
 Alexandria University

 Faculty of Engineering
 Computer and Communications Department

 CC322: CC423: Advanced Computer Architecture
 Sheet 4: Thread-Level Parallelism

1. Assume that we have a function for an application of the form F (i , p),

which gives the fraction of time that exactly i processors are usable given

that a total of p processors is available. That means that

Assume that when i processors are in use, the applications run i times

faster. Rewrite Amdahl’s law so it gives the speedup as a function of p

for some application.

2. In this exercise, we examine the effect of the interconnection network

topology on the clock cycles per instruction (CPI) of programs running

on a 64-processor distributed-memory multiprocessor. The processor

clock rate is 3.3 GHz and the base CPI of an application with all

references hitting in the cache is 0.5. Assume that 0.2% of the instructions

involve a remote communication reference. The cost of a remote

communication reference is (100 + 10h) ns, where h is the number of

communication network hops that a remote reference has to make to the

remote processor memory and back. Assume that all communication links

are bidirectional.

a. Calculate the worst-case remote communication cost when the 64

processors are arranged as a ring, as an 8X8 processor grid, or as a

hypercube. (Hint: The longest communication path on a 2n hypercube

has n links.)

b. Compare the base CPI of the application with no remote

communication to the CPI achieved with each of the three topologies

in part (a).

c. How much faster is the application with no remote communication

compared to its performance with remote communication on each of

the three topologies in part (a).

3. Show how the basic snooping protocol of Figure 1 can be changed for a

write-through cache. What is the major hardware functionality that is not

needed with a write-through cache compared with a write-back cache?

 Figure 1

4. Add a clean exclusive state to the basic snooping cache coherence

protocol Figure 1. Show the protocol in the format of Figure 1.

5. One proposed solution for the problem of false sharing is to add a

 valid bit per word. This would allow the protocol to invalidate a word

without removing the entire block, letting a processor keep a portion of a

block in its cache while another processor writes a different portion of

the block. What extra complications are introduced into the basic

snooping cache coherence protocol Figure 1 if this capability is included?

Remember to consider all possible protocol actions.

6. This exercise studies the impact of aggressive techniques to exploit

instruction-level parallelism in the processor when used in the design of

shared-memory multiprocessor systems. Consider two systems identical

except for the processor. System A uses a processor with a simple single-

issue in-order pipeline, while system B uses a processor with four-way

issue, out-of-order execution, and a reorder buffer with 64 entries.

a. Following the convention of Figure 2, let us divide the execution time

into instruction execution, cache access, memory access, and other

stalls. How would you expect each of these components to differ

between system A and system B?

b. Based on the discussion of the behavior of the On-Line Transaction

Processing (OLTP) workload in Section 5.3, what is the important

difference between the OLTP workload and other benchmarks that

limits benefit from a more aggressive processor design?

 Figure 2

7. How would you change the code of an application to avoid false sharing?

What might be done by a compiler and what might require programmer

directives?

8. Assume a directory-based cache coherence protocol. The directory

currently has information that indicates that processor P1 has the data in

“exclusive” mode. If the directory now gets a request for the same cache

block from processor P1, what could this mean? What should the

directory controller do? (Such cases are called race conditions and are

the reason why coherence protocols are so difficult to design and verify.)

9. A directory controller can send invalidates for lines that have been

replaced by the local cache controller. To avoid such messages and to

keep the directory consistent, replacement hints are used. Such messages

tell the controller that a block has been replaced. Modify the directory

coherence protocol of Section 5.4 to use such replacement hints.

10. One downside of a straightforward implementation of directories using

fully populated bit vectors is that the total size of the directory

information scales as the product (i.e., processor count x memory blocks).

If memory is grown linearly with processor count, the total size of the

directory grows quadratically in the processor count. In practice, because

the directory needs only 1 bit per memory block (which is typically 32 to

128 bytes), this problem is not serious for small to moderate processor

counts. For example, assuming a 128-byte block, the amount of directory

storage compared to main memory is the processor count/1024, or about

10% additional storage with 100 processors. This problem can be avoided

by observing that we only need to keep an amount of information that is

proportional to the cache size of each processor. We explore some

solutions in these exercises.

a. One method to obtain a scalable directory protocol is to organize the

multiprocessor as a logical hierarchy with the processors as leaves of

the hierarchy and directories positioned at the root of each subtree.

