Alexandria University
Faculty of Engineering

Electrical Engineering Department

CS x35: Computer Architectures
Optional Design Project

Overview:

In this projects you will implement a subset of the multicycle MIPS architecture in
HDL. You will implement a functioning outline of the multicycle processor for a small
set of instructions, including: decoding all the instructions you will encounter in the
projects, implementing most of the datapath, correct implementation of arithmetic and
logic operations, and FSM control for these instructions.

Requirements:

Write HDL code for the multicycle MIPS processor. The processor should be
compatible with the following top-level module. The mem module is used to hold both
instructions and data. Test your processor using the testbench that will be given in this
document.

module top(input logic clk, reset,

output logic [31:0] writedata, adr,

output logic memwrite);

logic [31:0] readdata;

// instantiate processor and memories

mips mips(clk, reset, adr, writedata, memwrite, readdata);

mem mem (clk, memwrite, adr, writedata, readdata):;
endmodule

module mem (input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);
logic [31:0] RAM[63:0];
initial
begin
Sreadmemh ("memfile.dat", RAM) ;
end
assign rd = RAM[a[31:2]]; // word aligned
always @ (posedge clk)
if (we)
RAM[a[31:2]] <= wd;

endmodule

Your design should contain a program counter, a combined data and code memories, a
register file, an ALU, and any other components needed, along with the instruction

decode and control circuits. Each instruction will be executed in an arbitrary number of
clock cycles as needed by the instruction. Your processor must correctly execute all of
the highlighted instructions in Table 1.

Table 1: MIPS Instruction Set

‘ Opcodes ‘ Example Assembly ‘ Semantics

add add $1, $2, $3 $1 = $2 + $3

sub sub $1, $2, $3 $1 = $2 - $3

add immediate addi $1, $2, 100 | $1 = $2 + 100

add unsigned addu $1, $2, $3 $1 = 32 + $3

subtract unsigned subu $1, $2, $3 $1 = $2 - $3

add imm. Unsigned addiu $1, $2, 100 | $1 = $2 + 100

multiply mult $2, $3 hi, 1o = $2 x $3

multiply unsigned multu $2, $3 hi, lo = $2 * $3

divide div $2, $3 lo = $2/%$3, hi = $2 mod $3
divide unsigned divu $2, $3 lo = $2/%$3, hi = $2 mod $3

move from hi mfhi $1 $1 = hi

move from low mflo $1 $1 = 1o

and and $1, $2, $3 $1 = $2 & $3

or or $1, $2, $3 $1 = $2 | $3

and immediate andi $1, $2, 100 $1 = $2 & 100

or immediate ori $1, $2, 100 $1 = %2 | 100

shift left logical s11 $1, %2, 10 $1 = $2 << 10

shift right logical srl $1, $2, 10 $1 = $2 >> 10

load word 1w $1, $2(100) $1 = ReadMem32($2 + 100)

store word sw $1, $2(100) WriteMem32($2 + 100, $1)

load halfword 1h $1, $2(100) $1 = SignExt(ReadMem16($2 + 100))
store halfword sh $1, $2(100) WriteMem16($2 + 100, $1)

load byte 1b $1, $2(100) $1 = SignExt(ReadMem8($2 + 100))
store byte sb $1, $2(100) WriteMem8($2 + 100, $1)

load upper immediate lui $1, 100 $1 = 100 << 16

branch on equal beq $1, $2, Label | if ($1 == $2) goto Label

branch on not equal bne $1, $2, Label | if ($1 != $2) goto Label

set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set on less than immediate | s1ti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = O
set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 =1 else $1 =0
set on less than immediate | sltui $1, $2, 100 | if ($2 < 100) $1 = 1 else $1 =0
jump j Label goto Label

jump register jr $31 goto $31

jump and link jal Label $31 = PC + 4; goto Label

Build your MIPS processor suing your preferred HDL language and you can use any
component implemented in the course textbook. The multicycle MIPS architecture and
main components you should build in your design are shown in Figure 1. You only need
to modify the processor architecture to support the instructions highlighted in Table 1.

