMO OFDM receiver II
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Figure: Sphere decoder; black 7→ original architecture; color items 7→ extra circuitry
required to handle three individual subcarriers in an interleaved fashion.
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Example: Sphere decoding in a MIMO OFDM receiver III
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Figure: The beneficial impact of pipeline interleaving on area and throughput
of a sphere decoder circuit (diagram courtesy of Dr. Markus Wenk).
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Recapitulation

Loop unfolding

can significantly improve the throughput of linear time-invariant feedback
calculations.

I The rapid growth of overall circuit size tends to limit economically
practical unfolding degrees to fairly low values, say p = 2...8.

I Nonlinear feedback loops are, in general, not amenable
to throughput multiplication by applying unfolding techniques.
A notable exception exists when the loop function is associative.

I Pipeline interleaving is not an equivalence transform but nevertheless
helpful where multiple data streams undergo the same processing
independently from each other.
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Subject

Generalizations of the transform approach
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Generalization to other levels of detail

Level Granu- Relevant items
of abstraction larity Operations Data
Architecture © subtasks, processes time series, pictures
Word ◦ arithmetic/logic ops words, samples, pixels
Bit · gate-level ops individual bits

What if we try to apply equivalence transforms at levels of abstraction
other than the word level?

I Recall: DDGs are not concerned with the granularity of operations
and data.

Lucky finding

Everything we have learned is applicable at multiple levels of abstraction.
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Examples of transforms at the architecture level
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Figure: Architectural alternatives for a typical pattern recognition system.
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Examples of transforms at the bit level
studied at
word level

studied at
bit level
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Figure: 4-bit addition (a) broken up into a ripple-carry adder (b)
before being subject to pipelining (c) and iterative decomposition (d).
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What we have seen so far

“Standard” datapaths. Word-level operations executed one after the other
with all bits being processed simultaneously.
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What we will see next

Uncommon architectural concepts where one bit from each data word
is being operated upon at a time until all bits have been processed.

Bit-serial architectures.

1. Word-level operations broken up into bit-level operations.
2. Iterative decomposition.

Distributed arithmetic.

1. Word-level operations broken up into bit-level operations.
2. Algebraic transforms to get rid of multiplication.
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Example of a bit-serial architecture
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Figure: Third order transversal filter
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Pros and cons of bit-serial architectures
∼ Overall hardware structure remains isomorphic with the DDG.

+ Small control overhead.

− Inflexible because DDG is hardwired into the datapath
with no explicit controller.

+ High computation rates keep computational units busy.

+ All non-local data communication is via serial links.

+ Much of the data circulation is local.

− Division, data-dependent decisions, etc. ill-suited
for bitwise iterative decomposition and pipelining.

− Incompatible with word-oriented RAMs and ROMs (bit-parallel),
successive approximation and max./min. picking (MSB first).

Rule of thumb

Bit-serial architectures are at their best for unvaried real-time computations
that involve operations such as addition and multiplication by a constant.
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Distributed arithmetic I
Consider the calculation of the following inner product

y =
K−1∑
k=0

ck xk

where each ck is a fixed coefficient. Input data xk are scaled such that |xk | < 1
and coded with a total of W bits in 2’s-complement format.

xk = −xk,0 +
W−1∑
w=1

xk,w 2−w

The desired output y can be expressed as

y =
K−1∑
k=0

ck (−xk,0 +
W−1∑
w=1

xk,w 2−w )
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Distributed arithmetic II
With distributive law, commutative law, and reversed order of summation

y =
K−1∑
k=0

ck (−xk,0) +
W−1∑
w=1

(
K−1∑
k=0

ck xk,w ) 2−w

The pivotal observation refers to the term in parentheses

K−1∑
k=0

ck xk,w = p(w)

For any given bit position w , calculating the sum of products takes one bit
from each of the K data words xk , so p(w) can take on no more than 2K

distinct values. With the coefficients ck constant, all those values can be kept
in a lookup table (LUT). The computation then simply becomes

y = −p(0) +
W−1∑
w=1

p(w) 2−w
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Example of distributed arithmetic
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Figure: Computing a sum of products by way of repeated multiply-accumulate
operations (a) and with distributed arithmetic (b).
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Pros and cons of distributed arithmetic

+ No need for costly multipliers
as these get merged with coefficient tables.

− Memory size grows exponentially
with the order of the inner product to be computed.

∼ Mitigation techniques exist
but depend heavily on coefficient values.

