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Content

You will learn

about the options for tailoring hardware to data/signal processing algorithms.

v

General-purpose vs. special-purpose architectures

and all sorts of compromises between the two

» Transforms for optimizing VLSI architectures

> lterative decomposition, pipelining, replication, time sharing
» Algebraic transforms

> Retiming

> Loop unfolding, pipeline interleaving

v

Options for temporary storage of data

v

Not so common architectural concepts

» Bit-serial architectures, distributed arithmetic
» Computing in semirings
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The goals of architecture design

» Decide on the necessary hardware resources for carrying out computations
from data and/or signal processing.

» Organize their interplay such as to meet target specifications.
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The goals of architecture design

» Decide on the necessary hardware resources for carrying out computations
from data and/or signal processing.

» Organize their interplay such as to meet target specifications.

» Concerns:

1.

I

Functional correctness

Performance targets

Circuit size

Energy efficiency

Agility

Engineering effort and time to market
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The architectural solution space

iitable for a dedicated VLSI architecture?
and between the antipodes

Subject

The architectural solution space
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The architectural solution space

The antipodes
What makes an i itable for a dedicated VLSI architecture?
the antipodes

What you ought to know about microprocessors

Instruction set processors execute one program instruction after the other
in consecutive fetch-load-execute-store cycles.

ALU (arithmetic-logic unit) carries out data manipulations.

Datapath vs. Control section

datapath section | control section

input data i i higher-level control input

control signals finite state machines,

datad;:gc:tsosri:geur;:‘sa v vy instruction sequences,
data swit,ches @ MUX ' m hardwired logic, or any
ALU

. combination thereof
status signals

output data i ! i higher-level status output

von Neumann architecture common memory space, vs.

Harvard architecture separate memory spaces for data and program code.
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The architectural solution space

The antipodes

What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes

Digest

The architectural antipodes |

[ ]
|

general-purpose
hardware structure

general-purpose hardware
with application-specific
software content

application-specific

program-
controlled
processor

input data output data

input output
|:| hardware structure data —>1 > data
o purpose
,’ datapath
general-purpose  GP'
a)
SP  special-purpose
b4
/
/
i
'
i unit unit unit unit
I0pU! — | "dedicated to icated to icated to icated to —- JuipU!
subtask A subtask B subtask C subtask D
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The architectural solution space

The antipodes
What makes an algorith le for a dedicated VLSI architecture?

There is plenty of land between the antipodes
Digest

The architectural antipodes Il

Hardware architecture

\ Special purpose
Algorithm any, not known a priori fixed, must be known
Architecture dedicated, no single pattern
Execution model || fetch-load-execute-store | process data item and pass on
“dataflow-oriented"”

Datapath ALU(s) plus memory customized design
Controller with program microcode typically hardwired
Performance instructions per second, data throughput,
indicator run time of benchmarks | can be anticipated analytically
Strengths highly flexible, room for max. performance,
immediately available, highly energy-efficient,
routine design flow, lean circuitry

low up-front costs
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The architectural solution space

sitable for a dedicated VLSI architecture?
n the antipodes

The architectural antipodes Il

Before embarking in ASIC design, find out

» Does an architecture dedicated to the application at hand make sense
» or is a program-controlled general-purpose processor more adequate?
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The architectural solution space

le for a dedicated VLS| architecture?
n the antipodes

The architectural antipodes Il

Before embarking in ASIC design, find out

>

>

Does an architecture dedicated to the application at hand make sense

or is a program-controlled general-purpose processor more adequate?

Opting for commercial microprocessors and/or FPL sidesteps
many technical problems that absorb much attention
when a custom IC is to be designed instead.

Conversely, it is precisely

> the focus on the payload computation,
> the absence of programming and configuration overhead, and
> the full control over architecture, circuit, and layout details

that make it possible to optimize performance and energy efficiency.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes

Example: Viterbi decoder

Architecture Special purpose
Key component DSP ASIC
TI TMS320C6455 sem03w6 sem05w1
without | with ETH ETH
Viterbi coprocessor VCP2
Number of chips 1 1 1 1
CMOS process 90 nm 90 nm 250 nm 5Al | 250 nm 5Al
Program code 187 Kibyte | 242 Kibyte none none
Circuit size n.a. n.a. 73 kGE 46 kGE
Max. throughput || 45 kbit/s 9 Mbit/s 310 Mbit/s | 54 Mbit/s
@ clock 1 GHz 1 GHz 310 MHz 54 MHz
Power dissipation 21W 21W 19W 50 mW
Year 2005 2005 2004 2006
Reasons:
» DSP optimized for sustained multiply-accumulates, word width 32 bit.
» Viterbi algorithm arranged to do without multiplication.
» Viterbi algorithm arranged to do with words of 6 bit or less.
» Dedicated architectures can exploit full potential for parallelism.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes

Example: AES block cipher encrypter/decrypter

Architecture

Special purpose

Key component CISC Processor | FPGA Xilinx | ASIC (ETH) ASIC (UCLA)
Pentium Il Virtex-Il CryptoFun Rijndael core
Number of chips motherboard 1 4 config. 1 1
CMOS process n.a. 150 nm 8Al 180 nm 4AI2Cu | 180 nm 4AI2Cu
Max. throughput || 648 Mbit/s 1.32 Gbit/s 2.0 Gbit/s 1.6 Gbit/s
@ clock 1.13 GHz n.a. 172 MHz 125 MHz
Power dissipation 41.4 W 490 mW n.a. 56 mW
@© supply n.a. 15V 1.8V 1.8V
Year 2000 ~ 2002 2007 2002
Reasons:
» Multiple LUTs included in hardware for S-Box function and inverse.
» Ciphering and subkey preparation carried out by concurrent units.
» Rijndael algorithm designed with Pentium Il architecture in mind
» Power dissipation of general-purpose processor remains daunting.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich

From Algorithms to Architectures




The architectural solution space

le for a dedicated VLSI architecture?
n the antipodes

When do dedicated architectures make sense?

Dedicated architectures are favored by real-time applications such as

» Data, audio and video (de)compression

» Ciphering & deciphering

» Error correction coding

» Digital modulation & demodulation

» Adaptive channel equalization for copper lines and optical fibers
» Multipath combiners in broadband wireless access networks

» Computer graphics and video rendering

» Multimedia

» Pattern recognition
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The architectural solution space

The antipodes
\

iitable for a dedicated VLSI architecture?
T plenty n the antipodes
Digest

Answer

“Does it make sense to consider dedicated hardware architectures?”

YES Dedicated architectures outperform program-controlled
processors by orders of magnitude
in many transformatorial systems
where data streams get processed in fairly regular ways.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

plenty of land n the antipodes
Digest

Answer

“Does it make sense to consider dedicated hardware architectures?”

YES Dedicated architectures outperform program-controlled

processors by orders of magnitude
in many transformatorial systems

where data streams get processed in fairly regular ways.
but also

NO Dedicated architectures can not rival the agility and economy
of processor-type designs in applications where the computation
is primarily reactive, very irregular, highly data-dependent,
or memory-hungry.
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The architectural solution space

The antipodes

What makes an algorithm suitable for a dedicated VLSI architectu
There is plenty of land between the antipode:

Digest

Computational needs of various applications

computational effort per data item

aka intensity
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The architectural solution space

The antipodes
Wh.

at makes an algorith itable for a dedicated VLSI architecture?
There is plenty of land b n the antipodes
Digest

Algorithms suitable for dedicated architectures

What makes an algorithm suitable for dedicated VLSI architectures?

Ideally:

1. Loose coupling between major processing tasks
e Well-defined functional specification for each task.
e Manageable interactions between them.
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The architectural solution space

The antipo
Wi

Igorithm suitable for a dedicated VLSI architecture?
f land between the antipodes

Algorithms suitable for dedicated architectures

What makes an algorithm suitable for dedicated VLSI architectures?

Ideally:

1. Loose coupling between major processing tasks
e Well-defined functional specification for each task.
e Manageable interactions between them.

2. Simple control flow
e Course of operation does not depend on the data being processed.
e No need for overly many modes of operations, data formats, etc.
> Makes it possible to anticipate the datapath resources required to meet
throughput goal and to design the architecture accordingly.
> Permits control by counters and simple finite state machines.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

the antipodes

Algorithms suitable for dedicated architectures

. continued
3. Regular data flow, recurrence of a few identical operations
> Opens a door for sharing hardware resources in an efficient way.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
Th plenty of land the antipodes

Algorithms suitable for dedicated architectures

. continued
3. Regular data flow, recurrence of a few identical operations

> Opens a door for sharing hardware resources in an efficient way.
4. Reasonable storage requirements

> Renders on-chip memories economically possible.
> Massive storage requirements in conjunction with moderate computational
burdens place dedicated architectures at a disadvantage.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

Th plenty of land the antipodes

Algorithms suitable for dedicated architectures

. continued
3. Regular data flow, recurrence of a few identical operations
> Opens a door for sharing hardware resources in an efficient way.

4. Reasonable storage requirements
> Renders on-chip memories economically possible.
> Massive storage requirements in conjunction with moderate computational
burdens place dedicated architectures at a disadvantage.
5. Compatible with finite precision arithmetics
> Insensitive to effects from finite precision, no need for floating-point

arithmetics.
> Area, logic delay, interconnect length, parasitic capacitances, and energy

dissipation all grow with word width, they combine into a burden that
multiplies at an overproportional rate.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land n the antipodes

Example:
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o
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Figure: Comparison of hardware divider architectures for a 180 nm CMOS process
under worst-case PTV conditions. Note the impact of quotient width.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
Th plenty of land the antipodes

Algorithms suitable for dedicated architectures

. continued
6. Non-recursive linear time-invariant computation

> Opens a door for reorganizing the data processing in many ways.
> High-speed operation, in particular, is much easier to obtain.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

Th plenty of land the antipodes

Algorithms suitable for dedicated architectures

. continued
6. Non-recursive linear time-invariant computation

> Opens a door for reorganizing the data processing in many ways.
> High-speed operation, in particular, is much easier to obtain.

7. No transcendental functions

» Roots, logarithmic, exponential, or trigonom. functions, translations
between incompatible number systems are expensive in hardware.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

Th plenty of land the antipodes

Algorithms suitable for dedicated architectures

. continued
6. Non-recursive linear time-invariant computation

> Opens a door for reorganizing the data processing in many ways.
> High-speed operation, in particular, is much easier to obtain.

7. No transcendental functions

» Roots, logarithmic, exponential, or trigonom. functions, translations
between incompatible number systems are expensive in hardware.

8. Extensive usage of operations unavailable from instruction sets

> Replace lengthy instruction sequences by dedicated datapath units.
> Fixed arguments often allow for some form of preprocessing,
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

the antipodes

Algorithms suitable for dedicated architectures

. continued
9. No divisions and multiplications on very wide data words
» Much more expensive than addition and subtraction.
> Vast numerical range of results gives rise to scaling issues.
» Matrix inversion is a particularly nasty case in point as it involves
divisions and often brings about numerical instability.

From Algorithms to Architectures
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land n the antipodes
Digest

Algorithms suitable for dedicated architectures

. continued
9. No divisions and multiplications on very wide data words
» Much more expensive than addition and subtraction.
> Vast numerical range of results gives rise to scaling issues.
» Matrix inversion is a particularly nasty case in point as it involves
divisions and often brings about numerical instability.

10. Throughput rather than latency is what matters

» Tight latency requirements rule out pipelining
» but are not in favor of microprocessors either

From Algorithms to Architectures
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The architectural solution space

The antipodes

What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes

Digest

The architectural solution space

rogram-
controlled
processor

input data output data

general-purpose
hardware structure

general-purpose hardware
with application-specific
software content

application-specific

input
hardware structure data
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SP  special-purpose
b4
/
/
/
|
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| solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes

Digest

The architectural solution space

program=
controlled
processor

input data output data
general-purpose
hardware structure

general-purpose hardware i
with application-specific !
software content 1

|
application-specific }

hardware structure input

data

I output
> dalg

BA L

¥
general-purpose  GP
a)
Problem:
How to
combine
- SP  special-purpose com putationa|
/ _ .
/ efficiency with
; —— —— —— flexibility?
input 2 unit 2 unit 2 unit 2 unit output
data — to to to o —» gata
subtask A subtask B subtask C subtask D
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

Have a look at typical electronic devices

Subfunctions primarily characterized by
irregular control flow and/or | repetitive control flow and

Application need for comput. efficiency
DVD user interface, track seeking, | 16-to-8 bit demodulation,
player tray and spindle control, error correction,

processing of non-video data | MPEG-2 decompression

video signal processing

Smartphone || user interface, SMS, intermediate frequency
directory management, filtering, (de)modulation,
battery monitoring, channel (de)coding,
communication protocol, error correction (de)coding,
channel allocation, (de)ciphering, speech and
roaming, accounting video (de)compression
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The architectural solution space

The antipode:

t makes an

re is plenty of land between the antipodes
est

Have a look at typical electronic devices

Subfunctions primarily characterized by

irregular control flow and/or

repetitive control flow and

directory management,
battery monitoring,
communication protocol,
channel allocation,
roaming, accounting

Application need for comput. efficiency
DVD user interface, track seeking, | 16-to-8 bit demodulation,
player tray and spindle control, error correction,
processing of non-video data | MPEG-2 decompression
video signal processing
Smartphone || user interface, SMS, intermediate frequency

filtering, (de)modulation,
channel (de)coding,

error correction (de)coding,
(de)ciphering, speech and
video (de)compression

Segregate the needs for computational efficiency from those of agility!
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

