Alexandria University o HuCuy dadla

Faculty of Engineering Juaigl) 4K
Electrical Engineering Department A el dlnigl) ad
Final Exam, June 2016 (Y0 T Aig) QI sl ol Jaadll dlgs (laial
Course Title and Code Number: 4l 52580 a8 15) jaall ol
Computer Architectures (CS x35) (CS x35) wulall il jlaza
Fourth Year (Communications and Electronics) (g il g Y lail) Zagl) Al all Aol
Time Allowed: 3 hours Alela ¥ o)
Attempt all questions: (75 marks)

You can either just draw parts needing modifications in your answer sheet, or you
can draw the required modifications on the printed figures in the exam papers and
attach them to your answer sheet.

Question 1: (20 marks)

a) Modify the single-cycle MIPS processor shown in Figure 1 to implement each of the following
instructions. Indicate the changes required to the datapath, control unit, and control signals
indicated by Table 1

i. sll ii. sllv ii. slti iv. jalr

b) Modify the multi-cycle MIPS processor shown in Figure 2 to implement each of the following
instructions. Indicate the changes required to the datapath, control unit, and control FSM indicated
by Figure 3. Describe any other changes that are required.

i. bne ii. 1b ii. 7 iv. jalr

c) Explain how to extend the pipelined MIPS processor shown in Figure 4 to handle the addi and j
instructions. Give particular attention to how the pipeline is flushed when a jump takes place.

d) Can you modify the Single-cycle processor; Multicycle processor; and Pipelined processors to
implement the following instructions. If your answer is yes, indicate the needed modifications to
both the datapath and control units. If your answer is no, indicate why and show how these
instructions can be implemented using the existing MIPS ISA.

i. beq rs, rt, rd #if reg(rs)==reg(rt) then PC=reg(rd) else NOP;
ii. beg rs, imml5:0, Loop
#1if reg(rs)==signextend(imml5:0) then PC=BTA (Loop) else NOP;

Question 2 (20 marks)

a) How many cycles are required to run the following program on the single-cycle and multicycle
MIPS processors? What is the CPI of this program on both processors?

add $s0, $0, SO # 1 =0
add $sl1, $0, SO # sum = 0
addi $t0, $0, 10 # S$t0 = 10
loop:
slt $tl, $s0, S$t0 # if (1 < 10), S$tl = 1, else $tl = 0
beg $tl, $0, done # if $tl == (1 > 10), branch to done
add $s1, $sl, $sO # sum = sum + 1
addi $s0, $s0, 1 # increment 1
J loop
done:

Page 1 of 8

b)

c)

d)

How many cycles are required for the pipelined MIPS processor to issue all of the instructions for
the program in (a)? What is the CPI of the processor on this program?
The pipelined MIPS processor is running the following program. Which registers are being written,
and which are being read on the fifth cycle for the processor: (i) without a hazard unit, (ii) having
a hazard unit.
addi $sl, $s2, 5
sub $t0, $tl, $t2
lw $t3, 15($sl)
sw $t5, 72(st0)
or $t2, $s4, S$sb5
A standard benchmark consists of approximately 20% loads, 10% stores, 15% branches, 5%
jumps, and 50% R-type instructions. Assume that 30% of the loads are immediately followed by
an instruction that uses the result, requiring a stall, and that 25% of the branches are mispredicted,
requiring a flush. Assume that jumps always flush the subsequent instruction.
i. Compute the average CPI of the single-cycle, multicycle, and pipelined processors.
ii. Compare the execution time for a program with 10 billion instructions on the three
processors. The delay of various circuit elements is shown in Table 2.
iii. Indicate only the most important parameter needing optimization to improve the overall
performance of each processor from both the fabrication technology and computer
architecture point of views.

Question 3: (20 marks)
a) A 16-word cache has the following parameters: b, block size given in numbers of words; S, number

b)

of sets; N, number of ways; and A, number of address bits. Consider the following repeating
sequence of 1w addresses (given in hexadecimal)
74 A0 78 38C AC 84 88 8C 7C 34 38 13C 388 18C
Assuming least recently used (LRU) replacement for associative caches, determine the effective
miss rate if the sequence is input to the following caches.
i. direct mapped cache, b = 1 word
ii. fully associative cache, b = 2 words
iii. two-way set associative cache, b = 2 words
iv. direct mapped cache, b = 4 words
You are building an instruction cache for a MIPS processor. It has a total capacity of 4C = 2¢*2
bytes. It is N = 2"-way set associative (N > 8), with a block size of b = 2° bytes (b > 8). Give your
answers to the following questions in terms of these parameters.
I. Which bits of the address are used to select a word within a block?
ii. Which bits of the address are used to select the set within the cache?
iii. How many bits are in each tag?
iv. How many tag bits are in the entire cache?
Consider a cache with the following parameters:
N (associativity) = 2, b (block size) = 2 words, W (word size) = 32 bits, C (cache size) = 32 K
words, A (address size) = 32 bits. You need to consider only word addresses.