CLK

PCWrite
Branch PCEn
lorD| Control | PCSrc

MemWrite| Unit | ALUControl,

ALUSIcB; o
op ALUSr(_:A
Funct |RedWrite
J
o =
& |3
z |2
u:)
CLK CLK CLK
CLK 1 CLK 1
WE WE3 A 3128 Zero
re™ecl Ad D Instr 2= Al RD1 - =
EN 1 A EN = A2 RD2 ALUResult o1
Instr / Data 2016 [10
Memory 1511 A3 .
CLK 1 Register PCJump
WD a
0 File
Data 1 WD3
270
ImmExt
= Sign Extend
25:0 (Addr)

S0: Fetc

lorD=0

S11: Jump,

Reset AluSrcA =0
ALUSrcB =01 ALUSIcA=0 _
ALUOp =00 ALUSrcB =11 Op=J
PCSrc = 00 ALUOp =00 PCSrc =10
IRWrite PCwrite
Op = BB Qp = ADDI
Op = LW P =BEQ
or Op = R-type
S2: MemAdr Op = sB Sé:
Execuje S8: Branch S9: aDDI
Executg
ALUSrcA=1

ALUSrcA=1 ALUSrcA=1 ALUSrcB =00 ALUSrcA=1
ALUSrcB =10 ALUSrcB =00 ALUOp =01 ALUSrcB =10

ALUOp =00 ALUOp =10 PCSrc =01 ALUOp =00

Branch
Qp = SW
.) S7: ALU
. 5: MemWrite Writeback S10: ADDI
MemRead Writebac

lorD =1 RegDst = 1 RegDst =0
MemV\;rite MemtoReg =0 MemtoReg =0

RegWrite RegWrite

S4: Mem
Writeback,
RegDst=0
MemtoReg =1
RegWrite

Figure 1: Multicycle MIPS Processor Architecture and controller’s FSM

Testing

Write a test program in MIPS assembly that fully tests all of the features you have
implemented. Our testing programs for this project will include a mixture of instructions
from Table 1. This is a critical step, and you will use the MIPS testbench given by the

textbook and shown in this section. The MIPS testbench loads a program into the
memories. The program in Figure 3 exercises some of the instructions by performing a
computation that should produce the correct answer only if all of the instructions are
functioning properly. Specifically, the program will write the value 7 to address 84 if it
runs correctly, and is unlikely to do so if the hardware is buggy. This is an example of
ad hoc testing. The machine code is stored in a hexadecimal file called memfile.dat,
which is loaded by the testbench during simulation. The file consists of the machine
code for the instructions, one instruction per line.

#mipstest.asm

David_Harris@hmc.edu, Sarah _Harris@hmc.edu 31 March 2012
i

Test the MIPS processor.

i add, sub, and, or, s1t, addi, 1w, sw, beq, j

If successful, it should write the value 7 to address 84

i3 Assembly Description Address Machine

main: addi $2, $0, 5 #initialize $2=5 0 20020005 20020005
addi $3, $0, 12 #initialize $3 =12 4 2003000c¢ 2003000c
addi $7, $3, -9 #initialize $7 =3 8 2067fFff7 2067fFff7
or $4, %7, %2 #$4=(30R5)=7 C 00e22025 00e22025
and $5, $3, $4 #3$5=(12AND7)=4 10 00642824 00642824
add $5, $5, $4 Fs5=4+7=11 14 00a42820 00a42820
beq $5, $7, end # shouldn't be taken 18 10a7000a 10a7000a
s1t $4, 33, $4 #$4=12<7=0 1c 0064202a 0064202a
beg $4, %0, around # should be taken 20 10800001 10800001
addi $5, $0, 0 # shouldn”t happen 24 20050000 20050000

around: sTt $4, $7, $2 #$4=3<5=1 28 00e2202a 00e2202a
add $7, $4, $5 F$7=1+11=12 2c 00853820 00853820
sub $7, $7, $2 f$7=12-5=7 30 00e23822 00e23822
sw $7, 68(%3) #0801=7 34 ac6/0044 ace/0044
Tw $2, 80(%0) #$2=1[80]=7 38 8c020050 8c020050
j end # should be taken 3c 08000011 08000011
addi $2, $0, 1 # shouldn't happen 40 20020001 20020001

end: sw o $2, 84(%0) Fwrite mem(84] =7 44 ac020054 ac020054

Figure 2: Assembly and machine code for MIPS test program

Documentation

The design document should include a block diagram showing all the major changes in
the given architecture. You need not completely draw wires for control logic signals,
but should indicate which components take control inputs, and give names to all control
signals. Also include a description of your control and instruction decoding logic. For
each control logic signal (or group of related control logic signals) you should provide
(a) a brief description of what the signal does, e.g. what the values of the control signal
mean; and (b) a truth table showing what value the signal takes for each possible
opcode.

