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1. Assume that we have a function for an application of the form  F (i , p ), 

which gives the fraction of time that exactly i  processors are usable given 

that a total of p  processors is available. That means that      

                                 
Assume that when i  processors are in use, the applications run i  times 

faster. Rewrite Amdahl’s law so it gives the speedup as a function of p  

for some application. 

 

2. In this exercise, we examine the effect of the interconnection network 

topology on the clock cycles per instruction (CPI)  of programs running 

on a 64-processor distributed-memory multiprocessor. The processor 

clock rate is 3.3 GHz and the base CPI of an application with all 

references hitting in the cache is 0.5. Assume that 0.2% of the instructions 

involve a remote communication reference. The cost of a remote 

communication reference is (100 + 10h) ns, where h is the number of 

communication network hops that a remote reference has to make to the 

remote processor memory and back. Assume that all communication links 

are bidirectional. 

 

a. Calculate the worst-case remote communication cost when the 64 

processors are arranged as a ring, as an 8X8 processor grid, or as a 

hypercube. (Hint:  The longest communication path on a 2n hypercube 

has n links.) 

b. Compare the base CPI of the application with no remote 

communication to the CPI achieved with each of the three topologies 

in part (a). 

c. How much faster is the application with no remote communication 

compared to its performance with remote communication on each of 

the three topologies in part (a). 

 



3. Show how the basic snooping protocol of Figure 1 can be changed for a 

write-through cache. What is the major hardware functionality that is not 

needed with a write-through cache compared with a write-back cache? 

           

         
                                                Figure 1 

 

4. Add a clean exclusive state to the basic snooping cache coherence 

protocol Figure 1. Show the protocol in the format of Figure 1. 

 

5. One proposed solution for the problem of false sharing is to add a 

 valid bit per word. This would allow the protocol to invalidate a word 

without removing the entire block, letting a processor keep a portion of a 

block in its cache while another processor writes a different portion of 

the block. What extra complications are introduced into the basic 

snooping cache coherence protocol Figure 1 if this capability is included? 

Remember to consider all possible protocol actions. 

 

 

 

 

 



6. This exercise studies the impact of aggressive techniques to exploit 

instruction-level parallelism in the processor when used in the design of 

shared-memory multiprocessor systems. Consider two systems identical 

except for the processor. System A uses a processor with a simple single-

issue in-order pipeline, while system B uses a processor with four-way 

issue, out-of-order execution, and a reorder buffer with 64 entries. 

 

a. Following the convention of Figure 2, let us divide the execution time 

into instruction execution, cache access, memory access, and other 

stalls. How would you expect each of these components to differ 

between system A and system B? 

b. Based on the discussion of the behavior of the On-Line Transaction 

Processing (OLTP) workload in Section 5.3, what is the important 

difference between the OLTP workload and other benchmarks that 

limits benefit from a more aggressive processor design? 

                             
                                                              Figure 2 

 

7. How would you change the code of an application to avoid false sharing? 

What might be done by a compiler and what might require programmer 

directives? 

 

8. Assume a directory-based cache coherence protocol. The directory 

currently has information that indicates that processor P1 has the data in 

“exclusive” mode. If the directory now gets a request for the same cache 

block from processor P1, what could this mean? What should the 

directory controller do? (Such cases are called race conditions  and are 

the reason why coherence protocols are so difficult to design and verify.) 



9. A directory controller can send invalidates for lines that have been 

replaced by the local cache controller. To avoid such messages and to 

keep the directory consistent, replacement hints are used. Such messages 

tell the controller that a block has been replaced. Modify the directory 

coherence protocol of Section 5.4 to use such replacement hints. 

 

10.  One downside of a straightforward implementation of directories using 

fully populated bit vectors is that the total size of the directory 

information scales as the product (i.e., processor count x memory blocks). 

If memory is grown linearly with processor count, the total size of the 

directory grows quadratically in the processor count. In practice, because 

the directory needs only 1 bit per memory block (which is typically 32 to 

128 bytes), this problem is not serious for small to moderate processor 

counts. For example, assuming a 128-byte block, the amount of directory 

storage compared to main memory is the processor count/1024, or about 

10% additional storage with 100 processors. This problem can be avoided 

by observing that we only need to keep an amount of information that is 

proportional to the cache size of each processor. We explore some 

solutions in these exercises. 

 

a. One method to obtain a scalable directory protocol is to organize the 

multiprocessor as a logical hierarchy with the processors as leaves of 

the hierarchy and directories positioned at the root of each subtree. 

