
	
 	
 	
 	
 	
 	
 	
 	
 Alexandria	
 University

 Faculty of Engineering
Computer and Communications Department

	
 	
 	
 	
 CC322:	
 CC423:	
 Advanced	
 Computer	
 Architecture	

Sheet	
 3:	
 Instruction-­‐Level	
 Parallelism	
 and	
 Its	
 Exploitation	

1. What would be the baseline performance (in cycles, per loop
iteration) of the code sequence in Figure 1 if no new instruction’s
execution could be initiated until the previous instruction’s execution
had completed? Ignore front-end fetch and decode. Assume for now
that execution does not stall for lack of the next instruction, but only
one instruction/cycle can be issued. Assume the branch is taken, and
that there is a one-cycle branch delay slot.

Figure 1

2. Think about what latency numbers really mean—they indicate the
number of cycles a given function requires to produce its output,
nothing more. If the overall pipeline stalls for the latency cycles of
each functional unit, then you are at least guaranteed that any pair of
back-to-back instructions (a “producer” followed by a “consumer”)
will execute correctly. But not all instruction pairs have a
producer/consumer relationship. Sometimes two adjacent instructions
have nothing to do with each other. How many cycles would the loop
body in the code sequence in Figure 1 require if the pipeline detected
true data dependences and only stalled on those, rather than blindly
stalling everything just because one functional unit is busy? Show the

code with <stall > inserted where necessary to accommodate stated
latencies. (Hint: An instruction with latency +2 requires two <stall >
cycles to be inserted into the code sequence. Think of it this way: A
one-cycle instruction has latency 1 + 0, meaning zero extra wait
states. So, latency 1 + 1 implies one stall cycle; latency 1 + N has N
extra stall cycles.

3. Consider a multiple-issue design. Suppose you have two execution
pipelines, each capable of beginning execution of one instruction per
cycle, and enough fetch/decode bandwidth in the front end so that it
will not stall your execution. Assume results can be immediately
forwarded from one execution unit to another, or to itself. Further
assume that the only reason an execution pipeline would stall is to
observe a true data dependency. Now how many cycles does the loop
require?

4. Reorder the instructions to improve performance of the code in Figure
1. Assume the two-pipe machine in Exercise 3 has been dealt with
successfully. Just worry about observing true data dependences and
functional unit latencies for now. How many cycles does your
reordered code take?

5. Every cycle that does not initiate a new operation in a pipe is a lost
opportunity, in the sense that your hardware is not living up to its
potential.

a. In your reordered code from Exercise 4, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new
op)?

b. Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost
opportunities for performance. Hand-unroll two iterations of
the loop in your reordered code from Exercise 4.

c. What speedup did you obtain? (For this exercise, just color the
N + 1 iteration’s instructions green to distinguish them from
the Nth iteration’s instructions; if you were actually unrolling
the loop, you would have to reassign registers to prevent
collisions between the iterations.)

6. In this exercise, we will look at the simple register renaming: when
the hardware register renamer sees a source register, it substitutes the

destination T register of the last instruction to have targeted that
source register. When the rename table sees a destination register, it
substitutes the next available T for it, but superscalar designs need to
handle multiple instructions per clock cycle at every stage in the
machine, including the register renaming. A simple scalar processor
would therefore look up both src register mappings for each
instruction and allocate a new dest mapping per clock cycle.
Superscalar processors must be able to do that as well, but they must
also ensure that any dest -to-src relationships between the two
concurrent instructions are handled correctly. Consider the sample
code sequence in Figure 2 . Assume that we would like to
simultaneously rename the first two instructions. Further assume that
the next two available T registers to be used are known at the
beginning of the clock cycle in which these two instructions are being
renamed. Conceptually, what we want is for the first instruction to do
its rename table lookups and then update the table per its destination’s
T register. Then the second instruction would do exactly the same
thing, and any interinstruction dependency would thereby be handled
correctly. But there’s not enough time to write that T register
designation into the renaming table and then look it up again for the
second instruction, all in the same clock cycle. That register
substitution must instead be done live (in parallel with the register
rename table update). Figure 3 shows a circuit diagram, using
multiplexers and comparators, that will accomplish the necessary on-
the-fly register renaming. Your task is to show the cycle-by-cycle
state of the rename table for every instruction of the code shown in
Figure 2 . Assume the table starts out with every entry equal to its
index (T0 = 0 ; T1 = 1 , …).