1. Dedicated satellites and 2. Host with helper engines

handles subtask C

input specialized unit specialized unit program- specialized unit output
4bi —- dedicatedto (—-| dedicatedto —- conirolled —~ dedicatedto —p- JoP
subtask A subtask B processor subtask D
A A ' [}
a) " T

| parametrization bus
(optional)

handles subtask C plus dispatching of data

program-
input data =——————p  controlled

Copie —— output data

+ * * * * * ’ * da&aexcthalnbge
and control bus

specialized unit specialized unit specialized unit
dedicated to dedicated to dedicated to
subtask A subtask B subtask D

b)

Figure: Chain of general-purpose processor and dedicated satellites (a),
host computer with specialized fixed-function blocks or coprocessors (b).
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The architectural solution spa

The antip
at makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes

Dig

Example: System on a chip for smartphones

NAND/NOR USB S5/HS

were sy [l et | ewez oo | wwoso | sanzo |
USBHS

2x USB 2.0

MIPILLI OMAP5432 host (HSIC} Tl

- MIPI LLI Companion
Dynamic memory manager AHM UniPort™-M device
T UG
E! three
ARM® ARM
Px

USB/HSIC
UART/SPI

PCISPI
32 kHz Crystal

=—1[]| HF speakers

aD Handset
microphone

.
[R—

L4 peripherals WiPI DSI

MiPI DSI

Clocks ‘—m MIP| DBI-B/DP]

& trace

HDMI 1.48

Ded
EEET s (uants [l cJTAGISTR/PTH

Up
four
displays

Keypad
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

3. Application-specific instruction set processor (ASIP)

handles subtasks A, B, C and D with the aid of multiple specialized datapaths

i program-controlled processor general-purpose

hardware structure

storage controller

. general-purpose hardware
'322 - — gg{gut |:| with application-specific

I
I
. program
i
[

software content

specialized specialized specialized

application-specific
hardware structure

i ]
i ]
i |
| data data 1
path datapath datapath

: memory type 1 type 2 type 3 |
t

| ]
[ il

» Program-controlled operation ~~ highly flexible
» Application-specific features confined to datapath circuitry

> Single thread of execution .
easily extended to multiple threads
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The architectural solution space

s an algorithm suitable for a dedicated VLSI architecture?

is plenty of land between the antipodes

Example: AES cipher encrypter/decrypter revisited

General purpose Special purpose ASIP

CISC Processor | FPGA Xilinx | ASIC (ETH) ASIC (UCLA) Cryptoprocessor
Pentium 1l1 Virtex-Il CryptoFun Rijndael core core UCLA
motherboard 1 + config. 1 1 1

Assembler none none none Assembler

n.a. n.a. 76 kGE 173 kGE 73.2 kGE

n.a. 150 nm 8Al 180 nm 4AI2Cu | 180 nm 4AI2Cu | 180 nm 4AI2Cu
648 Mbit/s 1.32 Gbit/s 2.0 Gbit/s 1.6 Gbit/s 3.43 Gbit/s
1.13 GHz n.a. 172 MHz 125 MHz 295 MHz

41.4 W 490 mW n.a. 56 mW 86 mW

n.a. 15V 1.8V 1.8V 1.8V

2000 =~ 2002 2007 2002 2004

Observation

ASIP combines excellent throughput and low power
with the agility of a program-controlled architecture.
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The architectural solution space

s an algorithm suitable for a dedicated VLSI architecture?

is plenty of land between the antipodes

Example: AES cipher encrypter/decrypter revisited

General purpose Special purpose ASIP

CISC Processor | FPGA Xilinx | ASIC (ETH) ASIC (UCLA) Cryptoprocessor
Pentium 1l1 Virtex-Il CryptoFun Rijndael core core UCLA
motherboard 1 + config. 1 1 1

Assembler none none none Assembler

n.a. n.a. 76 kGE 173 kGE 73.2 kGE

n.a. 150 nm 8Al 180 nm 4AI2Cu | 180 nm 4AI2Cu | 180 nm 4AI2Cu
648 Mbit/s 1.32 Gbit/s 2.0 Gbit/s 1.6 Gbit/s 3.43 Gbit/s
1.13 GHz n.a. 172 MHz 125 MHz 295 MHz

41.4 W 490 mW n.a. 56 mW 86 mW

n.a. 15V 1.8V 1.8V 1.8V

2000 =~ 2002 2007 2002 2004

Observation

ASIP combines excellent throughput and low power
with the agility of a program-controlled architecture.

Catch: proprietary instruction set ~~ special assembler, libraries, debuggers, ...
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

A framework for accelerating ASIP design

LISA = Language for Instruction Set Architectures

The design flow essentially goes
1. Define the most adequate instruction set for a target application,
2. Refine the architecture into a cycle-accurate model ,

3. Cast your architecture into an RTL-type model
using the LISA language.

System-level software tools then generate
» Assembler, linker, and simulator tools.
» VHDL synthesis code

Predefined processor templates also available.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

4. Reconfigurable computing

handles subtask C plus overhead

programg general-purpose
input data =————p>  controlled f————————p output data
processor hardware structure
[re]configuration ‘ * + general-purpose hardware
requesw + + data exchange bus with application-specific
software content
repository.for in-s{vs1em handles subtasks
coprocessor reconfigurable | A, B, and D application-specific
configurations | configuration coprocessor one at a time hardware structure
data

Figure: General-purpose processor with juxtaposed reconfigurable coprocessor.

General procedure:

1. Designers come up with a specific circuit structure
for each major piece of suitable computation.

2. All configurations get stored in memory.

3. Whenever the host encounters a call to one of those computations,
it downloads the pertaining configuration file into the FPL

4. Host feeds coprocessor with data and fetches results.

5. Host proceeds after computation completes.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

4. Reconfigurable computing

handles subtask C plus overhead

. programs general-purpose
input data =————p>  controlled f————————p output data
processor hardware structure
[re]configuration ‘ * + general-purpose hardware
requesw + + data exchange bus with application-specific
software content
repository. for in-s%/mem handles subtasks
coprocessor reconfigurable | A, B, and D application-specific
configurations | configuration coprocessor one at a time hardware structure
data

Figure: General-purpose processor with juxtaposed reconfigurable coprocessor.

General procedure:
1. Designers come up with a specific circuit structure
for each major piece of suitable computation.
2. All configurations get stored in memory.
3. Whenever the host encounters a call to one of those computations,
it downloads the pertaining configuration file into the FPL ~~ dead time!
4. Host feeds coprocessor with data and fetches results.
5. Host proceeds after computation completes.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

5. Extendable instruction set processor

handles subtasks A, B, C, and D with a combination of fixed and configurable datapaths

|

| i

i

program

| storage controller i
g —V‘ I_y output
data i ] data

! . 1

general on-chip ;

} mg%%ir purpose configurable ;

1 v datapath datapath logic | |

| 1

: :

General procedure:
1. System developers write application programs in C or C++.
2. Proprietary EDA tools identify instruction sequences
that are executed many times over
3. For each such sequence, reconfigurable logic is synthesized into
a parallel computation network that completes within one clock cycle.
4. Each occurrence of the original instruction sequence gets replaced
by a function call that activates the custom-made logic.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes
Digest

6. Domain-specific programmable platform (DSPP)

» Generous and heterogenous circuit resources in one malleable platform

» Specification using a domain-specific high-level language

> Developer tOOlS aSSIgn handles subtask C plus dispatching of data
most adequate programs
. . input data =——————p»{  controlled {—————— output data
execution units processor
such as to meet Ay configurabe
us system
performance target | X ,,,,f,i,,,‘ Yy
|
.. ialized unit ] in-syst
at minimum energy s%ee%lﬁzlaztgd '{g“ i program ] clonnﬁgﬁreame handles subtask D
. subtask A | storage } logic
» Little or no on-the-fly 1 !
reconfiguration lized | } Comouraen
iali it
gu Pot used in this | | controller | | data
application | ]
| | repository for
; détapath 2 } configuration
ialized unit
ot used in this | | subtaskB |
application i !
L
! data j
| | memory | | multiple threads
| ! of execution

handles subtask B
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The architectural solution space

The antipodes

What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes
Digest

6. Domain-specific programmable platform (DSPP)

+ o+ 4+ +

Generous and heterogenous circuit resources in one malleable platform

Specification using a domain-specific high-level language

Developer tools assign
most adequate
execution units

such as to meet
performance target

at minimum energy

Little or no on-the-fly
reconfiguration

good performance
energy-efficient

agile, fast turnaround

handles subtask C plus dispatching of data

rogram=

input data ———————p  controlled

processor

dy

by

by

by

f————————— output data

configurable
bus system

handles subtask D

configuration

specialized unit i 1 in-system
dedicated to ! program | | configurable
subtask A | storage } logic
| |
i |
specialized unit | ] data
not used in this ! controller }
application i ]
| — repository for
; d-rt T 1 configuration
specialized unit | SERE !
not used in this } suliiizsics |
application | |
|
! data j
| | memory | | multiple threads
| ! of execution

one design covers many applications
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?

There is plenty of land between the antipodes
Digest

Reality check

— Platform ICs circuitry uses transistors lavishly,
many subcircuits may never be used in a given application or product.
— Software tools are in their infancy
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

Reality check

— Platform ICs circuitry uses transistors lavishly,
many subcircuits may never be used in a given application or product.
— Software tools are in their infancy

Technological progress tends to make such concerns less and less relevant.

» Viability stands or falls with the tool chain.
> specification languages under development
> standards required to ensure code reuse and portability
» In line with trends from general-purpose computing and high-end FPGAs.
> costs per transistor | mask costs T verification costs T
> energy-efficient computing has become a prime concern
» CPU + GPU 4+ FPL + fixed-function blocks + memory all on same chip
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The architectural solution space

t makes an ithm suitable for a dedicated VLSI architecture?

re is plenty of land between the antipodes

Reality check

— Platform ICs circuitry uses transistors lavishly,
many subcircuits may never be used in a given application or product.
— Software tools are in their infancy

Technological progress tends to make such concerns less and less relevant.

» Viability stands or falls with the tool chain.
> specification languages under development
> standards required to ensure code reuse and portability
» In line with trends from general-purpose computing and high-end FPGAs.
> costs per transistor | mask costs T verification costs T
> energy-efficient computing has become a prime concern
» CPU + GPU 4+ FPL + fixed-function blocks + memory all on same chip

Much remains to be done before platform ICs can dominate digital VLSI,
but the concept benefits from numerous technological and economic trends.
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLS| architecture?

There is plenty of land between the antipodes
Digest

Forerunner: Extensible Processing Platform

* Dual ARM Cortex™-A9 MPCore
Up to 800MHz
Enhanced with NEON Extension and Single &
Double Precision Floating point unit
B2kB Instruction & 32kB Data L1 Cache
Unified 512kB L2 Cache
256kB on-chip Memory
DDR3, DDR2 and LPDDR2 Dynamic Memory Controller
2x QSPI, NAND Flash and NOR Flash Memory
Controller
2xUSB2.0 (OTG), 2x GbE, 2x CAN2,0B 2x SD/SDIO,
2x UART, 2x SPI, 2x 12C, 4x 32b GPIO
AES & SHA 256b encryption engine for secure boot
and secure configuration
Dual 12bit 1Msps Analog-to-Digital converter

= Up to 17 Differential Inputs

Processing System l

Dynamic Memory Controller Programmable
DOR3, DDRZ. LPDDRZ £
Logic:

System Gates,
ches DSP,RAM

Static Memory Controller
Quad-SPI, NAND, NOR

Multi Standards I/0s (3.3V & High Speed 1.8V)

Advanced Low Power 28nm Programmable Logic:

28k to 235k Logic Cells (approximately 430k to
3.5M of equivalent ASIC Gates)

240kB to 1.86MB of Extensible Block RAM

80 to 760 18x25 DSP Slices (58 to 812 GMACS
peak DSP performance)

PCI Express® Gen2x8 (in largest devices)

154 to 404 User |0s (Multiplexed + SelectlO™)

410 12 10.3Gbps Transceivers (in largest devices)

MultiStandards 1105 (3.3V & High Speed 1.8¥) Mutt Gigabit Transcsivers

! ! !
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The architectural solution space

The antipodes
What makes an algorithm suitable for a dedicated VLSI architecture?
There is plenty of land between the antipodes

Digest

Forerunner: Extensible Processing Platform

* Dual ARM Cortex™-A9 MPCore
Up to 800MHz
Enhanced with NEON Extension and Single &
Double Precision Floating point unit
B2kB Instruction & 32kB Data L1 Cache
Unified 512kB L2 Cache
256kB on-chip Memory
DDR3, DDR2 and LPDDR2 Dynamic Memory Controller
2x QSPI, NAND Flash and NOR Flash Memory
Controller
2xUSB2.0 (OTG), 2x GbE, 2x CAN2,0B 2x SD/SDIO,
2x UART, 2x SPI, 2x 12C, 4x 32b GPIO
AES & SHA 256b encryption engine for secure boot
and secure configuration
Dual 12bit 1Msps Analog-to-Digital converter

= Up to 17 Differential Inputs

Processing System l

Dynamic Memory Controller Programmable
DOR3, DDRZ. LPDDRZ £
Logic:

System Gates,
ches DSP,RAM

Static Memory Controller
Quad-SPI, NAND, NOR

Multi Standards I/0s (3.3V & High Speed 1.8V)

Advanced Low Power 28nm Programmable Logic:

28k to 235k Logic Cells (approximately 430k to
3.5M of equivalent ASIC Gates)

240kB to 1.86MB of Extensible Block RAM

80 to 760 18x25 DSP Slices (58 to 812 GMACS
peak DSP performance)

PCI Express® Gen2x8 (in largest devices)

154 to 404 User |0s (Multiplexed + SelectlO™)

410 12 10.3Gbps Transceivers (in largest devices)

MultiStandards 1105 (3.3V & High Speed 1.8¥) Mutt Gigabit Transcsivers

! ! !