Page 2 of 8

Show the tag, set, block offset, and byte offset bits of the address. State how many bits are
needed for each field?

What is the size of all the cache tags in bits?

Suppose each cache block also has a valid bit (V) and a dirty bit (D). What is the size of
each cache set, including data, tag, and status bits?

Design the cache using the building blocks in Figure 5 and a small number of two-input
logic gates. The cache design must include tag storage, data storage, address comparison,
data output selection, and any other parts you feel are relevant. Note that the multiplexer
and comparator blocks may be any size (n or p bits wide, respectively), but the SRAM
blocks must be 16K x 4 bits. Be sure to include a neatly labeled block diagram. You need
only design the cache for reads.

d) Consider a virtual memory system that can address a total of 2°° bytes. You have unlimited hard
drive space, but are limited to 2 GB of semiconductor (physical) memory. Assume that virtual and
physical pages are each 4 KB in size.

I.
ii.
iii.
iv.
V.
Vi.

How many bits is the physical and virtual addresses?

What is the number of physical and virtual pages in this system?

How many bits are the virtual and physical page numbers?

How many page table entries will the page table contain?

How many bytes long is each page table entry taking the valid bit into consideration?
Sketch the layout of the page table. What is the total size of the page table in bytes?

Question 4:

(15 marks)

a) Arithmetic mean X and standard deviation o are defined as

Assume samples Xp arrive sequentially one at a time. More specifically, each clock cycle sees a

new w-bit data item appear. Find a dedicated architecture that computes X and o2 after N clock
cycles and where N is some integer power of two, say 32. Definitions in the above equations
suggest one needs to store up to N—/ past values of X. Can you make do with less? What
mathematical properties do you call on? What is the impact on datapath word width? This is
actually an old problem the solution of which has been made popular by early scientific pocket
calculators such as the HP-45, for instance. Yet, it nicely shows the difference between a crude
and a more elaborate way of organizing a computation.
b) Consider the third-order correlator in Figure 6.

To boost performance, try to retime and pipeline the isomorphic architecture without prior
reversal of the adder chain. Compare the obtained circuit wit Figure 6(b). Give estimates
for datapath resources, cycles per data item, longest path, latency, and control overhead?
Next assume your prime concern is area occupation. What architectures qualify?

Page 3 of 8

linsay

bayoyway

+
youeigod pueix3 ubis
. psniada|t =
ovBayallm
_. LLIGE
Ol 9t:02
ClIE | €aM
am T J9)s1bay
Kiowapy 1 _\F_l ey .
ee)
1 ay n_< _N - 8018 _Iu.._ ¢ad v foroz uononJsu|
|m_ elegpeay Inseyny |C U] ad v
aM A 0187 = VoIS +ad £aM _.4/(12:52
T |
M0 M10
alipbe
1sabed| joung —
aASNIV do
9<jonuooNv .
21594 |Q youeiq
AIMWB N nun
joau0)

-
e A\

Figure 1: Single-cycle MIPS processor

Page 4 of 8

N3

puaixg ubis _| e
wwubis _
1
eam |m__l eleqg
b= am
I F— MT10
—1 a ay €V _Iﬂ iy Kiowapy
j > mohm_/ Lob—+ 198162y ~Jor0z ejeq/nsu|
I
|_I\A”:__m,o:4<_mw_ nseuNTv | Q0] g cad ev oroe _zm‘ au Y 6<F_\P__|
1su|
510 0187 =~ o v W o I [® w| % NL ELNAN
e Q r— 5| g %10 !
010 X1 gl B 010
s o
"3 N
alpbay ound =5
do 5
VoISV 9z1e
lg019nV Sl MY
“Conuopny| wun |SBMMWBN
2180d | 1943U0 | quo|
u3nd youelig
SIMOd f|$V|\

