

Alexandria University Faculty of Engineering Electrical Engineering Department

Sheet 4 Sequential MOS Logic Circuits

1) Consider the monostable multivibrator circuit drawn in Figure 1. Calculate the output pulse width.

 $V_T(dep) = -2 V$ $V_T(enh) = 1 V$ $k'= 20 \ \mu A/V^2$ Y=0

2) Shown in Figure 2 is an NMOS Schmitt trigger. Draw the voltage transfer characteristic. Include values for all important points on the graph. Use the parameters in Problem 1 and $\lambda = 0$. W/L ratios for the transistors are given below.

	M1	M2	M3	M4
W/L	1	0.5	10	1

3) Design a circuit to implement the truth table shown in Figure 3. A gate-level design is sufficient.

		r			
		\overline{Q}	Q	R	S
Q	—qs	0	1	1	0
~		1	0	0	1
ିୟ	q H	\overline{Q}	Q	1	1

- 4) The circuit you have designed in Problem 3 is embedded in the larger circuit shown in Figure 4. Complete the timing diagram for the output.
- 5) The voltage waveforms shown below (in Figure 5) are applied to the NMOS JK master-slave flip-flop shown in Figure 6. With the flip-flop initially reset, show the resulting waveforms at nodes Q_m (master flip-flop output) and Q_s . (slave flip-flop output).

Figure 5

Figure 6