“CPU and GPU cores are the new gates
... and platform ICs are the new gate arrays .
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The architectural solution space

ithm suitable for a dedicated VLSI architectu:
en the antipodes

Insight gained

general-purpose
architectures  GP

N
There is plenty of land =~~~
between the antipodes ”~===%

~~‘A

everything
hardwired 'SP special-purpose
architectures

Hubert Kaeslin Microelectronic: i ETH Ziirich
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program-controlled ~agility and

design productivity

i
J

towards
computational efficiency
(above all wrt energy)
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The architectural solution space

The anti
itable for a d ted VLSI architecture?

Insight gained

general-purpose everything
i towards
architectures - GP program-controlled agility and
design productivity
" v
There is plenty of land ==~
between the antipodes
. towards
everything . computational efficiency
hardwired SP special-purpose (above all wrt energy)

architectures

> Rely on dedicated hardware only for those subfunctions
that are called many times and are unlikely to change.

» Keep the rest programmable
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The architectural solution space

en the antipodes

The key options of architecture design

computational
efficiency principle of segregation
plan for both hardwired and
high programmable subsystems.
9 hand select optimum architecture
layout  fixed, repetitive, for each task towards hardware ~ towards the
transformatorial optimized on a ideal computing
er-case basis latform
small circuit nature of i i
computation % 4
. -
high throughput gracr%gﬂre reactive, irregular,
low power subject to change E
DSPP
towards universal
reconfigurable hardware
computing
ASIP
Al
general-purpose
instruction set
processor
limited design effort, short turnaround times productivity
low
poor accomodate unstable specs, immature standards, good agility

and/or frequent product enhancements

Figure: Tradeoffs between computational efficiency, agility, and design productivity.
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The architectural solution space

iitable for a dedicated VLSI architecture?

n the antipodes

Example:

Yet another SoC ——
Q_Vlde Encoﬁ
Processor

Note the coexistence of Processor = | -

e general-purpose processors ' £
e ASIPs, and

e hardwired helper engines Prﬁ‘c‘;’;‘s’or

on the same die.

Figure: Tegra Il chip for smartphones and tablet computers
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
€ | domain
neers and VLS| d must collaborate

Relative merits of architectural alternati

Computation cycle

Subject

How to design dedicated VLSI architectures
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Dedicated VLSI architectures and how to design them There is roo

for remodelling in the algorithmic domain
tural domain

st collaborate

Why do we focus on dedicated architectures?

Many techniques for obtaining high performance at low cost are shared
between general- and special-purpose architectures.

Yet, our emphasis is on dedicated architectures because

» A priori knowledge of a computational problem offers room for ideas
that do not apply to instruction-set processors architectures.

» Utmost performance requirements often ask for special-purpose designs.

» Industry provides us with an extremely vast selection of micro- and signal
processors so that proprietary designs are hard to justify.

» There exists a comprehensive literature on general-purpose architectures.
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain ...
and there is room in th hitectural domain
collaborate

Most processing algos must be reworked for hardware |

Departures from some mathematically ideal algorithm are almost always
necessary to arrive at an economically feasible solution. Examples follow.

Digital filter Tolerate a somewhat lower stopband suppression in exchange
for a reduced computational burden.
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain ...
and there is room in the architectural domain
eers and VLbI ers must collaborate

Most processing algos must be reworked for hardware |

Departures from some mathematically ideal algorithm are almost always
necessary to arrive at an economically feasible solution. Examples follow.

Digital filter Tolerate a somewhat lower stopband suppression in exchange
for a reduced computational burden.

Viterbi decoder Sacrifice 0.1 dB or so of coding gain
for the benefit of doing computations in a more economic way.
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain ...
>om in the ar tural domain

st collaborate

Most processing algos must be reworked for hardware Il

Autocorrelation function
Replace computation of

oo

ACFo(k) = ro(k) = > x(n)-x(n+ k)

n=—oo

by the average magnitude difference function

N—1
AMDF (k) = rl (k) = [x(n) = x(n + k)|
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Dedicated VLSI architectures and how to design them There is room for remodellmg in the algorithmic domain ...
0 e tural domain

st collaborate

Most processing algos must be reworked for hardware Il|

Magnitude function

» Approximated with shift, add and compare.

Name aka Formula

lesser £7>°-norm I'=min(]al, |b])
sum ¢*-norm s =|a|l + |b]|
magnitude (reference) | ¢?-norm m=+/a?+ b?
greater £%°-norm g = max(\a| |b|)
Approximation 1 s + 8g
Approximation 2 m = max(g, :8 + 1/)

» Simply replaced by ¢! or £>°-norm.

From Algorithms to Architectures
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Dedicated VLSI architectures and how to design them ere is for remod n the algorithmic domain
- and there is room in the architectural domain
rs dnd \/L\I ollaborate

o vputzm‘«:m '\, period

Finding an optimal hardware organization

There is room for remodelling computations in two distinct domains:

» Processing algorithm.
» Hardware architecture.
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Dedicated VLSI architectures and how to design them is for remodelling in the algorithmic domain
room in the architectural domain
ers and VLSI desi S s

architectu

Finding an optimal hardware organization

There is room for remodelling computations in two distinct domains:

» Processing algorithm.
» Hardware architecture.

Alternative choices in the algorithmic domain. How to tailor an algorithm
such as to cut the computational burden, to trim down
memory requirements, and/or to speed up calculations
without incurring unacceptable implementation losses?
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Dedicated VLSI architectures and how to design them is for remodelling in the algorithmic domain
room in the architectural domain
ers and VLSI desi S s

architectu

Finding an optimal hardware organization

There is room for remodelling computations in two distinct domains:

» Processing algorithm.
» Hardware architecture.

Alternative choices in the algorithmic domain. How to tailor an algorithm
such as to cut the computational burden, to trim down
memory requirements, and/or to speed up calculations
without incurring unacceptable implementation losses?

Equivalence transforms in the architectural domain. How to (re)organize a
computation such as to optimize throughput, circuit size, energy
efficiency and overall costs while leaving the input-to-output
relationship unchanged except, possibly, for latency?
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
and there is room in the architectural domain
Systems engineers and VLS| designers must collaborate

Relative merits of architectural alt
Computation cycle versus clock period

Systems engineers and VLSI designers must collaborate

competence of systems engineers

evaluation of ; p technology-
product idea —»| functional needs —» al :sri'g:]m > ar?;tseiglnure (> specific —» IC fabrication data
and specification implementation
) competence of VLS| designers ®
a
competence of systems engineers
evaluation of .
product idea ——» ional needs ar%hé':’ic%"e
and specification 9
technology-
al :Sr:ﬂ:]m — IC fabrication data
9 |mplementatlon

b) competence of VLSI designers

Figure: Sequential thinking (a) versus networked team (b).
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Dedicated VLSI architectures and how to design them e om for remodelling in the algorithmic domain
is room in the architectural domain
Systems engineers and VLS| designers must collaborate

Relative meri E =
Computation

Insight gained

Observation

It is always necessary to balance many contradicting requirements
to arrive at a working and marketable embodiment of an algorithm.

» There is more to VLSI design than accepting a given algorithm and
turning that into hardware with the aid of some HDL synthesizer.

» Algorithm design is not covered in this course, but nevertheless
extremely important for VLSI design.
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Dedicated VLSI architectures and how to design them There is for remodelling in the algorithmic domain
and th room in the arc| ral domain
Systems engineers and V. t collaborate

Relative merits of archite
Computation cycle ver:

Example: Sequence estimation for EDGE receiver

Algorithm Delayed Max-log-MAP Soft output
decision feedback Viterbi equalizer
Soft output no yes yes
Forward recursion yes yes yes
Backward recursion no yes no
Backtracking step yes no no
Memory requirements 1x 50x 0.13x
10° T T
Key design targets:
> soft output
107! L 4
> less than 577 us per burst g
» small circuit, low power z
» min. block error rate at any R , ]
given signal-to-noise ratio —&— MaxLogMAP ‘
—oe— SOVE
Which option would you go for? R 0 5 0
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
and there is room in the architectural domain
Systems engineers and VLS| designers must collaborate

Relative merits of architectural alternativ
Computation cycle versus clock period

Data dependency graphs (DDG)

Definitions memoryless
vertex O operation
edge l transport weight indicates latency in computation cycles

Shorthand notations
illegal!

"no operation” vertex

0 = fan out expressed as
introduced for convenience

c—() x(K) —»O —> y(k)

constant input expressed as variable input expressed as output expressed as
constant data source time-varying data source data sink

Danger of race conditions O

0
circular paths \OAO/
of edge weight zero - ) SN -
0

are not admitted! 0
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
and th room in the architectural domain
Systems engineers and VLS| designers must collaborate

Relative merits of architectural alterna
Computation cycle versus clock period

The isomorphic architecture

|
by by
N=3 X
y(K) =2 by x(k-n)
n=0 ¥ yK)
‘ |
i& 'i%

x(K)
(k)
" K )vb " i

c) y(k) d) adder

(k)

Figure: Example: A third order transversal filter in various notations.
Equation (a), DDG (b), and isomorphic architecture (d).
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Dedicated VLSI architectures and how to design them ere is n the algorithmic domain
hitectural domain
signers must collaborate

alternatives
Computation cycle versus clock period

Figures of merit for hardware architectures |

Cycles per data item I' , number of computation cycles between releasing two
subsequent data items.

Longest path delay t, , the lapse of time required for data to propagate along
the longest path. A circuit cannot function correctly unless
tip < Tcp.
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Dedicated VLSI architectures and how to design them is room for remodelling in the algorithmic domain

rs must collaborate
natives

Figures of merit for hardware architectures |

Cycles per data item I' , number of computation cycles between releasing two
subsequent data items.

Longest path delay t, , the lapse of time required for data to propagate along
the longest path. A circuit cannot function correctly unless
tip < Tcp.

Time per data item T , the lapse of time between releasing two subsequent
data items, e.g. in us/sample, ms/frame, or s/computation.
T=T-Tp 2Tt

Data throughput © = % = f%” expressed in pixel/s, sample/s, frame/s,
record/s, FFT/s, or the like.
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
is room in the ctural domain
Syste neers and VLS| designers must collaborate

Relative merits of architectural alternatives
Computation cycle versus clock period

Figures of merit for hardware architectures |

Cycles per data item I' , number of computation cycles between releasing two
subsequent data items.

Longest path delay t, , the lapse of time required for data to propagate along
the longest path. A circuit cannot function correctly unless
tip < Tcp.

Time per data item T , the lapse of time between releasing two subsequent
data items, e.g. in us/sample, ms/frame, or s/computation.
T=T-Tp 2Tt

Data throughput © = % = f%” expressed in pixel/s, sample/s, frame/s,
record/s, FFT/s, or the like.

Latency L , number of computation cycles from a data item entering a
circuit until the pertaining result becomes available.
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Dedicated VLSI architectures and how to design them e n the algorithmic domain
hitectural domain
rs must collaborate

Relative merits of architect
Computation cycle versus clock period

Figures of merit for hardware architectures Il

Circuit size A expressed in mm?2, F2 or GE

Size-time product AT , the hardware resources spent to obtain a given
throughput. AT = S.
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain

is room in the ctural domain
Syste neers and VLS| designers must collaborate

Relative merits of architectural alternatives
Computation cycle versus clock period

Figures of merit for hardware architectures Il

Circuit size A expressed in mm?2, F2 or GE

Size-time product AT , the hardware resources spent to obtain a given
throughput. AT = S.

Energy per data item E , the amount of energy dissipated for a given
computation on a data item e.g. in pJ/MAC, nJ/sample,
pJ/datablock, or in mWs/frame.

Can also be understood as power-per-throughput ratio E = g
measured in mW /M2t or W/GOPS.

Energy-time product ET indicates how much energy gets spent for achieving
a given throughput

ET = g = §, e.g. in uJ/d"’taiz"“k or mWsz/videoframe.
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Dedicated VLS architectures and how to design them There is room for remodelling in the algorithmic domain
and there is room in the architectural domain
Systems engineers and VLS designers must collaborate

Relative merits of architectural alternatives
Computation cycle versus clock period

Example 0 o+t

b) + + + y(k)

Approximations
» Interconnect delays neglected
» Delays of arithmetic operations summed up
» Glitching ignored

A=3Ag +4A. +3A;
r=1
tip = treg + ts + 3ty
AT = (3Areg + 4A, + 3A, )(treg + t. + 3t3)
L=0
E =3E., +4E. + 3E;
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
hitectural domain
s must collaborate
Relatlve merits of architectural alternatives

Computation cycle versus clock period

X(K)
\ (& / input stream

\\ //

et combinational % no control o

= @,

7 d?fcpt?éﬂ logic section g N longest path

”/ \ register < A
hi !
a) vt b) | output stream o <|f throughput

Figure: DDG (a), reference hardware configuration (b), key characteristics (c).

