

Alexandria University **Faculty of Engineering**

Electrical Engineering Department

Sheet 1 MOS Inverter Static Characteristics

1) Draw cross-sections of the following device along the lines A - A' and B - B.

2) Consider CMOS inverter with the following parameters:

NMOS

$$V_{T0,n} = 0.6 \ V \qquad \mu_n \ C_{ox} = 60 \ \mu A/V^2 \qquad \ (W/L)_n = 8$$

$$(W/L)_n = 8$$

PMOS

$$V_{T0} = 0.7 \text{ V}$$

$$V_{T0,p} = 0.7 \text{ V}$$
 $\mu_p C_{ox} = 25 \mu A/V^2$ $(W/L)_p = 12$

$$(W/L)_p = 12$$

Calculate the noise margins and the switching threshold (V_{th}) of this circuit. The power supply is $V_{DD} = 3.3 \text{ V}$.

3) Design of a CMOS inverter circuit:

Use the same device parameters as in problem 2. The power supply $V_{DD} = 3.3$ V. The channel length of both transistors is $L_n = L_p = 0.8$ μm .

- a) Determine the (W_n/W_p) ratio so that the switching (inversion) threshold voltage of the circuit is $V_{th} = 1.4 \text{ V}$.
- b) The CMOS fabrication process used to manufacture this inverter allows a variation of the $V_{T0,n}$ value by $\pm 15\%$ around its normal value, and a variation of the $V_{T0,p}$ value by $\pm 20\%$ around its normal value. Assuming that all other parameters (such as μ_n , μ_p , C_{ox} , W_n , W_p) always retain their nominal values, find the upper and lower limits of the switching threshold voltage (V_{th}) of this circuit.
- 4) Consider the CMOS inverter designed in problem 3, with the following circuit configuration

- a) Calculate the output voltage level V_{out} .
- b) Determine if the process-related variation of $V_{T0,n}$ of M3 has any influence upon the voltage V_{out} .
- c) Calculate the total current being drawn from the power supply source, and determine its variation due to process-related threshold voltage variations.

5) Consider a CMOS inverter, with the following device parameters:

NMOS
$$V_{T0,n} = 0.6 \text{ V}$$
 $\mu_n C_{ox} = 60 \ \mu\text{A/V}^2$ PMOS $V_{T0,p} = -0.8 \text{ V}$ $\mu_p C_{ox} = 20 \ \mu\text{A/V}^2$ Also: $V_{DD} = 3$ $\lambda = 0$

- a) Determine the (W/L) ratios of the NMOS and the PMOS transistor such that the switching threshold is $V_{th} = 1.5 \text{ V}$.
- b) Plot the VTC of the CMOS inverter using SPICE.
- c) Determine the VTC of the inverter for $\lambda = 0.05$ and $\lambda = 0.1 \text{ V}^{-1}$.
- d) Discuss how the noise margins are influenced by non-zero λ value. Note that transistors with very short channel lengths tend to have larger λ values than long-channel transistors.
- 6) Consider the CMOS inverter designed in problem 5 above, with $\lambda = 0.1 \text{ V}^{-1}$. Now consider a cascade connection of four identical inverters, as shown.

- a) If the input voltage is $V_{in} = 1.55$ V, find V_{out1} , V_{out2} , V_{out3} and V_{out4} .
 - (note that this requires solving KCL equations for each subsequent stage, using the non-zero λ value).
- b) How many stages are necessary to restore a true logic output level?
- c) Verify your result with SPICE simulation.