Rule of thumb

Distributed arithmetic should be considered when

I coefficients are fixed,

I number of distinct coefficient values is small,

I hardware multipliers are expensive compared to lookup tables.

Example: DSP applications with table-based FPGAs.
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Generalization to other algebraic structures I

What we have seen so far:

“Standard” computations. Filters, correlators and the like where arithmetic
operations were taken from the field of reals (R, +, · ).

What we will see next:

More fields. ◦ with infinitely many elements, and
◦ with some finite number of elements.

Semirings. More general algebraic structures.

You may want to present slide set “A Brief Glossary of Algebraic Structures” at this point!
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Generalization to other algebraic structures II

I All algebraic fields share a common set of axioms, so any algebraic
transform that is valid in one field must necessarily hold for any
other field. Universal transforms remain valid anyway.

Observation

Everything we have learned is applicable to any algebraic field.

Infinite fields. (R, +, · ) and (C, +, · ) are commonplace in digital signal
processing.

Finite fields. GF(2), GF(p), GF(pn) have numerous applications in

I data compression (source coding),
I error correction (channel coding), and
I information security (ciphering).
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Example: The Viterbi algorithm I

path
metric
update

branch
metric

computation

survivor
path

trace back

path metric memory (functional)

Figure: The three major steps of the Viterbi algorithm.

I Convolutional decoding is a multi-stage decision problem
where Richard Bellman’s principle of optimality applies:
“The globally optimum solution includes no suboptimal local decision.”

I Bellman has developed a technique called “Dynamic Programming”,
the Viterbi algorithm is a particular case thereof.

Refer to slide set “A Gentle Introduction to Dynamic Programming and the Viterbi Algorithm”!
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Example: The Viterbi algorithm II
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min

min
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state transitions with branch metricsstates with path metrics

time slot0 1 2 3 4 5 kk-1

iterative
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Figure: Abstracted trellis-type DDG
for path metric computation (a) with details for one butterfly (b).
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Example: Architectural choices for a Viterbi decoder I

Natural choice: A datapath that computes one set of path metrics
from the previous set in a single clock cycle 7→ architecture d).

Goals and options:

Smaller circuit. Combine iterative decomposition and time sharing, ultimately
leads to a processor-type datapath built around an ALU.

Reduced clock. If the longest path in architecture d) turns out to be
too fast to match that in the remainder of the circuit,
a lesser degree of decomposition may prove more adequate.
c) yields roughly the same throughput with half the clock.
Combinational logic gets approximately doubled, though.
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Example: Architectural choices for a Viterbi decoder II

c) e)

desirable
location
for extra
registers

d)

loop unfolding

time
sharing

iterative
decomposition

 iterative
decomposition

inverse transform

ALU

Figure: Datapath architectures obtained from different degrees of iterative
decomposition (c,d). Doomed attempt to boost throughput by inserting extra
latency registers into the nonlinear first-order feedback loop (e).
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Example: Architectural choices for a Viterbi decoder III

Goals and options (continued):

Still higher throughput. Longest path needs to be trimmed down.
The computation in a butterfly goes

y1(k) = min(a11(k) + y1(k − 1), a12(k) + y2(k − 1))

y2(k) = min(a21(k) + y1(k − 1), a22(k) + y2(k − 1))

This is a nonlinear first-order recursion
 none of our architectural transforms applies.

A more sophisticated approach is needed!
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Loop unfolding revisited
Rederive substituting the generic symbols � for + and � for ·

y(k) = a(k)� y(k − 1)� x(k)

to obtain for arbitrary integer values of p ≥ 2

y(k) = (

p−1∏
n=0

a(k − n))� y(k − p)�
p−1∑
n=1

(
n−1∏
m=0

a(k −m))� x(k − n)� x(k)

where
∑

and
∏

refer to operators � and � respectively.

I The algebraic axioms necessary for that derivation are
I closure under both operators,
I associativity of both operators, and
I distributive law of � over �.

I The algebraic structure defined by these axioms is the semiring.
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Example: Boosting throughput of a Viterbi decoder I

Now consider a semiring where

• Set of elements: S = R ∪ {∞},
• Algebraic addition: � = min, and

• Algebraic multiplication: � = +.

The reformulated ACS operation now goes

y1(k) = a11(k)� y1(k − 1)� a12(k)� y2(k − 1)

y2(k) = a21(k)� y1(k − 1)� a22(k)� y2(k − 1)

which, making use of vector and matrix notation, can be rewritten as

~y(k) = A(k)� ~y(k − 1)

I Note, this is a linear first-order recursion!
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Example: Boosting throughput of a Viterbi decoder II

By replacing ~y(k − 1) one gets the unfolded recursion for p = 2

~y(k) = A(k)� A(k − 1)� ~y(k − 2)

To take advantage of this unfolded form,
the product B(k) = A(k)� A(k − 1) must be computed outside the loop.