Reference hardware = isomorphic architecture + output register(s)
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Dedicated VLSI architectures and how to design them There is room for remodelling in the algorithmic domain
tural domain

st collaborate

e al alternat;
Computation cycle versus clock period

Computation cycle versus clock period

v

A computation period T, is the time span that separates
two consecutive computation cycles.

During each computation cycle, fresh data emanate from a register,
propagate through combinational circuitry before the result gets stored
in the next analogous register.

It is the combinational circuitry that performs all arithmetic, logic,
and data routing operations.

Computation rate f., = T%p denotes the inverse.
For all circuits that adhere to single-edge-triggered one-phase clocking,

computation cycle and clock period are the same.

fcp = fc/k ad Tcp = Tclk
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

nd other algebraic transforms

Subject

Transforms for combinational computations
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

~~ Diversity and evolution in biology suggest a transform approach
to VLSI architecture design.
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

y and other algebraic transforms

What do we mean by combinational computation?

A computation is termed combinational if
» Result depends on the present arguments exclusively.
> All edges in the DDG have weight zero.
» DDG is free of circular paths.

From Algorithms to Architectures
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Iterative decomposition

y and other algebraic transforms

/ Yolt)
|
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|
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a) 1st round 2nd round 3rd round

If the combinational function f complex then
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Iterative decomposition

y and other algebraic transforms

/ Yolt)
|
\ yi(k) butterfly

/ y2lh) ><

|
\4 Ya(k)

I

/:\‘ / e (H—
. ys(k) ég/(

| / Yelk)

\ ¥ B

Y

a) 1st round 2nd round 3rd round

If the combinational function f complex then
the isomorphic architecture is a rather expensive proposition.
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

y and other algebraic transforms

Architectural options

Three options for improving this unsophisticated arrangement exist:

Decomposing function f into a sequence of subfunctions that get executed
one after the other on same hardware.

Pipelining of the functional unit for f to improve computation rate
by cutting down combinational depth.

Replicating the hardware for f and having all units work concurrently.
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Equivalence transforms for combinational computations

Architectural options

Three options for improving this unsophisticated arrangement exist:

Decomposing function f into a sequence of subfunctions that get executed
one after the other on same hardware.

Pipelining of the functional unit for f to improve computation rate
by cutting down combinational depth.

Replicating the hardware for f and having all units work concurrently.

Open questions:
» Does it make sense to combine pipelining with iterative decomposition
in spite of their contrarian effects?
» How do replication and pipelining compare?
Are there situations where one should be preferred over the other?
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

nd other algebraic transforms

lterative decomposition

Paradigm: Step-by-step execution

iterative I

() |
decomposition
= ® detspeth > e 5+
© | |

a) b)

Figure: DDG (a) and hardware configuration for d = 3 (b).
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Iterative decomposition
- o

Equivalence transforms for combinational computations

ivity and other algebraic transforms

Performance and cost analysis

As a first-order approximation, iterative decomposition by a factor of d leads
to the following figures of merit:

Ar

d + Areg + Actl < A(d) S Af + Areg + Actl

r(d)=d

tr
tp(d) = PVl + treg

1
d(Areg + Actl)treg + (Areg + Actl)tf + Aftreg + EAF tr

< AT(d) <
d(Ar + Areg + Acti)treg + (Ar + Areg + Acti) tr
L(d)=d
E(d) 2 Er + Erg
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations Repli =

Time shari
iativity and other algebraic transforms

Insight gained

Iterative decomposition

» |s attractive when a computation makes repetitive use of a single
subfunction because a lot of area can then be saved.

» |s unattractive when subfunctions are very disparate and, therefore,
cannot be made to share much hardware resources.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

y and other algebraic transforms

Insight gained

Iterative decomposition

» |s attractive when a computation makes repetitive use of a single
subfunction because a lot of area can then be saved.

» |s unattractive when subfunctions are very disparate and, therefore,
cannot be made to share much hardware resources.

> Does not impact throughput much as long as t,; < t.

» May or may not improve energy efficiency.
> ves, if cutting overly long signal propagation paths mitigates
excessive glitching and the associated energy losses.
> no, if the extra activity of data registers, control logic, and
data recycling circuitry dominates.
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Iterative decomposition
Pipelining
Replication
Time sharing
sociativity and other algebraic tra

Equivalence transforms for combinational computations

Example: block cipher IDEA

x(k)
gub- y - gub: l gub- y  sub-
izd 24 ey ey
) D) 2%
&
&
iub-
ey
first round X
iub-
e
2 ’ bitwise
= addition
&) \P modulo 2
addition
& & @ = modulo 2'°
@ _ multiplication
= modulo 241
seven more ; : : ;
identical rounds
output transformation i“b' ﬁ”b' iub— iubr
e e e o
S X
(k)
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Iterative decomposition

Equivalence transforms for combinational computations

nd other algebraic transforms

Pipelining
Paradigm: Assembly line operated by specialized workers

pipelining f
> ;X > datapath > ;X > 7 no control
@ section 2

fs section
(1) l I

a) b)

Figure: DDG (a) and hardware configuration for p = 3 (b).

Hubert Kaeslin Microelectroni

esign Center ETH Ziirich
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Equivalence transforms for combinational computations

vity and other algebraic transforms

Performance and cost analysis

Pipelining by a factor of p changes performance and cost figures as follows

A(p) =Ar+ pAreg
Mp) =1

tr
ti(p) ~ ; + treg

1
AT(p) ~ pAreg treg + (Aregtf + Af treg) + EAftf

L(p)=p
fine grain

E(p) 2 Ef + Ereg

coarse grain
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Equivalence transforms for combinational computations

Iterative decomposition
Pipelining

Replication

Time sharing

sociativity and other algebraic tra

. C . f . . | .
(] oarse grain versus fine grain pipelining
800w —

120O
infeasible towards
700w — throughput ‘€<
\DUO
600w— towards U
hardware
o° efficiency towards
hardware
500w — deepest economy
pipelining
possible
O
400w —| 60
50
pipelining
300w — 40
9 2
) s
fine- Uy
3 grain Ir
200w — 2 regime
optimum efficiency . )

100w—] coarse-grain regime isomorphic
. size | O — — configuration

reg 5= - 2 =)

A maximum
d,/ throughput
R Ll k L
i ns|
trog — 4
Min(tyare)
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Iterative decomposition
Pipelining
Replicatio

Equivalence transforms for combinational computations

y and other algebraic transforms

Insight gained

Must distinguish between two regimes of pipelining:

Coarse grain pipelining.

Few registers evenly inserted into a deep combinational network.
+ Little extra area for much better throughput.
+ AT-product lowered dramatically.

+ Long reconvergent fanout paths cut ~+ reduced glitching.
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Equivalence transforms for combinational computations

Insight gained

Must distinguish between two regimes of pipelining:

Coarse grain pipelining.

Few registers evenly inserted into a deep combinational network.
+ Little extra area for much better throughput.
+ AT-product lowered dramatically.

+ Long reconvergent fanout paths cut ~+ reduced glitching.

Fine grain pipelining.

Combinational delay in each stage approaches register delay.
~ Diminishing speedup for more and more overhead.
— AT-product augments significantly.
— Significant register activity added ~~ waste of energy.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Equivalence transforms for combinational computations

Theoretical bound

» Pipeline stage must accomodate at least one 2-input NAND or NOR.
~~ Computation rate and clock frequency are bounded.

Tcp > min(tlp) = min(tgate) + treg = min(tnand; tnor) + tsuff + tpd

Numerical example:
» Standard cell library for a 130 nm CMOS process.

» Computation period bounded from below to
T, > tnanap: + torrpe1 = 18 ps + 249 ps ~ 267 ps

~~ Absolute maximum computation rate ~ 3.7 GHz.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Iterative decomposition

Equivalence transforms for combinational computations

y and other algebraic transforms

A side glance at microprocessors |

year clock FO4 inverter delays
CPU [MHZz] per pipeline stage
Intel 80386 1989 33 ~ 80
Intel Pentium 4 2003 3200 12...16
Core 2 Duo 2007 2167 ~ 40
Core i7 980X 2011 | 3333...3600 42...46
IBM POWERS5 2004 | 1650...1900 22
IBM POWER6 2007 | 3500...5000 13
IBM Cell Processor | 2006 3200 11
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decomposition

Equivalence transforms for combinational computations =
eplication

Ti

nd other algebraic transforms

A side glance at microprocessors | FO4 is a delay
year clock FO4 inverter delays metric defined as

CPU [MHZz] per pipeline stage | the delay of an
Intel 80386 1989 33 ~ 80 inverter, driven by
Intel Pentium 4 2003 3200 12...16 ;
Core 2 Duo 2007 2167 ~ 40 an inverter 4X
Core i7 980X 2011 | 3333...3600 42..46 smaller than itself,
IBM POWER5 2004 | 1650...1900 22 and driving an
IBM POWER6 2007 | 3500...5000 13 inverter 4x larger
IBM Cell Processor | 2006 3200 11 than itself.

Observations

» Pipelining has been instrumental in pushing processor clock frequencies.
» 12 or so FO4 inverter delays per stage is close to practical limit.

» Trend towards ever deeper pipelines reversed in the Intel Core family
to reclaim energy efficiency.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures


Mohammed
Typewriter
FO4 is a delay metric defined as the delay of an inverter, driven by an inverter 4x smaller than itself, and driving an inverter 4x larger than itself.

Mohammed
Typewriter


Equivalence transforms for combinational computations

A side glance at microprocessors |l

Relative Length of a Pipe Stage

160 M AMD
M Cypress

L4 L4 DEC

L] M Fujitsu
120 M Hitachi
e W HP
M BM
M Intel
I Motorola
W MIPS
| el
M sun
M Cyrix
[l HAL
Il NexGen

80

FO4 per Cycle

40

12V

0
1985 1990 1995 2000 2005 2010 2015

Year

Figure: Evolution of pipeline depth over the years
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Iterative decomposition

Equivalence transforms for combinational computations

nd other alg ic transforms

Pipelining in the presence of multiple feedforward paths

I(k) r(k) I(k) (k)

pipelining

enciphering
unction u(k) E>

g(lr.u)

(? @ rbgisters -
v(k) w(k)

shimming
D registers -

. o arbitrary
@ memoryless
mappin
D)= -3 pping
| |
v v

. D
bitwise

addition
modulo 2

2 I(k) r(k) N

Figure: Involutory cipher algorithm. DDG before (a) and after pipelining (b).
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Iterative decomposition
Pipelini
Replication

Equivalence transforms for combinational computations

Ti harin
nd other alg ic transforms

A brute force approach to performance |

Figure: If one functional unit does not meet your performance goals ...
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e decomposition
pelining
Replication
Tir harin
vity and other algebraic transforms

Equivalence transforms for combinational computations

A brute force approach to performance Il

Figure: ... then try to get more of them.
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Iterative decomposition
Pipelining
Replication

Equivalence transforms for combinational computations
Tir

y and other algebraic transforms

Replication

Paradigm: Multi-piston pump
|

I distributor /" \ <+ -———- |
replication }
datapath :x; L control
setion [ i:j section
|
I recollector \_/ «-———— s
a) b) I

Figure: DDG (a) and hardware configuration for g = 3 (b).
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Iterative decomposition

Equivalence transforms for combinational computations

and other algebraic transforms

Performance and cost analysis

The key characteristics of replication by a factor of g are

From Algorithms to Architectures
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Iterative decomposition
Pipelining

Replication

Time sharing

Equivalence transforms for combinational computations

ciativity and other algebraic tra

. ) R | . . . | ..
e : eplication versus pipelining
800w—| S
[}
12)°
mleasib/eh 5,]‘ g
except with ~: towards
700w cuperiast throughput ‘€<
distribution & .
an 1002 break-even point
recollection
600w—]| circuitry 9
towards
hardware
o° efficiency towards
hardware
500w — deepest economy
pipelinin
possible
O
400w —| 60
50 replication
pipelining
300w — 40
fine-
3 grain
200w — 2 regime
optimum efficiency . . 2
100w—| coarse-grain regime isomorphic
A a size | O — — configuration | _
reg 5= - 2 )
A maximum
d,/ throughput
r
R LT 5 L
i ns|
trog — 4
Min(tyare)
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P
Equivalence transforms for combinational computations Rf

eplication

Example: Microprocessor architectures |

> Superscalar — multiple ALUs, FPUs, etc. under common control.
» Multicore — multiple processor cores working independently.

Figure: Floorplan of a Sun Microsystems UltraSPARC T2 CPU (Niagara 2)
that combines 8 cores on a single die

© Hubert Kaeslin Mi ectronics Design Center ETH Ziirich From Algorithms to Architectures



e decomposition

Equivalence transforms for combinational computations

vity and other algebraic transforms

Example: Microprocessor architectures |l

Computer industry has been pushed towards replication because

>

CMOS offered more room for increasing circuit complexity

than for pushing clock frequencies higher.

The faster the clock, the smaller the region on a semiconductor die
that can be reached within a single clock period.

Fine grain pipelines dissipate a lot of energy

for relatively little computation.

Reusing a well-tried subsystem benefits design productivity

and lowers risks.

A multicore processor can still be of commercial value
even if one of its CPUs is found to be defective.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Iterative decomposition
Pipelining

Equivalence transforms for combinational computations ey
Replication

Time sharing
y and other algebraic transforms

Time sharing

» Many applications ask for the simultaneous processing
of multiple parallel data streams.