M10

Od

MTO

Od

Figure 2: Multicycle MIPS processor

Page 5 of 8

Table 1: Single cycle MIPS processor control signals

Instruct | Opso | RegWr | RegD | AluS | Bran | MemW | Memto | ALUO | Jum
ion ite st rc ch rite Reg P10 p
R-type | 000000 1 1 0 0 0 0 10 0
1w 100011 1 0 1 0 0 1 00 0
SwW 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
J 000100 0 X X X 0 X XX 1
SO0:Fetch S1:Decode
lorD=0
Reset AluSrcA=0
ALUSrcB=01 ALUSrcA=0
ALUOp=00 ALUSrcB=11
PCSrc=0 ALUOp=00
Op=ADDI
Op=LW Op=BEQ
or Op: R'type
S2:MemAdr Op=SW S6:Execute S0:ADDI
S8:Branch Escols
ALUSrcA=1
ALUSIrcA =1 ALUSIcA=1 ALUSrcB=00 ALUSrcA=1
ALUSrcB=10 ALUSrcB=00 ALUOp=01 ALUSrcB=10
ALUOp=00 ALUOp=10 PCSrc=1 ALUOp=00
Branch
Op=SW
Op=tv S5:MemWrite \?V-’r;?e%)gck S10:ADDI
S3:MemRead Writeback
lorD=1 RegDst=1 RegDst=0
Mem\/\;rite MemtoReg=0 MemtoReg=0
RegWrite RegWrite
S4:Mem
Writeback
RegDst=0
MemtoReg=1
RegWrite

Figure 3: Multicycle MIPS controller FSM

Page 6 of 8

jun piezey

3 3k AE E 2 B 2 g z
£ gle El2 B3 s 2|3 2 s -
= =% 2|5 c| e B g|s & 2 @«
o o|E SIE |2 gl2 @

@ ol E c's S| o S| o
o o W.. = [Tk w |
minsay
quoueigdd
— — - =
3 Qaysnidod = 4vsnidOd
=
>>
14
Jwwijubls quwjubis
(] .
] [TETY
*pBodeM ' WBeHalM 360HBIuM Lo e A
) L] e
lq MINONTV 3sy lzise
| am Welegalum Jejegaium ..3”““00_ eam
Kowaw) —_vl eV Aiowaw
1 D.“awn.(0] eay [A M ey uonanAsu|
Melegpesy winonv _ I L oy v H
0 Lay LY == Qusu 40d Od
IM A [€IM A |'F% RT
T Q M¥10
V-JO la2:50d, _asz v—.._o !1_0
-— (\
ayoueig
Jisqbey aisgbay ouny B
JoUsSNMV aasnv do p—
AT
?23j01u00N Y “zgjonuodN v
Walumwap Jalumway asiumwapy wun
MbBayoiuspy whayonwsyy 36ayouen Qbagojwapy |o1u0n
Mewmbay RW wewmbey $V 3e1umbey $ aembey
10 A0 A0

Figure 4: Pipelined MIPS Processor

Page 7 of 8

x(k)

Table 2: Delays of MIPS circuit elements

Element Parameter Delay (ps)
register clk-to-Q e 20
register setup Lserup 30
multiplexer tnux 25
ALU taLy 350
memory read tmem 250
register file read tRFread 150
register file setup fgpyenp 30

14, | 16Kx4 —0
SRAM

,|/4

11

Figure 5: Cache building blocks

(a) isomorphic architecture,

(b) retimed, pipelined architecture

Figure 6: Third-order correlator.

Page 8 of 8

MIPS Reference Cheat Sheet

INSTSTRUCTION SET (SUBSET)

Name (format, op, funct) Syntax

add (R,0,32) add rd,rs,rt
add immediate (1,8,na) addi rt,rs,imm
add immediate unsigned (1,9,na) addiu rt,rs,imm
add unsigned (R,0,33) addu rd,rs,rt

and (R,0,36) and rd,rs,rt
and immediate (1,12,na) andi rt,rs,imm
branch on equal (1,4,na) beq rs,rt,label
branch on not equal (1,5,na) bne rs,rt,label
jump and link register (R,0,9) jalr rs

jump register (R,0,8) jr s

jump (J,2,na) 3j label

jump and link (J,3,na) jal 1label

load byte (1,32,na) 1b rt,imm(rs)

load byte unsigned (1,36,na) 1bu
load upper immediate (I,14,na) lui

rt,imm(rs)
rt,imm

load word (1,35,na) 1w rt,imm(rs)
multiply, 32-bit result (R,28,2) mul «rd,rs,rt
nor (R,0,39) nor rd,rs,rt
or (R,0,37) or rd,rs,rt
or immediate (1,13,na) ori rt,rs,imm
set less than (R,0,42) slt rd,rs,rt