Resubstituting the original operators and variables we obtain the recursion

y1(k) = min(b11(k) + y1(k − 2), b12(k) + y2(k − 2))

y2(k) = min(b21(k) + y1(k − 2), b22(k) + y2(k − 2))

which includes the same number and types of operations as the original
formulation but allows for twice as much time.
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Example: Boosting throughput of a Viterbi decoder III
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Figure: The first-order recursion of the Viterbi algorithm before (a) and after being
reformulated over a semiring (b), with loop unfolding added on top (c).
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Example: Boosting throughput of a Viterbi decoder IV

The price to pay is the extra hardware required to perform
the non-recursive computations outside the loop

b11(k) = min(a11(k) + a11(k − 1), a12(k) + a21(k − 1))

b12(k) = min(a11(k) + a12(k − 1), a12(k) + a22(k − 1))

b21(k) = min(a21(k) + a11(k − 1), a22(k) + a21(k − 1))

b22(k) = min(a21(k) + a12(k − 1), a22(k) + a22(k − 1))

in a heavily pipelined way.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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Insight gained

Compare the two formulations of the same problem:

◦ Nonlinear recursion over field, not amenable to loop unfolding.

◦ Linear recursion over semiring, amenable to loop unfolding.

Conclusion

Taking advantage of specific properties of an algorithm and of algebraic
transforms has more potential to offer than universal transforms alone.

I Some computations can be accelerated by creating concurrencies
that did not exist in the original formulation.

 Opens a door to solutions that would otherwise remain off-limits.
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Subject

Summary and conclusions
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Options available for reorganizing datapath architectures

Type of computation
combinational sequential (memorizing)
(memoryless) non-recursive recursive

Data flow feedforward feedforward feedback
Memory no yes yes
Data DAG with DAG with Directed cyclic graph
dependency all edge some or all edge with no circular path
graph weights zero weights non-zero of weight zero
Response length M = 1 1 < M <∞ M =∞

Nature linear time-invariant D,P,Q,S,a D,P,q,S,a,R D,S,a,R,i,U
of linear time-variant D,P,Q,S,a D,P,S,a,R D,S,a,R,i,U
system nonlinear D,P,Q,S,a D,P,S,a,R D,S,a,R,i,u

D : Iterative decomposition
P : Pipelining
Q : Replication
S : Time sharing
a : Associativity transform provided operations are identical and associative
R : Retiming
i : Pipeline interleaving

U : Loop unfolding
u : Loop unfolding provided computation is linear over a semiring
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Important architectural transforms
and their characteristics

Architectural Decom- Pipe- Repli- Time Associa- Retiming Loop
transform position lining cation sharing tivity unfolding
Kind universal universal universal universal algebraic universal algebraic

Applicable to combinational computations sequential computations
Impact on nonrecurs. recursive
A −... = = ...+ + −... = = = +
Γ + = − + = = =
tlp − − =, mux − = −...+ − −
T = Γ · tlp = − − + −...+ − −
AT −... = −... = = = ...+ −...+ − +
L + + =, mux + + = = +
E −...+ −...+ = = ...+ −...+ = +
Extra recy. distrib., collect., extra
hardware and none recoll., redist., none none word
overhead cntl. and cntl. and cntl. width
Helpful no coarse possibly no yes yes possibly
for indirect grain yes yes
energy saving yes
Compatible any register register any any register register
storage type
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Power and energy considerations

What is meant by “Helpful for indirect energy saving”?

I In CMOS, the most effective way to cut the energy spent per operation
is to lower the supply voltage.

I The long paths through a circuit are likely to become unacceptably slow
and need to be trimmed to recover clock rate and throughput.

I Architectural transforms that help do so with no circuit overhead:
I Retiming
I Chain/tree conversion (and other algebraic transforms)
I Coarse grain pipelining (small overhead only)

Benefits must be examined in detail on a per case basis!