Paradigm: Student sharing his time between various subjects

‘ ‘ ‘ input streams
‘ ‘ time collector \_/ «--———— ,

sharing foh !
datapath E> 9 Lo control
secter B B‘ 77777 o i:i eeten
I
|

‘ ‘ redistributor /\ «-—-——— !

a) b) ‘ ‘ ‘ output streams

Figure: DDG (a) and hardware configuration for s = 3 (b).
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decomposition

Equivalence transforms for combinational computations 8
Replication

Time sharing
ciativity and other algebraic transforms

Performance and cost analysis
Time sharing by a factor of s yields the following picture

maX(A) + Areg + A < A(S) < Z A+ Areg + Actl

Fg:h fah
MNs)=s
tp(s) = max(t) + treg
f.g,h
s(max(A) + Areg + Acer)(max(t) + treg) < AT(s) <
f.g,h f.g,h
S( Z A+ Areg + Actl)(rfr}g);(t) + treg)
f,g,h
L(s)=s
E(s) ~ smax(E) + Eeg + Ecu
f.g,h
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Iterative decomposition
Pipelining

Equivalence transforms for combinational computations

y and other algebraic transforms

Insight gained

Time sharing

» is most favorable when one monofunctional datapath proves sufficient
because all streams are to be processed in exactly the same way

> is unattractive when subfunctions are very disparate because no
substantial savings can be obtained from concentrating their processing
into one multifunctional datapath

» refrains from taking advantage of the parallelism inherent
in the original problem

» may be viewed as complementary to replication
y p y p
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Equivalence transforms for combinational computations

other algebraic transforms

butterfly

b)

a) 1st round 2nd round 3rd round

Figure: DDG of 8-point FFT (a) and DDG of butterfly operator (b).
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size A

Ite decomposition
Pipelining

Replication

Time sharing

Equivalence transforms for combinational computations

d other algebraic transforms

multpl repcated

, A roadmap for tailoring combinational hardware
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replication effect
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Equivalence transforms for combinational computations

Iterative decomposition
Pipelining

Replication

Time sharing
Associativity and other algebraic tra

Example: Two

cryptochip architectures compared

starting point
heavily p=2 p=8 isomorphic
ipeiine Gonfiguration
archiecioe == <= slow and fat
fatbutfast intraround interround cipher
pipelining pipelining 8 nardware rounds
1 regis
16 registers, . 8 registers, .
270G por round 1169 por round
partal terative
\ Gecomposiion
avaiable area
tailor-made
arhieciure p-d
near-optimum sorpent
compromises archiorbent ==
interround
#regitors 7o | pipsiining
reg er round

| 4harduare rouns
register

tull terative
decomposition
o a Sigle found

@%”-E%

Rijndael

| architecture

%\ 2 hardware rounds
2'egs per round

acceptable solutions

archtecture
intraround lean but slow
pipelining
1 hardware round 1 hardware round
Zregisters 1 register
requited hroughput e it

c
Two competing teams have taken different routes but have arrived at similar
compromises between throughput and area (ETH CHES 2002)
Hubert Kaeslin Microelectronics

esign Center ETH Ziirich
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Iterative decomposition

N P . Pipelining
Equivalence transforms for combinational computations P 8

g

Associativity and other algebraic transforms
DI

Universal versus algebraic transforms

Universal transforms. Whether and how to apply them can be decided
from a DDG's connectivity and weights alone,
no matter what operations the vertices stand for.
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Iterative decomposition

N P . Pipelining
Equivalence transforms for combinational computations P 8

g

Associativity and other algebraic transforms
DI

Universal versus algebraic transforms

Universal transforms. Whether and how to apply them can be decided
from a DDG's connectivity and weights alone,
no matter what operations the vertices stand for.

Algebraic transforms. Take advantage of specific algebraic properties
of the operations involved.
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Iterative decomposition

N P . Pipelinii
Equivalence transforms for combinational computations P

Associativity and other algebraic transforms

Example: Associativity transform

x(k)

Hh term 0-th term

19+~ (o)

chain/tree
conversion

Hh term

b ¥k

Figure: 8-way minimum function. Chain-type DDG (a), tree-type DDG (b).
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ecomposition

Equivalence transforms for combinational computations

and other algebraic transforms

Recapitulation

Equivalence transforms that help optimize combinational computations

Iterative decomposition, pipelining, replication and algebraic transforms,
plus time sharing in the presence of parallel data streams.

» |terative decomposition and time sharing are most effective
when a computational unit can be reused several times.
» Pipelining is generally superior to replication.
While coarse grain pipelining improves throughput dramatically,
benefits decline as more and more stages are included.
» Pipelining and iterative decomposition are complementary
in that they both can contribute to lowering the size-time product.

» Lowering the size-time product AT always implies cutting down
the longest path t,.
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D patterns
Available memory configurations and area occupation
g e of going off-chip

Options for temporary storage of data

Subject

Options for temporary storage of data
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ess patterns
onfigurations and area occupation
f going off-chip

Options for temporary storage of data

Why and when do we need to stora data?

Except for trivial SSI/MSI circuits, any IC includes some form of memory.

This is either because

» the data processing algorithm is of sequential nature and,
therefore, asks for functional memory,

or because

» nonfunctional storage got introduced into the circuit
as a consequence from architectural transformations.
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ess patterns
onfigurations and area occupation
f going off-chip

Options for temporary storage of data

Options for temporary storage of data

Architectural options for temporary storage of data:
On-chip registers built from individual flip-flops or latches.
On-chip memory i.e. SRAM macrocell

Off-chip memory i.e. SRAM or DRAM catalog part.
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s and area occupation
fF-chip

Options for temporary storage of data

Options for temporary storage of data

Architectural options for temporary storage of data:
On-chip registers built from individual flip-flops or latches.
On-chip memory i.e. SRAM macrocell

Off-chip memory i.e. SRAM or DRAM catalog part.

Differences that impact high-level design decisions:

» One-at-a-time versus all-at-a-time data access patterns
Available memory configurations and area occupation
Storage capacities
Wiring and the costs of going off-chip
Energy efficiency

vV V. v vV Y

Latency and timing
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Data access pattems
ailable memory configurations and area occupation
ring and the costs of going off-chip

Options for temporary storage of data

Data access patterns

RAMs impose access one data word after the other
Fine in architectures obtained from

> iterative decomposition and
» time sharing.

Perfect match for microprocessors

Registers allow for simultaneous access to all data words stored
Mandatory in high-throughput architectures obtained from

» pipelining,
> retiming, to be introduced later in this chapter
> loop unfolding idem

where data are kept moving in every computation cycle.
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Data ac patterns

Available memory configurations and area occupation
Options for temporary storage of data Y 3 P

Wiring and the costs of going off-chip
Digest

Available memory configurations

10000000
1000000 &
& s 8 register file, 8bit wordwidth
g N A register file, 16bit wordwidth
Z‘ 8 + register file, 32bit wordwidth
o g ﬁ < register file, 64bit wordwidth
© 100000 g m on-chip SRAM, 8bit wordwidth
s a on-chip SRAM, 16bit wordwidth
3 o 8 o on-chip SRAM, 32bit wordwidth
S N . 8 o on-chip SRAM, 64bit wordwidth
o
© R L]
.
10000
o
1000
100 1000 10000 100000 1000000

storage capacity [bit]

Figure: Area occupation of registers and on-chip RAMs for a 130 nm CMOS.
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ess patterns

ilable memory configurations and area occupation
Options for temporary storage of data 5

ing and the costs of going off-chip
est

Wiring and the costs of going off-chip

Off-chip memories add to pin count, package count, and board space.
» Extra parasitic capacitances
» Extra delays
» Extra energy dissipation
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pat

F
lable memoi ations and area occupation
Options for temporary storage of data F

ng and the costs of going off-chip

Wiring and the costs of going off-chip

Off-chip memories add to pin count, package count, and board space.
» Extra parasitic capacitances
» Extra delays
» Extra energy dissipation
>

Commodity RAMs impose bidirectional pads which require
special attention.
>

>

Off-chip data storage is associated with important penalties.
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Data access patterns

Options for temporary storage of data

Wiring and the costs of going off-chip
Digest

Available memory configurations and area occupation

Options for temporary data storage compared

architectural option

on-chip off-chip
bistables embedded commodity
flip-flop [ latch SRAM [ DRAM DRAM
fabrication process compatible with logic optimized
devices in each cell 20...30T ‘ 12...16T 6T 1T1C 1T1C
cell area per bit [F?] 1700..2800 | 1100...1800 | 135...170 | 18...30 6...8
extra circuit overhead none 1.3 < factor < 2 off-chip
memory refresh cycles none yes
extra package pins none none addr. & data bus
nature of wiring multitude of local lines on-chip busses package & board
bidirectional busses none optional mandatory
access to data words all at a time one at a time
available configurations any restricted
energy efficiency good fair [ poor very poor
latency and paging none no fixed rules yes
impact on clock period minor substantial severe

Hubert Kaeslin Microelectronics Design Center ETH Ziirich
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rations and area occupation
going off-chip

Options for temporary storage of data

Example: RAMs in a CMQOS ASIC technology

Cu-11 is an ASIC technology by IBM (2002)
» gate length 110 nm, supply voltage 1.2 V
» Cu interconnect combined with low-k interlevel dielectrics

SRAM macrocell generator from 128 bit to 1 Mibit

Embedded DRAM megacells up to 16 Mibit
» cycle time of 1 Mibit eDRAM is 15 ns

» eDRAM bit cell area is 0.31 pum?
» 1 Mibit eDRAM occupies an area of 2.09 mm? (84% overhead)
» 16 Mibit eDRAM occupies 14.1 mm? (63% overhead)
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ions and area occupation
ng off-chip

Options for temporary storage of data

Recapitulation

Observation

There is no such thing as an optimal solution for temporary storage of data,
what is best strongly depends on the situation and requirements.

> Only registers allow for simultaneous access to all data,
but occupy a lot of die area per bit.

» SRAMs can hold more significant quantities of data than registers
but are slower than registers, yet faster than DRAMs.

DRAMs require periodical refresh ~~ power dissipated even when idle.
DRAM and Flash memories are cost-efficient for large data quantities.

Flash is used for permanent storage, but is much slower than RAM.

vV v v Yy

Commodity memories offer virtually unlimited capacities at low costs,
but are is associated with speed, energy and other penalties.
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omposition and time sharing

Equivalence transforms for non-recursive computations

Subject

Transforms for non-recursive computations
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nposition and time sharing revisited

Equivalence transforms for non-recursive computations

What do we mean by non-recursive computation?

A computation is termed non-recursive if
» Result is dependent on past arguments, not just present.
» Edges with weights greater than zero are present in the DDG.

» DDG is free of circular paths.

From Algorithms to Architectures
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Can you do better
in terms of speed and area?

» Pipelining helps boost throughput but is rather inefficient in this case.
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Retlmlng

sited
5 . nposition and time sharing revisited
Equivalence transforms for non-recursive computations

Retiming

Paradigm: Repartition workloads evenly for all workers on an assembly line

(g I I
- renmmg
w, w, .
4 9 : ; datapath no control
E§> section section
h I I
@ nonuniform uniform
a) b) computational delays

Figure: DDG (a) and hardware configuration for / =1 (b).

From Algorithms to Architectures

Hubert Kaeslin Microelectroni esign Center ETH Ziirich



Iterative decomposition and time sharing revisited
Digest

Equivalence transforms for non-recursive computations

Formal rules

To be legal, any retiming must observe the following rules:

1. Neither outputs nor sources of time-varying inputs may be part
of a supervertex that is to be retimed.

2. When a supervertex is assigned a lag by / computation cycles,
the weights of all its incoming edges are in- cremented by / and
the weights of all its outgoing edges are de- cremented by /.

No edge weight may be changed to assume a negative value.

4. Any circular path must always include at least one edge
of strictly positive weight
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Retiming
Pipelining revisited
decomposition and time sharing revisited

Equivalence transforms for non-recursive computations

Pipelining revisited

Same rules as for retiming except

1. Any supervertex to be assigned a lag must include all outputs

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Retiming
Pipelining revisited
I

5 . nposition and time sharing revisited
Equivalence transforms for non-recursive computations

Pipelining revisited

Same rules as for retiming except

1. Any supervertex to be assigned a lag must include all outputs

Comparison

» Both transforms aim at shortening the longest path.
» Pipelining increases latency as registers get added.

» Retiming leaves latency unchanged as registers get relocated.
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mposition and time sha|

Example:
Nonlinear
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Invariant
third order
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chain reversal
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retiming
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Retiming

Pipelining revisited

Iterative decomposition and time sharing revisited
Digest

Equivalence transforms for non-recursive computations

Example: Nonlinear time-invariant third order correlator

The subsequent transforms change the circuit’s performance as follows:

Architectural variant
original reversed + retimed + pipelined

Key characteristics (a) (b) (c) (d)
arithmetic units (N +1)A, + NAL idem idem idem
functional registers NA eg idem idem idem
nonfunctional registers 0 idem idem (N +1)Areg
cycles per data item I 1 idem idem idem
longest path delay t;, treg + th + Nty idem treg + th + ty | treg + max(ty, ty)

for N = 3 [ns] 9.5 idem 5.5 35

for N = 30 [ns] 63.5 idem 5.5 35
latency L 0 idem idem 1

A DDG is termed systolic if the edge weight between any two vertices is
one or more. For a given granularity, maximum speed is obtained when
there is no more than one combinational operation between any two
registers. This is the basic idea behind systolic computation
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decomposition and time sharing revisited

Equivalence transforms for non-recursive computations

Digest

Example: Nonlinear time-invariant third order correlator

The subsequent transforms change the circuit’s performance as follows:

Architectural variant
original reversed + retimed + pipelined

Key characteristics (a) (b) (c) (d)
arithmetic units (N +1)A, + NAL idem idem idem
functional registers NA eg idem idem idem
nonfunctional registers 0 idem idem (N +1)Areg
cycles per data item I 1 idem idem idem
longest path delay t;, treg + th + Nty idem treg + th + ty | treg + max(ty, ty)

for N = 3 [ns] 9.5 idem 5.5 35

for N = 30 [ns] 63.5 idem 5.5 35
latency L 0 idem idem 1

Net benefits:
» Long path delay greatly reduced at little hardware costs.