The directory at each subtree records which descendants cache which

memory blocks, as well as which memory blocks with a home in that

subtree are cached outside the subtree. Compute the amount of storage

needed to record the processor information for the directories,

assuming that each directory is fully associative. Your answer should

also incorporate both the number of nodes at each level of the

hierarchy as well as the total number of nodes.

b. An alternative approach to implementing directory schemes is to

implement bit vectors that are not dense. There are two strategies; one

reduces the number of bit vectors needed, and the other reduces the

number of bits per vector. Using traces, you can compare these

schemes. First, implement the directory as a four-way set associative

cache storing full bit vectors, but only for the blocks that are cached

outside the home node. If a directory cache miss occurs, choose a

directory entry and invalidate the entry. Second, implement the

directory so that every entry has 8 bits. If a block is cached in only one

node outside its home, this field contains the node number. If the block

is cached in more than one node outside its home, this field is a bit

vector, with each bit indicating a group of eight processors, at least

one of which caches the block. Using traces of 64-processor

execution, simulate the behavior of these schemes. Assume a perfect

cache for non-shared references so as to focus on coherency behavior.

Determine the number of extraneous invalidations as the directory

cache size in increased.

11. Implement the classical test-and-set instruction using the load-linked/

store-conditional instruction pair.

12. One performance optimization commonly used is to pad synchronization

variables to not have any other useful data in the same cache line as the

synchronization variable. Construct a pathological example when not

doing this can hurt performance. Assume a snooping write invalidate

protocol.

13. One possible implementation of the load-linked/store-conditional pair for

multicore processors is to constrain these instructions to using uncached

memory operations. A monitor unit intercepts all reads and writes from

any core to the memory. It keeps track of the source of the load-linked

instructions and whether any intervening stores occur between the load-

linked and its corresponding store-conditional instruction. The monitor

can prevent any failing store conditional from writing any data and can

use the interconnect signals to inform the processor that this store failed.

Design such a monitor for a memory system supporting a four-core

symmetric multiprocessor (SMP). Take into account that, generally, read

and write requests can have different data sizes (4, 8, 16, 32 bytes). Any

memory location can be the target of a load-linked/ store-conditional pair,

and the memory monitor should assume that load-linked/ store-

conditional references to any location can, possibly, be interleaved with

regular accesses to the same location. The monitor complexity should be

independent of the memory size.

14. As discussed in Section 5.6, the memory consistency model provides a

specification of how the memory system will appear to the programmer.

Consider the following code segment, where the initial values are

A=flag=C=0.

P1 P2

A= 2000 while (flag ==1){;}

flag=1 C=A

a. At the end of the code segment, what is the value you would expect

for C?

b. A system with a general-purpose interconnection network, a directory-

based cache coherence protocol, and support for nonblocking loads

generates a result where C is 0. Describe a scenario where this result is

possible.

c. If you wanted to make the system sequentially consistent, what are the

key constraints you would need to impose?

Assume that a processor supports a relaxed memory consistency

model. A relaxed consistency model requires synchronization to be

explicitly identified. Assume that the processor supports a “barrier”

instruction, which ensures that all memory operations preceding the

barrier instruction complete before any memory operations following

the barrier are allowed to begin. Where would you include barrier

instructions in the above code segment to ensure that you get the

“intuitive results” of sequential consistency?

15. Prove that in a two-level cache hierarchy, where L1 is closer to the

processor, inclusion is maintained with no extra action if L2 has at least

as much associativity as L1, both caches use line replaceable unit (LRU)

replacement, and both caches have the same block sizes.

16. When trying to perform detailed performance evaluation of a

multiprocessor system, system designers use one of three tools: analytical

models, trace-driven simulation, and execution-driven simulation.

Analytical models use mathematical expressions to model the behavior of

programs. Trace-driven simulations run the applications on a real

machine and generate a trace, typically of memory operations. These

traces can be replayed through a cache simulator or a simulator with a

simple processor model to predict the performance of the system when

various parameters are changed. Execution-driven simulators simulate the

entire execution maintaining an equivalent structure for the processor

state and so on. What are the accuracy and speed trade-offs between these

approaches?