Simple fact

Over the first decade of the 21th century,
energy efficiency has become even more important than die size.
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The grand alternatives from an energy point of view I

I Processor-type architectures rely on
I general-purpose multi-operation ALUs
I generic register files of generous capacity
I multi-driver busses, bus switches, multiplexers, and the like
I uniform and often oversized datapath width
I program and data memories along with address generation
I controllers, program sequencers, and iteration counters
I instruction fetching and decoding
I stack operations and interrupt handling
I dynamic reordering of operations
I branch prediction and speculative execution
I data shuffling between main memory and multiple levels of cache

Observation

All of this is a tremendous waste of energy
as none of the above contributes to payload data processing!
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Aside

Does the total absence of unproductive computations imply the isomorphic
architecture is the most energy-efficient option then?

Not necessarily.

Reasons:

I Glitching (redundant switching during transients) 7→ most intense
when data recombine in combinational logic after having travelled
along propagation paths of disparate lengths.

I Leakage (static transistor currents) 7→ everything else being equal,
a smaller circuit tends to have fewer leakage paths.
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The grand alternatives from an energy point of view II

I The impressive throughputs of modern processors have been bought
by operating CMOS circuits under conditions that are far from optimal

I extremely fast clock,
I large overdrive factors,
I comparatively high supply voltage,
I low MOSFET threshold voltages and, hence,
I significant leakage.

Consequence

A program-controlled processor may dissipate 100 to 1000 times as much
energy for the same calculation as an application-specific circuit.
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The grand alternatives from an energy point of view III

“To achieve long battery life when playing video, mobile devices must
decode the video in hardware (on the GPU); decoding it in software
(on the CPU) uses too much power. ... The difference is striking:
on an iPhone (4), for example, H.264 videos play for up to 10 h,
while videos decoded in software play for less than 5 h before the
battery is fully drained.” (Steve Jobs, 2010)

Imperative

Increasing performance in applications with a limited power budget (all today),
requires that the amount of energy spent per payload operation be lowered.

because P = Θ · E

In depth discussion to follow in chapter 9 “Energy Efficiency and Heat Removal”.
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The grand alternatives from an energy point of view IV

I The challenge of power-constrained architecture design is to
I minimize redundant switching activities,
I provide as just as much flexibility as required,
I keep the effort for design and verification within reasonable bounds,

all at a time.

 Finding clever combinations between hardwired units and
program-controlled processors asks for creativity and methodical work.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

Generalization to other levels of detail
Bit-serial architectures
Distributed arithmetic
Generalization to other algebraic structures
Summary

The grand alternatives from an energy point of view IV

I The challenge of power-constrained architecture design is to
I minimize redundant switching activities,
I provide as just as much flexibility as required,
I keep the effort for design and verification within reasonable bounds,

all at a time.

 Finding clever combinations between hardwired units and
program-controlled processors asks for creativity and methodical work.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich From Algorithms to Architectures
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A guide to evaluating architectural alternatives I

1. Begin by analyzing the algorithm. Give quantitative indications for
I the data rates between all major building blocks,
I the word widths,
I the memory bounds and access schemes for all building blocks, and
I the computation rates for all major arithmetic operations.

2. Look for simplifications and optimizations in the algorithmic domain.

3. Examine the control flow.
Find out where to go for a hard-wired dedicated architecture, where for
a program-controlled processor, and where to look for a compromise.

4. Let your intuition come up with preliminary architectural concepts.
Establish a rough block diagram for each of them.
Have boundaries between major subfunctions coincide with registers.
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The architectural solution space
Dedicated VLSI architectures and how to design them

Equivalence transforms for combinational computations
Options for temporary storage of data

Equivalence transforms for non-recursive computations
Equivalence transforms for recursive computations

Generalizations of the transform approach

Generalization to other levels of detail
Bit-serial architectures
Distributed arithmetic
Generalization to other algebraic structures
Summary

A guide to evaluating architectural alternatives II

5. Prepare a spreadsheet that opposes all architectures considered.

6. Estimate
I overall circuit size,
I computation period,
I latency, and
I dissipated energy.

Synthesize, place and route time-critical portions
as propagation delays often depend on lower-level details.

7. Identify bottlenecks and inacceptably burdensome subfunctions.
Improve with the aid of architecture transforms.

8. Compare. Then narrow down your choice.

Concluding remark

Architecture design is more art than science.
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A guide to evaluating architectural alternatives II

5. Prepare a spreadsheet that opposes all architectures considered.

6. Estimate
I overall circuit size,
I computation period,
I latency, and
I dissipated energy.

Synthesize, place and route time-critical portions
as propagation delays often depend on lower-level details.

7. Identify bottlenecks and inacceptably burdensome subfunctions.
Improve with the aid of architecture transforms.

8. Compare. Then narrow down your choice.

Concluding remark

Architecture design is more art than science.
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