» Maximum operating speed no longer a function of correlation order N.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Retiming
Pipelining revisited

Iterative decomposition and time sharing revisited
Digest

Equivalence transforms for non-recursive computations

Iterative decomposition and time sharing revisited

» Decomposing and time sharing sequential computations is straightforward
and can significantly reduce datapath hardware.
» Functional memory requirements remain the same as in the isomorphic
architecture
» Mixed blessing energy-wise.
+ More uniform combinational depth reduces glitching activity.
— Extra multiplexers necessary to route, recycle, collect and/or redistribute
data.
— Extra counter or finite state machine required to control the datapath.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Retiming
Pipelining revisited

v -~ i N Iterative decomposition and time sharing revisited
Equivalence transforms for non-recursive computations Digest

Example: Third order transversal filter

X(k-1) datapath ; control
x(k-2) section | section
) ;

shift register

x(k) N=3 long

datapath no control

section section '

hift register :

K o | o | o S :
xk | | | N=3 long multiplexer

hard-wired N+t tod :

by by b, b, coefficients by ]

nerauve decomposmon coefficient
arallel +
time sh: a”"Q Bhiplier storage mod

N+1words | | N+1

y(k) [ 1

adder —]— accumulator

N+1 parallel multipliers N adders

output !
register

b) vk

Figure: Isomorphic architecture (a) and a more economic alternative (b).
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5 . sition and time sharing revisited
Equivalence transforms for non-recursive computations

Recapitulation

Retiming

can help to optimize datapath architecture for sequential computations
without affecting functionality nor latency.

» Retiming, pipelining and combinations of the two can improve throughput
of arbitrary feedforward computations.

» The associative law allows one to take full advantage of the above
transforms by having a DDG rearranged beforehand.

» |terative decomposition and time sharing are the two options available
for reducing circuit size.

» Highly time-multiplexed architectures dissipate energy on ancillary
activities that do not directly contribute to data computation.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures
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Higher-order loops
Time-variant loops

Nonlinear or general loops

Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform

Subject

Transforms for recursive computations
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loops

or general loops
, not quite an equivalence transform

Equivalence transforms for recursive computations

Digest

What do we mean by recursive computation?

A computation is termed recursive if
» Result is dependent on earlier outcomes of the computation itself.
» Edges with weights greater than zero are present in the DDG.

» Circular paths exist in the DDG.

From Algorithms to Architectures
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The feedback bottleneck

Unf f first-order loops

or general loops
Equivalence transforms for recursive computations , not quite an equivalence transform
Digest

Linear time-invariant first-order feedback loop |
Recursions such as
y(k) = ay(k — 1) + x(k)

which in the z domain corresponds to transfer function

Y(z 1
H(z) = XEzi T 1-az!

have many technical applications.

Examples:
> IR filters
» Differential pulse code modulation encoders (DPCM)

» Servo loops

They impose a stiff timing constraint, however.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



The feedback bottleneck

Unfoldif f - loops

Time-variant loops

Nonlinear or general loops

Equivalence transforms for recursive computations B not quite an equivalence transform

Linear time-invariant first-order feedback loop Il

parallel

a multiplier

y(k-1)

x(k) y(k) x(k) ———

a) b)

Figure: DDG (a) and isomorphic architecture (b).
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The feedback bottleneck

Unf f first-order loops

or general loops
Equivalence transforms for recursive computations , not quite
Digest

an equivalence transform

Linear time-invariant first-order feedback loop Il

parallel
multiplier

2]
a
y(k-1)
x(k) y(k) x(k)
a) b)
Figure: DDG (a) and isomorphic architectur
Iteration bound: Z t=treg +t.+tL =tp, < Tgp

loop

o No problem as long as long path constraint can be met
with available and affordable technology.

e (b).

o No obvious solution otherwise, recursiveness is a real bottleneck.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich
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The feedback bottleneck
Unfolding of first-order loops

Equivalence transforms for recursive computations , not quite an eq

Linear time-invariant first-order feedback loop IlI

Have a second look!

Key idea

Relax the timing constraint by inserting additional latency registers
into the feedback loop.

Hubert Kaeslin M electronics Design Center ETH Ziirich From Algorithms to Architectures



Equivalence transforms for recursive computations dipeline i e an e ce transform
Digest

Linear time-invariant first-order feedback loop IlI

Have a second look!

Key idea

Relax the timing constraint by inserting additional latency registers
into the feedback loop.

A tentative solution must look like

Y(z) _ N2
X(z) 1—arzr

H(z) =
where N(z) is here to compensate for the changes due to the new denominator.

Recalling the sum of geometric series we easily establish N(z) as

1— gPz—P
N(z) = i Za"z”

1—az 1

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



The feedback bottleneck
Unfolding of first-order loops

Equivalence transforms for recursive computations eline ng, not quite an equivalence transform

Linear time-invariant first-order feedback loop IV

The new transfer function can then be completed to become

and the new recursion in the time domain follows as

y(k) = 2y(k—p)+ S ax(k — )

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



The feedback bottlen
Unfolding of first-orde

Equivalence transforms for recursive computations

Linear time-invariant first-order feedback loop V

After unfolding by a factor of p = 4, the original recursion takes on the form
y(k) = a*y(k — 4) 4 a®x(k — 3) + a®x(k — 2) + ax(k — 1) + x(k)
which corresponds to transfer function

_ 1+az 1422272433273

H(z) 1—a%z+4

Net result:
» Denominator has been widened to include p unit delays rather than one.

» Numerator stands for a feedforward circuit that is amenable to pipelining.

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



The feedback bottleneck
Unfolding of first-order loops
rder loops
iant loops

or general loops
Equivalence transforms for recursive computations , not quite an equivalence transform
Digest

Linear time-invariant first-order feedback loop VI

Particularly elegant and efficient solutions exist when p is
an integer power of 2 because of the lemma

log, p—1
a"z7" = (32'"272'" +1) p=2,4816,...

m=0

i
)

Il
o

n

With p = 4, for instance, the numerator can be factorized into

(14 az71)(1 + a%z72)
1—a%z*

H(z) =

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



The feedback bottl

Unfolding of first-order loops
g der loops

Time-variant loops

Nonlinear or general loops

Equivalence transforms for recursive computations Pipeline , not quite an equivalence transform

32 ' a4

P p— T . D > (k)

a) numerator ! denominator

pipelined
multiply-add
building block

’ N

parallel

multiplier y(k-6)

x(k)
b)

[
|
|
I
I
|
|
|
|
|
|
\

Figure: DDG unfolded by p = 4 (a) and high-performance architecture (b).
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Equivalence transforms for recursive computations P , not quite an equivalence transform

Higher-order loops

Do not attempt to unfold loops of arbitrary order directly.
Make use of a common technique from digital filter design.

> Any higher-order transfer function can be factored into a product
of second- and first-order terms.

> The resulting DDG takes the form of cascaded second- and first-order
sections.

> As an added benefit, cascade structures are known to be less sensitive
to quantization of coefficients and signals than direct forms.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Higher-order loops
Time-variant loops
Nonlinear or general loops
Equivalence transforms for recursive computations Pi i

not quite an equivalence transform

o

a) b) = [emmmemmemeememmeeeee-o

Figure: DDG (a) and isomorphic architecture (b).
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Equivalence transforms for recursive computations

Digest

Linear time-invariant second-order feedback loop I

A second-order recursive function goes
y(k) = ay(k — 1) + by(k — 2) + x(k)
or, in the z domain,

_ Y@ _ 1
H(z) = X(z) 1—az!—bz2

Unfolding is obtained from multiplying numerator and denominator

by an adequate factor. For p = 4, the transfer function becomes

(1+az7t — bz72) (14 (a% +2b)z72 + b2z7%)
1—((a%+2b)2—2b%)z %+ b4z 8

H(z) =

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Equivalence transforms for recursive computations ipeline ce transform

Linear time-invariant second-order feedback loop IlI

b b2 : _1,4
a a%zb : (a%2b)22b°
x(k) ¢ + ¢ + T + ¢ YK
) |
numerator 1 denominator
ipelined
R
uilding blocl 2
a oS- ~ a%2b —————————————— ~
L \ \
i i
i i
i i
i i
| o
b | b2 =
| o
T | T |
i i
i i
i i
WL g Y |
SN I N LT
b) S S

Figure: DDG unfolded by p = 4 (a) and high-performance architecture (b).
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ariant loops

al loops
Equivalence transforms for recursive computations g , not quite an equivalence transform

Two second-order sections cascaded, loops unfolded with p=4.
Pipelined multiply-add units with carry-save and carry-ripple adders.
Fabricated in standard 0.9 um CMOS technology

Sampling frequency f; = fox = 85 MHz, ' = 1.

Computation rate = 1.5 GOPS.

One to two extra data bits added to maintain similar roundoff noise.
Circuit size approximately 20 kGE.

vV V.YV vV VY VY

LARMA stands for “auto recursive moving average”, i.e. for IIR filters
that comprise both recursive (AR) and non-recursive computations (MA).
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ariant loops
al loops
Equivalence transforms for recursive computations g , not quite an equivalence transform

Two second-order sections cascaded, loops unfolded with p=4.
Pipelined multiply-add units with carry-save and carry-ripple adders.
Fabricated in standard 0.9 um CMOS technology

Sampling frequency f; = fox = 85 MHz, ' = 1.

Computation rate = 1.5 GOPS.

One to two extra data bits added to maintain similar roundoff noise.
Circuit size approximately 20 kGE.

vV V.YV vV VY VY

~~ Loop unfolding allows to push out the need for fast but costly
fabrication technologies such as GaAs, then and now.

LARMA stands for “auto recursive moving average”, i.e. for IIR filters
that comprise both recursive (AR) and non-recursive computations (MA).

ubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Time-variant loops
al loops
Equivalence transforms for recursive computations ng, not quite an equivalence transform

coefficient calculation

output computation

X)—

x(k) y(k)
Figure: DDG after unfolding by a factor of p = 4.

» Coefficient terms must be calculated on-line requiring extra hardware.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures
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r loops
variant loops

eral loops
Equivalence transforms for recursive computations t ing, not quite an equivalence transform

Nonlinear or general loops |

The most general case of a first-order recursion goes

y(k) = f(y(k —1),x(k))

and can be unfolded an arbitrary number of times,
e.g. with p = 2 to become

y(k) = F(f(y(k = 2),x(k = 1)), x(k))

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Equivalence transforms for recursive computations

Nonlinear or general loops Il

y(k-1)
> y(K)
x(K) ——> y(K)

3 loop b)

unfolding

retiming

X(k) ——e — y(k)

d

Figure: Original DDG (a) and isomorphic architecture (b), DDG after unfolding
by a factor of p =2 (c), same DDG with retiming added on top (d).
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Equivalence transforms for recursive computations

Nonlinear or general loops IlI

provided f operator
is associative reordering

—_ | - ylkc4)
X(K) ) ——(f ¥
feedforward feedback
e
{} aggregation
—_— K-
«®) y(k-2)
x(K) B ¥
9 h)

Figure: DDG with the two functional blocks for f combined into " (g),
pertaining architecture after pipelining and retiming (h).
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ops
neral loops
Equivalence transforms for recursive computations t , not quite an equivalence transform

Limits to loop unfolding

» All successful architectural transforms for recursive computations take
advantage of algorithmic properties such as linearity, fixed coefficients,
associativity, limited word width or of a very limited set of register states.

» When the state size is large and the recurrence is not a closed-form
function of specific classes, our methods for generating a high degree
of concurrency cannot be applied.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures
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variant loops

eral loops
Equivalence transforms for recursive computations t ing, not quite an equivalence transform

Example: Ciphering |
In electronic codebook mode, a block of ciphertext y(k) gets computed

from the present block of plaintext x(k) and from key u(k)
using some complex and non-analytical cipher function c.

u(k)

x(k) y(k)

A

Figure: Block cipher in electronic codebook (ECB) mode.

» In search of throughput, the door is wide open for pipelining.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



Higher-order loops
Time-variant loc

Nonlinear or general loops
Equivalence transforms for recursive computations Pipe interleaving, not quite an equi\ transform
Digest

Example: Ciphering Il

Figure: A computer graphics image in clear text.
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The feedback bottlen
Unfolding of first-order loops
Higher-order loops
Time-variant loops

Nonlinear or general loops
valence transforms for recursive computations Pipeline inter ing, not quite an e ce transform
st

Example: Ciphering IV

SR
R




riant loops

nlinear or al loops
Equivalence transforms for recursive computations eline inter ng, not quite an equivalence transform
t

Example: Ciphering V

Remedy: Cipher block chaining (CBC).
u(k) u(k)

cryptographic
improvement

x(k) ) T xt) (@) —e—> v

A ,

Figure: Combinational operation in ECB mode (a) vs. recursion in CBC mode (b).

a)

» The nonlinear feedback introduced to improve cryptographic security
vetoes pipelining.
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i
Nonlinear or general loops

Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform
Digest

Pipeline interleaving |

In search of higher throughput for a cipher in CBC mode, 2
none of our architectural transforms applies.