Figure 2

Figure 3

7. Assume a five-stage single-pipeline microarchitecture (fetch, decode,
execute, memory, write-back) and the code in Figure 4 . All ops are
one cycle except LW and SW , which are 1 + 2 cycles, and branches,
which are 1 + 1 cycles. There is no forwarding. Show the phases of
each instruction per clock cycle for one iteration of the loop.

a. How many clock cycles per loop iteration are lost to branch
overhead?

b. Assume a static branch predictor, capable of recognizing a
backwards branch in the Decode stage. Now how many clock
cycles are wasted on branch overhead?

c. Assume a dynamic branch predictor. How many cycles are lost
on a correct prediction?

Figure 4

8. In this exercise, we will look at how variations on Tomasulo’s
algorithm perform when running the following loop and The
functional units (FUs) are described in the table below.

Assume the following:
■ Functional units are not pipelined.
■ There is no forwarding between functional units; results are

communicated by the common data bus (CDB).
■ The execution stage (EX) does both the effective address

calculation and the memory access for loads and stores. Thus, the
pipeline is IF/ID/IS/EX/WB.
■ Loads require one clock cycle.
■ The issue (IS) and write-back (WB) result stages each require one
clock cycle.
■ There are five load buffer slots and five store buffer slots.
■ Assume that the Branch on Not Equal to Zero (BNEZ) instruction
require one clock cycle.

a. For this problem use the single-issue Tomasulo MIPS pipeline of
Figure 5 with the pipeline latencies from the table above. Show the
number of stall cycles for each instruction and what clock cycle
each instruction begins execution (i.e., enters its first EX cycle) for

three iterations of the loop. How many cycles does each loop
iteration take? Report your answer in the form of a table with the
following column headers:
■ Iteration (loop iteration number)
■ Instruction
■ Issues (cycle when instruction issues)
■ Executes (cycle when instruction executes)
■Memory access (cycle when memory is accessed)
■Write CDB (cycle when result is written to the CDB)
■ Comment (description of any event on which the instruction is
waiting) Show three iterations of the loop in your table. You may
ignore the first instruction.

b. Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

Figure 5

9. Tomasulo’s algorithm has a disadvantage: Only one result can
compute per clock per CDB. Use the hardware configuration and
latencies from the previous question and find a code sequence of no
more than 10 instructions where Tomasulo’s algorithm must stall due
to CDB contention. Indicate where this occurs in your sequence.

10. Suppose we have a deeply pipelined processor, for which we
implement a branch-target buffer for the conditional branches only.
Assume that the misprediction penalty is always four cycles and the
buffer miss penalty is always three cycles. Assume a 90% hit rate,
90% accuracy, and 15% branch frequency. How much faster is the
processor with the branch-target buffer versus a processor that has a
fixed two-cycle branch penalty? Assume a base clock cycle per
instruction (CPI) without branch stalls of one.

11.Consider a branch-target buffer that has penalties of zero, two, and
two clock cycles for correct conditional branch prediction, incorrect
prediction, and a buffer miss, respectively. Consider a branch-target
buffer design that distinguishes conditional and unconditional
branches, storing the target address for a conditional branch and the
target instruction for an unconditional branch.

a. What is the penalty in clock cycles when an unconditional
branch is found in the buffer?

b. Determine the improvement from branch folding for
unconditional branches. Assume a 90% hit rate, an
unconditional branch frequency of 5%, and a two-cycle penalty
for a buffer miss. How much improvement is gained by this
enhancement? How high must the hit rate be for this
enhancement to provide a performance gain?

