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1. What would be the baseline performance (in cycles, per loop
iteration) of the code sequence in Figure 1 if no new instruction’s 
execution could be initiated until the previous instruction’s execution 
had completed? Ignore front-end fetch and decode. Assume for now 
that execution does not stall for lack of the next instruction, but only 
one instruction/cycle can be issued. Assume the branch is taken, and 
that there is a one-cycle branch delay slot.

Figure 1 

2. Think about what latency numbers really mean—they indicate the
number of cycles a given function requires to produce its output, 
nothing more. If the overall pipeline stalls for the latency cycles of 
each functional unit, then you are at least guaranteed that any pair of 
back-to-back instructions (a “producer” followed by a “consumer”) 
will execute correctly. But not all instruction pairs have a
producer/consumer relationship. Sometimes two adjacent instructions 
have nothing to do with each other. How many cycles would the loop 
body in the code sequence in Figure 1 require if the pipeline detected 
true data dependences and only stalled on those, rather than blindly 
stalling everything just because one functional unit is busy? Show the



code with <stall > inserted where necessary to accommodate stated 
latencies. (Hint:  An instruction with latency +2 requires two <stall > 
cycles to be inserted into the code sequence. Think of it this way: A 
one-cycle instruction has latency 1 + 0, meaning zero extra wait 
states. So, latency 1 + 1 implies one stall cycle; latency 1 + N  has N  
extra stall cycles. 

3. Consider a multiple-issue design. Suppose you have two execution 
pipelines, each capable of beginning execution of one instruction per 
cycle, and enough fetch/decode bandwidth in the front end so that it 
will not stall your  execution. Assume results can be immediately 
forwarded from one execution unit to another, or to itself. Further 
assume that the only reason an execution pipeline would stall is to 
observe a true data dependency. Now how many cycles does the loop 
require?

4. Reorder the instructions to improve performance of the code in Figure
1. Assume the two-pipe machine in Exercise 3 has been dealt with 
successfully. Just worry about observing true data dependences and 
functional unit latencies for now. How many cycles does your 
reordered code take?

5. Every cycle that does not initiate a new operation in a pipe is a lost 
opportunity, in the sense that your hardware is not living up to its 
potential.

a. In your reordered code from Exercise 4, what fraction of all 
cycles, counting both pipes, were wasted (did not initiate a new 
op)?

b. Loop unrolling is one standard compiler technique for finding 
more parallelism in code, in order to minimize the lost 
opportunities for performance. Hand-unroll two iterations of 
the loop in your reordered code from Exercise 4.

c. What speedup did you obtain? (For this exercise, just color the 
N  + 1 iteration’s instructions green to distinguish them from 
the Nth iteration’s instructions; if you were actually unrolling 
the loop, you would have to reassign registers to prevent 
collisions between the iterations.)

6. In this exercise, we will look at the simple register renaming: when 
the hardware register renamer sees a source register, it substitutes the 



destination T  register of the last instruction to have targeted that 
source register. When the rename table sees a destination register, it 
substitutes the next available T  for it, but superscalar designs need to 
handle multiple instructions per clock cycle at every stage in the 
machine, including the register renaming. A simple scalar processor 
would therefore look up both src  register mappings for each 
instruction and allocate a new dest  mapping per clock cycle. 
Superscalar processors must be able to do that as well, but they must 
also ensure that any dest -to-src  relationships between the two 
concurrent instructions are handled correctly. Consider the sample 
code sequence in Figure 2 . Assume that we would like to 
simultaneously rename the first two instructions. Further assume that 
the next two available T  registers to be used are known at the 
beginning of the clock cycle in which these two instructions are being 
renamed. Conceptually, what we want is for the first instruction to do 
its rename table lookups and then update the table per its destination’s 
T  register. Then the second instruction would do exactly the same 
thing, and any interinstruction dependency would thereby be handled 
correctly. But there’s not enough time to write that T  register 
designation into the renaming table and then look it up again for the 
second instruction, all in the same clock cycle. That register 
substitution must instead be done live (in parallel with the register 
rename table update). Figure 3  shows a circuit diagram, using 
multiplexers and comparators, that will accomplish the necessary on-
the-fly register renaming. Your task is to show the cycle-by-cycle 
state of the rename table for every instruction of the code shown in 
Figure 2 . Assume the table starts out with every entry equal to its 
index (T0 = 0 ; T1 = 1 , …). 