Think the unthinkable!

> “What is the effect of inserting an extra register into a first-order
recursive loop with the idea of pipelining the datapath?”

2Operating a cipher in counter mode (CTR) manages without feedback and still avoids
the leakage of plaintext into ciphertext that plagues ECB. This asks for a modification at the
algorithmic level, though.
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Higher-order loops
Time-variant loops

Nonlinear or general loops
Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform
Digest

Pipeline interleaving |l

y(k-2)
- // 777777 \\
- > I
| > y(k2)
x(k) »— y(k) x(k)4:—> !
a) L f )
b) N _
]
ylk=2n-2) ﬁ pipeline -
interleaving
x(k=2n) —»@7»—> y(k=2n)
& X9 | e e
x2) ’ N ¥(4)
yik=2n-1) by L ! )
‘ ! 1)
—_ x(1) ! ! i
x(g) o) ¥(5)
x(5) Seeeees V)
x(k=2n+1) —%»—» y(k=2n+1) ()
c) d)

Figure: Nonlinear time-variant first-order feedback loop with one extra register
inserted (a,b). Interpretation as two interleaved data streams (c,d).
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Unfoldi
Higher-order Ic
Time-variant loof

r or genera
Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform
Digest

Example: Ciphering revisited

u(k) u(k) u(k)
cryptographic
improvement
x(k) W) T ) (@) (c) ey 2 xt) (@) —(c)—e> 0
a) A b) . ) %%
memoryless bitwise
= en/decipherin = addition
@ mapping 9 modulo 2

Figure: ECB mode (a), CBC mode with feedback (b), and CBC-8 operation (c).

Observation

Pipeline interleaving removes the bottleneck but alters functionality.

» Acceptable where data can be viewed as separate time-multiplexed
streams that are to be processed independently from each other.
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Unfoldi

Higher-order Ic

Time-variant loof
r or genera

Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform
Digest

Example: Sphere decoding in a MIMO OFDM receiver | 3

» Sphere decoding is a key subfunction in a MIMO OFDM receiver and
essentially a sophisticated tree-traversal algorithm of low average search
complexity.

Observation

» OFDM operates on many subcarriers at a time

» Each subcarrier poses an independent tree-search problem.

3MIMO = Multi Input Multi Output, OFDM = Orthogonal Freq.-Division Multiplex

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures
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ar or general loops
Equivalence transforms for recursive computations

Pipeline interleaving, not quite an equivalence transform
x

Example: Sphere decoding in a MIMO OFDM receiver

pipeline triplicated
_-—~ registers , register bank _
7 I N
register bank / v :
(functional) » \
| metric_ _storage for -
erjumeratig intermediate ‘ ] —
| unit search results -
shimming _-=====---_

registers ~ ~

level
select

t l
metric sphere .
| cqmputati constraint ladius
l unit check P
1

S

Figure:

Sphere decoder; black — original architecture; color items — extra circuitry
required to handle three individual subcarriers in an interleaved fashion.
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Nonlinear or general loops
Equivalence transforms for recursive computations Pipeline interleaving, not quite an equivalence transform
C

Example: Sphere decoding in a MIMO OFDM receiver Il
80 T
== == 6 pipeline stages
== 5 pipeline stages
or == - =4 pipeline stages
= 3 pipeline stages
60} ======= 2 pipeline stages
unpipelined
= = = constant AT
50
w
Q
£ 40}
g
<
301
20
10F
0 i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10

Clock Period in ns

Figure: The beneficial impact of pipeline interleaving on area and throughput
of a sphere decoder circuit
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Equivalence transforms for recursive computations . not quite an equi\
Digest

Recapitulation

Loop unfolding

can significantly improve the throughput of linear time-invariant feedback
calculations.

» The rapid growth of overall circuit size tends to limit economically
practical unfolding degrees to fairly low values, say p = 2...8.

» Nonlinear feedback loops are, in general, not amenable
to throughput multiplication by applying unfolding techniques.
A notable exception exists when the loop function is associative.

» Pipeline interleaving is not an equivalence transform but nevertheless
helpful where multiple data streams undergo the same processing
independently from each other.
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Subject

Generalizations of the transform approach
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Generalization to other levels of detail
Bit-serial architectures
Distributed arithmetic

tion to other algebraic structures
Summary
Generalizations of the transform approach

Generalization to other levels of detail

Level Granu- Relevant items

of abstraction | larity Operations Data
Architecture O subtasks, processes time series, pictures
Word ) arithmetic/logic ops | words, samples, pixels
Bit . gate-level ops individual bits

What if we try to apply equivalence transforms at levels of abstraction
other than the word level?

From Algorithms to Architectures
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Generalization to other levels of detail

Igebraic structures

Generalizations of the transform approach

Generalization to other levels of detail

Level Granu- Relevant items

of abstraction | larity Operations Data
Architecture O subtasks, processes time series, pictures
Word ) arithmetic/logic ops | words, samples, pixels
Bit . gate-level ops individual bits

What if we try to apply equivalence transforms at levels of abstraction
other than the word level?

» Recall: DDGs are not concerned with the granularity of operations
and data.

Lucky finding
Everything we have learned is applicable at multiple levels of abstraction.

From Algorithms to Architectures
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Generalization to other levels of detail
Bit-serial architectures

Distributed arithmetic
Generalization to other algebraic structures
Summary

Generalizations of the transform approach

Examples of transforms at the architecture level

preprocessing
segmentation
feature extraction
classification

b)
all studied at

architecture level

versatile
datapath

©)

Figure:

Hubert Kaeslin Mi

ign Center ETH Ziirich

preprocessing
segmentation
feature extraction
classification

pipelining

¢

a)
iterative
decomposition
overall
D - control
1. preprocessing

‘ 2. segmentation
3. feature extraction
4. classification

Architectural alternatives for a typical pattern recognition system.
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Generalization to other levels of detail
Bit-serial architectures
Distributed arith

Generalization to other algebraic structures
Summary
Generalizations of the transform approach

Examples of transforms at the bit level
STLE VIV VY

? I=> MSB E? g T 1) LsB
w studied at j) \T
a) bit level b) W=4

- iterative
t j- plpellf% 3: decomposition
+
shimming L VJ
registers nonfunctional - control
- feedback loop section
shimming
registers d) s=w
c) p=W

Figure: 4-bit addition (a) broken up into a ripple-carry adder (b)
before being subject to pipelining (c) and iterative decomposition (d).
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Generalization to other levels of detail
Bit-serial architectures
stributed arithn

c
Generalization to other algebraic structures
Summary

Generalizations of the transform approach

What we have seen so far

“Standard” datapaths. Word-level operations executed one after the other
with all bits being processed simultaneously.

x(k-1) datapath : control
x(k-2) section ! section
X(k-3) 3
shift register
x(k) . Iogng
datapath no control
section section

o Lot |t

index

x(k) . | shift register
coefficient register
storage mod JR——

| ? | ? | N=3 long multiplexer
. N+1to1
b b b b hard-wired
o 1 2 3 coefficients
iterative decomposition
& time sharing p?rall.le' H
:> multiplier N+1words | | N+1

k) i
L " adder —— accumulator

a) N+1 parallel multipliers N adders

output
register

b) ¥(k)
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Generalizations of the transform approach

What we will see next

Uncommon architectural concepts where one bit from each data word
is being operated upon at a time until all bits have been processed.

Bit-serial architectures.

1. Word-level operations broken up into bit-level operations.
2. lterative decomposition.

Distributed arithmetic.

1. Word-level operations broken up into bit-level operations.
2. Algebraic transforms to get rid of multiplication.
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Generalization to other levels of detail
Bit-serial architectures
Distributed arithmetic

Generalization to other algebraic structures
Summary
Generalizations of the transform approach

Example of a bit-serial architecture

x(k,w) *

by by b, by

1-by-webit
multiplier — scalar (single wire)
—7/— vector (parallel bus)
+ w-bit adder
LsB LsSB LSB LSB

+
+

y(kw)

studied at
bit level

Figure: Third order transversal filter
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Generalization to other levels of detail
Bit-serial architectures

Distributed arithmetic

Generalization to other algebraic structures
Summary

Generalizations of the transform approach

Pros and cons of bit-serial architectures

2

Overall hardware structure remains isomorphic with the DDG.
Small control overhead.

— Inflexible because DDG is hardwired into the datapath

with no explicit controller.

High computation rates keep computational units busy.

+

All non-local data communication is via serial links.

Much of the data circulation is local.

— Division, data-dependent decisions, etc. ill-suited
for bitwise iterative decomposition and pipelining.

— Incompatible with word-oriented RAMs and ROMs

successive approximation and max./min. picking

+ + +
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itectures
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Generalizations of the transform approach

Pros and cons of bit-serial architectures

~ Overall hardware structure remains isomorphic with the DDG.
+ Small control overhead.
— Inflexible because DDG is hardwired into the datapath
with no explicit controller.
+ High computation rates keep computational units busy.
+ All non-local data communication is via serial links.
+ Much of the data circulation is local.

— Division, data-dependent decisions, etc. ill-suited
for bitwise iterative decomposition and pipelining.

— Incompatible with word-oriented RAMs and ROMs
successive approximation and max./min. picking

Rule of thumb

Bit-serial architectures are at their best for unvaried real-time computations
that involve operations such as addition and multiplication by a constant.
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Generalizations of the transform approach

Distributed arithmetic |

Consider the calculation of the following inner product

x
R

Yy = Ck Xk
0

Pl
Il

where each ¢ is a fixed coefficient. Input data xi are scaled such that |x| < 1
and coded with a total of W bits in 2's-complement format.

w-1
X = —Xk,0 + E Xiew 27"

w=1

The desired output y can be expressed as

K—1 w-1
y = ck(—xk,0 + E Xiw27")
k=0 w—1
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Summary

Generalizations of the transform approach

Distributed arithmetic |l

With distributive law, commutative law, and reversed order of summation

K1 W-1 K—1
Y= al=xk0)+ > O cxiw) 2™
k=0 wel k=0

The pivotal observation refers to the term in parentheses

K—1
Z CikXpk,w = p(w)
k=0

For any given bit position w, calculating the sum of products takes one bit
from each of the K data words xi, so p(w) can take on no more than 2
distinct values. With the coefficients ¢, constant, all those values can be kept
in a lookup table (LUT). The computation then simply becomes

w-1
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Example of distributed arithmetic

X

motto: "all bits from one word at a time" motto: "one bit from each word at a time"

[log, W1
multiplexer multiplexer
Kto1 llog . K1 Wto 1
’—‘ og,
w ROM |__ bit position
register
coefficient 1 . partial product
parallel stora + index
e ge mod — € storage
pultiplcy Kdatawords | K register 2K data words
| accumulator adder- accumulator
adder subtractor
ou_t;?ut ou_l;iut
register w register
studied at studied at
a) wordlevel y b) bitlevel y

Figure: Computing a sum of products by way of repeated multiply-accumulate
operations (a) and with distributed arithmetic (b).
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Generalizations of the transform approach

Pros and cons of distributed arithmetic

+ No need for costly multipliers
as these get merged with coefficient tables.

— Memory size grows exponentially
with the order of the inner product to be computed.

~ Mitigation techniques exist
but depend heavily on coefficient values.
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Pros and cons of distributed arithmetic

+ No need for costly multipliers
as these get merged with coefficient tables.

— Memory size grows exponentially
with the order of the inner product to be computed.

~ Mitigation techniques exist
but depend heavily on coefficient values.

Rule of thumb
Distributed arithmetic should be considered when

» coefficients are fixed,
» number of distinct coefficient values is small,

» hardware multipliers are expensive compared to lookup tables.

Example: DSP applications with table-based FPGAs.
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Generalization to other algebraic structures |

What we have seen so far:

“Standard” computations. Filters, correlators and the like where arithmetic
operations were taken from the field of reals (R, +, - ).

What we will see next:

More fields. o with infinitely many elements, and
o with some finite number of elements.

Semirings. More general algebraic structures.

You may want to present slide set “A Brief Glossary of Algebraic Structures” at this point!
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Generalization to other algebraic structures |l

» All algebraic fields share a common set of axioms, so any algebraic
transform that is valid in one field must necessarily hold for any
other field.

Observation

Everything we have learned is applicable to any algebraic field.

Infinite fields. (R, +, -) and (C, +, -) are commonplace in digital signal
processing.
Finite fields. GF(2), GF(p), GF(p") have numerous applications in
» data compression ,
» error correction , and
» information security
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Example: The Viterbi algorithm |

path metric memory (functional)

path
branch metric survivor
— metric update path >
computation trace back

Figure: The three major steps of the Viterbi algorithm.

» Convolutional decoding is a multi-stage decision problem
where Richard Bellman's principle of optimality applies:
“The globally optimum solution includes no suboptimal local decision.”

» Bellman has developed a technique called “Dynamic Programming”,
the Viterbi algorithm is a particular case thereof.