set less than unsigned (R,0,43)
set less than immediate (1,10,na) s1ti rt,rs,imm
set less than immediate
unsigned (1,11,na)
shift left logical (R,0,0) sll rd,rt,shamt
shift left logical variable (R,0,4) sllv rd,rt,rs
shift right arithmetic (R,0,3) sra rd,rt,shamt

sltu rd,rs,rt

sltiu rt,rs,imm

shift right logical (R,0,2) srl rd,rt,shamt
shift right logical variable (R,0,6) srlv rd,rt,rs
store byte (1,40,na) sb rt,imm(rs)
store word (1,43,na) sw rt,imm(rs)
subtract (R,0,34) sub rd,rs,rt
subtract unsigned (R,0,35) subu rd,rs,rt
xor (R,0,38) xor rd,rs,rt

xor immediate (I,14,na) xori rt,rs,imm

Definitions

Operation

reg(rd) := reg(rs) + reg(rt);

reg(rt) := reg(rs) + signext(imm);

reg(rt) := reg(rs) + signext(imm);

reg(rd) :=reg(rs) + reg(rt);

reg(rd) := reg(rs) & reg(rt);

reg(rt) := reg(rs) & zeroext(imm);

if reg(rs) == reg(rt) then PC = BTA else NOP;
if reg(rs) != reg(rt) then PC = BTA else NOP;
Sra:=PC+4; PC:=reg(rs);

PC :=reg(rs);

PC:=JTA;

Sra:=PC+4; PC:=ITA;

ﬂ
@
0
=
st
i
N
o
1
o
¢}
x
=
3
)
3
=
[0}
LR
=
L
+
@,
@
=}
I
x
=
3
3
=
e

(

(

(
reg(rt) := mem[reg(rs) + signext(imm)];
reg(rd) := reg(rs) * reg(rt);
reg(rd) := not(reg(rs) | reg(rt));
reg(rd) :=reg(rs) | reg(rt);
reg(rt) := reg(rs) | zeroext(imm);
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rd) := reg(rt) << shamt;
reg(rd) := reg(rt) << reg(rs,,);
reg(rd) := reg(rt) >>> shamt;
reg(rd) := reg(rt) >> shamt;

reg(rd) := reg(rt) >> reg(rs,,);

mem([reg(rs) + signext(imm)], := reg(rt),o,
mem(reg(rs) + signext(imm)] := reg(rt);
reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) reg(rt);

reg(rt) := rerg(rs) » zeroext(imm);

= Jump to target address: JTA = concat((PC + 4);,.,4, address(label), 00,)

= Branch target address: BTA=PC+4 +imm * 4

Clarifications
= All numbers are given in decimal form (base 10).

= Function signext(x) returns a 32-bit sign extended value of x in two’s complement form.

= Function zeroext(x) returns a 32-bit value, where zero are added to the most significant side of x.
= Function concat(x, y, ..., z) concatenates the bits of expressions x, vy, ..., z.

" Subscripts, for instance Xg,, means that bits with index 8 to 2 are spliced out of the integer X.

= Function address(x) means the address of label x.

= NOP and na means “no operation” and “not applicable”, respectively.
= shamt is an abbreviation for “shift amount”, i.e. how much bit shifting that should be done.

INSTRUCTION FORMAT

R-Type
31 26 25 21 20 16 15 11 10 65 0
| op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits
I-Type
31 26 25 21 20 16 15 0
| op | rs | rt | immediate |
6 bits 5 bits 5 bits 16 bits
J-Type 31 26 25 0
| op | address |
6 bits 26 bits

REGISTERS

Name Number Description
Szero 0 constant value 0
Sat 1 assembler temp
Sv0 2 function return
Svl 3 function return
$a0 4 argument

Sal 5 argument

$a2 6 argument

$a3 7 argument

Sto 8 temporary value
Stl 9 temporary value
St2 10 temporary value
St3 11 temporary value
Sta 12 temporary value
St5 13 temporary value
St6 14 temporary value
St7 15 temporary value
$sO 16 saved temporary
Ss1 17 saved temporary
$s2 18 saved temporary
$s3 19 saved temporary
Ss4 20 saved temporary
$s5 21 saved temporary
$s6 22 saved temporary
Ss7 23 saved temporary
St8 24 temporary value
St9 25 temporary value
Sko 26 reserved for OS
Skl 27 reserved for OS
Sgp 28 global pointer
Ssp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address
MIPS Reference Cheat
Sheet

By David Broman
KTH Royal Institute of Technology

If you find any errors or have any
feedback on this document, please send
me an email: dbro@kth.se

Version 1.0, December 19, 2014

	Final_2016
	mips-ref-cheat-sheet