Figure 2 



Figure 3 

7. Assume a five-stage single-pipeline microarchitecture (fetch, decode, 
execute, memory, write-back) and the code in Figure 4 . All ops are 
one cycle except LW  and SW , which are 1 + 2 cycles, and branches, 
which are 1 + 1 cycles. There is no forwarding. Show the phases of 
each instruction per clock cycle for one iteration of the loop.

a. How many clock cycles per loop iteration are lost to branch 
overhead?

b. Assume a static branch predictor, capable of recognizing a 
backwards branch in the Decode stage. Now how many clock 
cycles are wasted on branch overhead?

c. Assume a dynamic branch predictor. How many cycles are lost 
on a correct prediction? 

Figure 4 



8. In this exercise, we will look at how variations on Tomasulo’s
algorithm perform when running the following loop  and The 
functional units (FUs) are described in the table below.

Assume the following: 
■ Functional units are not pipelined.
■ There is no forwarding between functional units; results are 

communicated by the common data bus (CDB).
■ The execution stage (EX) does both the effective address 

calculation and the memory access for loads and stores. Thus, the 
pipeline is IF/ID/IS/EX/WB.
■ Loads require one clock cycle.
■ The issue (IS) and write-back (WB) result stages each require one 
clock cycle.
■ There are five load buffer slots and five store buffer slots.
■ Assume that the Branch on Not Equal to Zero (BNEZ) instruction 
require one clock cycle. 

a. For this problem use the single-issue Tomasulo MIPS pipeline of
Figure 5 with the pipeline latencies from the table above. Show the 
number of stall cycles for each instruction and what clock cycle 
each instruction begins execution (i.e., enters its first EX cycle) for



three iterations of the loop. How many cycles does each loop 
iteration take? Report your answer in the form of a table with the 
following column headers: 
■ Iteration (loop iteration number)
■ Instruction
■ Issues (cycle when instruction issues)
■ Executes (cycle when instruction executes)
■Memory access (cycle when memory is accessed)
■Write CDB (cycle when result is written to the CDB)
■ Comment (description of any event on which the instruction is
waiting) Show three iterations of the loop in your table. You may
ignore the first instruction.

b. Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

Figure 5



9. Tomasulo’s algorithm has a disadvantage: Only one result can 
compute per clock per CDB. Use the hardware configuration and 
latencies from the previous question and find a code sequence of no 
more than 10 instructions where Tomasulo’s algorithm must stall due 
to CDB contention. Indicate where this occurs in your sequence.

10. Suppose we have a deeply pipelined processor, for which we 
implement a branch-target buffer for the conditional branches only. 
Assume that the misprediction penalty is always four cycles and the 
buffer miss penalty is always three cycles. Assume a 90% hit rate, 
90% accuracy, and 15% branch frequency. How much faster is the 
processor with the branch-target buffer versus a processor that has a 
fixed two-cycle branch penalty? Assume a base clock cycle per 
instruction (CPI) without branch stalls of one.

11.Consider a branch-target buffer that has penalties of zero, two, and 
two clock cycles for correct conditional branch prediction, incorrect 
prediction, and a buffer miss, respectively. Consider a branch-target 
buffer design that distinguishes conditional and unconditional 
branches, storing the target address for a conditional branch and the 
target instruction for an unconditional branch.

a. What is the penalty in clock cycles when an unconditional 
branch is found in the buffer?

b. Determine the improvement from branch folding for 
unconditional branches. Assume a 90% hit rate, an 
unconditional branch frequency of 5%, and a two-cycle penalty 
for a buffer miss. How much improvement is gained by this 
enhancement? How high must the hit rate be for this 
enhancement to provide a performance gain? 