Refer to slide set “A Gentle Introduction to Dynamic Programming and_the Viterbi Algorithm”!
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states with path metrics

v

SN
B BNINS
(3 %\g‘

:\(‘Q. y ‘g.
=

&
U

/ ‘./\‘/\‘/\‘
AN
R

iterative
decomposition

!

Figure: Abstracted trellis-type DDG

for path metric computation (a) with details for one butterfly (b).

state transitions with branch metrics

k  time slot

butterfly

W/
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Generalizations of the transform approach

Example: Architectural choices for a Viterbi decoder |

Natural choice: A datapath that computes one set of path metrics
from the previous set in a single clock cycle — architecture d).

Goals and options:

Smaller circuit. Combine iterative decomposition and time sharing, ultimately
leads to a processor-type datapath built around an ALU.

Reduced clock. If the longest path in architecture d) turns out to be
too fast to match that in the remainder of the circuit,
a lesser degree of decomposition may prove more adequate.
¢) yields roughly the same throughput with half the clock.
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(D

. . location

iterative for extra

decomposition registers
loop unfolding

>
>
= ®

) time
inverse transform N sharing

iterative "
decomposition

©) d e)

Figure: Datapath architectures obtained from different degrees of iterative
decomposition (c,d). Doomed attempt to boost throughput by inserting extra
latency registers into the nonlinear first-order feedback loop (e).
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Example: Architectural choices for a Viterbi decoder Il

Goals and options (continued):

Still higher throughput. Longest path needs to be trimmed down.
The computation in a butterfly goes

y1(k) = min(ai1(k) + y1(k — 1), a12(k) + y2(k — 1))
y2(k) = min(ax (k) + y1(k — 1), aza(k) + ya(k — 1))

This is a nonlinear first-order recursion
~~ none of our architectural transforms applies.

A more sophisticated approach is needed!
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Loop unfolding revisited
Rederive substituting the generic symbols H for + and [ for -
y(k) = a(k) B y(k — 1) B x(k)

to obtain for arbitrary integer values of p > 2

p—1 n—1

p—1
y(k) = ([T atk = ) D y(k — p) 8BS (] alk — m)) D x(k — n) Bx(k)
n=0 n=1 m=0

where >~ and [] refer to operators B and [J respectively.

> The algebraic axioms necessary for that derivation are

> closure under both operators,
> associativity of both operators, and
» distributive law of [J over H.

» The algebraic structure defined by these axioms is the semiring.

From Algorithms to Architectures
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Example: Boosting throughput of a Viterbi decoder |

Now consider a semiring where
e Set of elements: S =R U {c0},
e Algebraic addition: HH = min, and

e Algebraic multiplication: [ = +.

From Algorithms to Architectures
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Example: Boosting throughput of a Viterbi decoder |

Now consider a semiring where
e Set of elements: S =R U {c0},
e Algebraic addition: HH = min, and

e Algebraic multiplication: [ = +.

The reformulated ACS operation now goes

yl(k) = 311(/() Dyl(k — 1) Eﬂ 312(/() D yg(k — 1)
ya(k) = a1 (k) Hyi(k — 1) B axn(k) L ya(k — 1)

which, making use of vector and matrix notation, can be rewritten as

y(k) = A(k) Hy(k —1)
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Example: Boosting throughput of a Viterbi decoder |

Now consider a semiring where
e Set of elements: S =R U {c0},
e Algebraic addition: HH = min, and

e Algebraic multiplication: [ = +.

The reformulated ACS operation now goes

yl(k) = 311(/() Dyl(k — 1) Eﬂ 312(/() D yg(k — 1)
ya(k) = a1 (k) Hyi(k — 1) B axn(k) L ya(k — 1)

which, making use of vector and matrix notation, can be rewritten as
y(k) =A(k)dy(k—1)

» Note, this is a linear first-order recursion!
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Example: Boosting throughput of a Viterbi decoder Il

By replacing y(k — 1) one gets the unfolded recursion for p = 2
y(k) = A(k) D Ak — 1) T y(k — 2)

To take advantage of this unfolded form,
the product B(k) = A(k) J A(k — 1) must be computed outside the loop.

Resubstituting the original operators and variables we obtain the recursion
y1(k) = min(by1 (k) + yi(k — 2), bia(k) + y2(k — 2))
y2(k) = min(ba1(k) + y1(k — 2), baa(k) + y2(k — 2))

which includes the same number and types of operations as the original
formulation but allows for twice as much time.
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Example: Boosting throughput of a Viterbi decoder Il

yket) | vk ykt) |y
two nonlinear two linear
time-invariant time-invariant
first-order

first-order b, (k-1)
feedback loops feedback loops
P P | % b, (K)+y,(k-2)

b, (k)+y,2(k-2)

b, (k1) extra registers
by, (k-1) placed in loops

b, (k)+y,(k-2)

a(k)

reformulated

over semiring loop unfolding

P E— P —

N unfolding

® | ] g; b, (K)+y,(k2)
b, (k1)

wiet) | ym

a k)
a0

vk | ym

a)

)

Figure: The first-order recursion of the Viterbi algorithm before (a) and after being
reformulated over a semiring (b), with loop unfolding added on top (c).
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Example: Boosting throughput of a Viterbi decoder IV

The price to pay is the extra hardware required to perform
the non-recursive computations outside the loop

), a12(k) + a1 (k — 1))
), a12(k) + az(k — 1))
), a22(k) + a1 (k — 1))
), a22(k) + ax(k — 1))

L

(k) (a1 (k) +an(k -1
(k) (a1 (k) (k-1
b21(k) = min(321(k) + all(k —1
(k) = min(az1 (k) + aia(k — 1

in a heavily pipelined way.
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Insight gained

Compare the two formulations of the same problem:
o Nonlinear recursion over field, not amenable to loop unfolding.

o Linear recursion over semiring, amenable to loop unfolding.

Taking advantage of specific properties of an algorithm and of algebraic
transforms has more potential to offer than universal transforms alone.

» Some computations can be accelerated by creating concurrencies
that did not exist in the original formulation.

~~ Opens a door to solutions that would otherwise remain off-limits.
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Subject

Summary and conclusions
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Options available for reorganizing datapath architectures

Type of computation
combinational sequential
non-recursive recursive
Data flow feedforward feedforward feedback
Memory no yes yes
Data DAG with DAG with Directed cyclic graph
dependency all edge some or all edge with no circular path
graph weights zero weights non-zero of weight zero
Response length M=1 1< M< oo M = oo
Nature linear time-invariant D,P.Q,S,a D,P,q,S,a,R D,S,a,R,i,U
of linear time-variant D,P.Q,S a D,P,S,a,R D,S,aR,i,U
system nonlinear D,P.Q,S,a D,P,S,a,R D,S,a,R,i,u
D: Iterative decomposition
P: Pipelining
Q: Replication
S:  Time sharing
a: Associativity transform provided operations are identical and associative
R: Retiming
i Pipeline interleaving
uU: Loop unfolding
u: Loop unfolding provided computation is linear over a semiring
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Generalizations of the transform approach

Important architectural transforms
and their characteristics

Architectural Decom- Pipe- Repli- Time Associa- Retiming Loop
transform position lining cation sharing tivity unfolding
Kind universal universal universal universal algebraic universal algebraic
Applicable to combinational computations sequential computations
Impact on nonrecurs. recursive
A - = = ..+ + - = = = +

r + = - + = = =

tip — — =, mux — = —.t — —
T=T- tip = — — —+ —...+ — —
AT - = - = = =..+ —t — +

L + + =, mux + + = = +

E —...+ —...t = = ..+ —..t = +
Extra recy. distrib., collect., extra
hardware and none recoll., redist., none none word
overhead cntl. and cntl. and cntl. width
Helpful no coarse possibly no yes yes possibly
for indirect grain yes yes
energy saving yes

Compatible any register register any any register register
storage type
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Power and energy considerations

What is meant by “Helpful for indirect energy saving”?
In CMOS, the most effective way to cut the energy spent per operation
is to lower the supply voltage.
» The long paths through a circuit are likely to become unacceptably slow
and need to be trimmed to recover clock rate and throughput.
» Architectural transforms that help do so with no circuit overhead:

> Retiming
» Chain/tree conversion
> Coarse grain pipelining
Benefits must be examined in detail on a per case basis!
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Power and energy considerations

What is meant by “Helpful for indirect energy saving”?
> In CMOS, the most effective way to cut the energy spent per operation
is to lower the supply voltage.

» The long paths through a circuit are likely to become unacceptably slow
and need to be trimmed to recover clock rate and throughput.

» Architectural transforms that help do so with no circuit overhead:

> Retiming
» Chain/tree conversion
> Coarse grain pipelining
Benefits must be examined in detail on a per case basis!

Over the first decade of the 21th century,
energy efficiency has become even more important than die size.
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The grand alternatives from an energy point of view |

» Processor-type architectures rely on

> general-purpose multi-operation ALUs

generic register files of generous capacity

multi-driver busses, bus switches, multiplexers, and the like
uniform and often oversized datapath width

program and data memories along with address generation
controllers, program sequencers, and iteration counters
instruction fetching and decoding

stack operations and interrupt handling

dynamic reordering of operations

branch prediction and speculative execution

data shuffling between main memory and multiple levels of cache

vVY Y VY VY VY VY VvVVvYYyYy
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The grand alternatives from an energy point of view |

» Processor-type architectures rely on

> general-purpose multi-operation ALUs

generic register files of generous capacity

multi-driver busses, bus switches, multiplexers, and the like
uniform and often oversized datapath width

program and data memories along with address generation
controllers, program sequencers, and iteration counters
instruction fetching and decoding

stack operations and interrupt handling

dynamic reordering of operations

branch prediction and speculative execution

data shuffling between main memory and multiple levels of cache

vVY Y VY VY VY VY VvVVvYYyYy

Observation

All of this is a tremendous waste of energy
as none of the above contributes to payload data processing!
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Aside

Does the total absence of unproductive computations imply the isomorphic
architecture is the most energy-efficient option then?
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Aside

Does the total absence of unproductive computations imply the isomorphic
architecture is the most energy-efficient option then?

Not necessarily.

Reasons:

» Glitching — most intense
when data recombine in combinational logic after having travelled
along propagation paths of disparate lengths.

> Leakage — everything else being equal,
a smaller circuit tends to have fewer leakage paths.

Hubert Kaeslin Microelectronics Design Center ETH Ziirich From Algorithms to Architectures



els of detail

Generalization to other algebraic structures
Summary

Generalizations of the transform approach

The grand alternatives from an energy point of view I

» The impressive throughputs of modern processors have been bought
by operating CMOS circuits under conditions that are far from optimal

extremely fast clock,

large overdrive factors,

comparatively high supply voltage,

low MOSFET threshold voltages and, hence,

significant leakage.

Yy VY VY VY

Consequence

A may dissipate 100 to 1000 times as much
energy for the same calculation as an application-specific circuit.
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The grand alternatives from an energy point of view Ill

“To achieve long battery life when playing video, mobile devices must

decode the video in hardware (on the GPU); decoding it in software
uses too much power. ... The difference is striking:

on an iPhone (4 ), for example, H.264 videos play for up to 10 h,

while videos decoded in software play for less than 5 h before the

battery is fully drained.”

Imperative

Increasing performance in applications with a limited power budget ,
requires that the amount of energy spent per payload operation be lowered.

In depth discussion to follow in chapter 9 “Energy Efficiency and Heat Removal”.
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The grand alternatives from an energy point of view IV

» The challenge of power-constrained architecture design is to

> minimize redundant switching activities,
> provide as just as much flexibility as required,
> keep the effort for design and verification within reasonable bounds,

all at a time.

From Algorithms to Architectures
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The grand alternatives from an energy point of view IV

» The challenge of power-constrained architecture design is to
> minimize redundant switching activities,
> provide as just as much flexibility as required,
> keep the effort for design and verification within reasonable bounds,
all at a time.

~> Finding clever combinations between hardwired units and
asks for creativity and methodical work.

From Algorithms to Architectures
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A guide to evaluating architectural alternatives |

1. Begin by analyzing the algorithm. Give quantitative indications for
> the data rates between all major building blocks,
> the word widths,
> the memory bounds and access schemes for all building blocks, and
> the computation rates for all major arithmetic operations.

2. Look for simplifications and optimizations in the algorithmic domain.

3. Examine the control flow.
Find out where to go for a hard-wired dedicated architecture, where for
a , and where to look for a compromise.

4. Let your intuition come up with preliminary architectural concepts.
Establish a rough block diagram for each of them.
Have boundaries between major subfunctions coincide with registers.
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A guide to evaluating architectural alternatives Il

5. Prepare a spreadsheet that opposes all architectures considered.
6. Estimate

» overall circuit size,
» computation period,
> latency, and
> dissipated energy.
Synthesize, place and route time-critical portions
as propagation delays often depend on lower-level details.

7. ldentify bottlenecks and inacceptably burdensome subfunctions.
Improve with the aid of architecture transforms.

8. Compare. Then narrow down your choice.
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A guide to evaluating architectural alternatives Il

5. Prepare a spreadsheet that opposes all architectures considered.
6. Estimate

» overall circuit size,
» computation period,
> latency, and
> dissipated energy.
Synthesize, place and route time-critical portions
as propagation delays often depend on lower-level details.

7. ldentify bottlenecks and inacceptably burdensome subfunctions.
Improve with the aid of architecture transforms.

8. Compare. Then narrow down your choice.

Concluding remark

Architecture design is more art than science.
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