The directory at each subtree records which descendants cache which 

memory blocks, as well as which memory blocks with a home in that 

subtree are cached outside the subtree. Compute the amount of storage 

needed to record the processor information for the directories, 

assuming that each directory is fully associative. Your answer should 

also incorporate both the number of nodes at each level of the 

hierarchy as well as the total number of nodes. 

 

 

b. An alternative approach to implementing directory schemes is to 

implement bit vectors that are not dense. There are two strategies; one 

reduces the number of bit vectors needed, and the other reduces the 

number of bits per vector. Using traces, you can compare these 

schemes. First, implement the directory as a four-way set associative 

cache storing full bit vectors, but only for the blocks that are cached 

outside the home node. If a directory cache miss occurs, choose a 

directory entry and invalidate the entry. Second, implement the 



directory so that every entry has 8 bits. If a block is cached in only one 

node outside its home, this field contains the node number. If the block 

is cached in more than one node outside its home, this field is a bit 

vector, with each bit indicating a group of eight processors, at least 

one of which caches the block. Using traces of 64-processor 

execution, simulate the behavior of these schemes. Assume a perfect 

cache for non-shared references so as to focus on coherency behavior. 

Determine the number of extraneous invalidations as the directory 

cache size in increased. 

 

11.  Implement the classical test-and-set instruction using the load-linked/ 

store-conditional instruction pair. 

 

12.  One performance optimization commonly used is to pad synchronization 

variables to not have any other useful data in the same cache line as the 

synchronization variable. Construct a pathological example when not 

doing this can hurt performance. Assume a snooping write invalidate 

protocol. 

 

13.  One possible implementation of the load-linked/store-conditional pair for 

multicore processors is to constrain these instructions to using uncached 

memory operations. A monitor unit intercepts all reads and writes from 

any core to the memory. It keeps track of the source of the load-linked 

instructions and whether any intervening stores occur between the load-

linked and its corresponding store-conditional instruction. The monitor 

can prevent any failing store conditional from writing any data and can 

use the interconnect signals to inform the processor that this store failed. 

Design such a monitor for a memory system supporting a four-core 

symmetric multiprocessor (SMP). Take into account that, generally, read 

and write requests can have different data sizes (4, 8, 16, 32 bytes). Any 

memory location can be the target of a load-linked/ store-conditional pair, 

and the memory monitor should assume that load-linked/ store-

conditional references to any location can, possibly, be interleaved with 

regular accesses to the same location. The monitor complexity should be 

independent of the memory size. 

 

 

 

 

 



14.  As discussed in Section 5.6, the memory consistency model provides a 

specification of how the memory system will appear to the programmer. 

Consider the following code segment, where the initial values are  

 

A=flag=C=0. 

P1                                             P2  

A= 2000                                   while (flag ==1){;} 

flag=1                                       C=A 

 

a. At the end of the code segment, what is the value you would expect 

for C? 

 

b. A system with a general-purpose interconnection network, a directory- 

based cache coherence protocol, and support for nonblocking loads 

generates a result where C is 0. Describe a scenario where this result is 

possible. 

 

c. If you wanted to make the system sequentially consistent, what are the 

key constraints you would need to impose? 

 

Assume that a processor supports a relaxed memory consistency 

model. A relaxed consistency model requires synchronization to be 

explicitly identified. Assume that the processor supports a “barrier” 

instruction, which ensures that all memory operations preceding the 

barrier instruction complete before any memory operations following 

the barrier are allowed to begin. Where would you include barrier 

instructions in the above code segment to ensure that you get the 

“intuitive results” of sequential consistency? 

 

15.  Prove that in a two-level cache hierarchy, where L1 is closer to the 

processor, inclusion is maintained with no extra action if L2 has at least 

as much associativity as L1, both caches use line replaceable unit (LRU) 

replacement, and both caches have the same block sizes. 

 

16.  When trying to perform detailed performance evaluation of a 

multiprocessor system, system designers use one of three tools: analytical 

models, trace-driven simulation, and execution-driven simulation. 

Analytical models use mathematical expressions to model the behavior of 

programs. Trace-driven simulations run the applications on a real 

machine and generate a trace, typically of memory operations. These 



traces can be replayed through a cache simulator or a simulator with a 

simple processor model to predict the performance of the system when 

various parameters are changed. Execution-driven simulators simulate the 

entire execution maintaining an equivalent structure for the processor 

state and so on. What are the accuracy and speed trade-offs between these 

approaches? 

 

 


