Digital IC Design and Architecture

Sequential Circuits

Classes of Logic Circuits

Combinational Circuits: Current Output(s) depend ONLY on CurrentInputs.

Sequential Circuits: Current Output(s) depend on Current Inputs and PAST Output(s).

Functions Using Sequential Operations

Sequential Circuit Construct

V₁ V₂ V₃ COMBINATIONAL LOGIC CIRCUIT

- -> Sequential Circuits: Current Output(s) depend on Current Inputs and PAST inputs (via the feedback of some past State(s) and Output(s) to inputs).
- -> Memory is used to Store Past Values of State(s) and Output(s).

Bistable Sequential Circuits

Basic Cross-coupled Inverter pair

BISTABLE BEHAVIOR

6

Bistable Sequential Circuits - cont.

STATIC: V_{DD} is required to maintain stable state.

Basic Bistable Cross-coupled Inverter Pair has no means to apply input(s) to change the circuit's State.

Unclocked Latch Circuits

^{*}Data is written by over powering the feedback loop using S, R inputs.

STATE OF LATCH can be EXTERNALLY SWITCHED between the

2 STABLE STATES

SET STATE:
$$S_{t1} = 1, R_{t1} = 0 \Rightarrow Q_{t1} = 1, \overline{Q}_{t1} = 0$$

RESET STATE:
$$S_{t1}^{t1} = 0$$
, $R_{t1}^{t1} = 1 => Q_{t1}^{t1} = 0$, $\overline{Q}_{t1}^{t1} = 1$

HOLD:
$$S_{t1}^{t1} = 0, R_{t1}^{t1} = 0 \Rightarrow Q_{t1}^{t1} = Q_{t0}, \overline{Q}_{t1}^{t1} = \overline{Q}_{t0}$$

$$t-t1 > t-t0$$
 (two cross-coupled Inverters)

(M2, MP2 and M3, MP3)

NOT ALLOWED:
$$S = 1$$
, $R = 1$ \rightarrow state Q_{n+1} , Q_{n+1} is indeterminate

Unclocked CMOS NOR Based SR Latch Operation

Let at
$$t = t0$$
: $Q_{t0} = 0$, $\overline{Q}_{t0} = 1$

At
$$t = t1 > t0$$

1.
$$S_{t1} = V_{DD} \Rightarrow M1 \text{ ON, MP1 OFF} \Rightarrow \overline{Q}_{t1} = 0$$

$$2.R_{t1} = 0$$
 and $\overline{Q}_{t1} = 0 => M4$ OFF, M3 OFF, MP3 ON, MP4 ON $=> Q_{t1} = V_{DD}$

3.
$$Q_{t1} = V_{DD} \implies M2 \text{ ON, } MP2 \text{ OFF} \Longrightarrow \overline{Q}_{t1} = 0$$

Unclocked CMOS NOR Based SR Latch Operation - cont.

Let at
$$t = t0$$
: $Q_{t0} = 1$, $\overline{Q}_{t0} = 0$

At
$$t = t1 > t0$$

1.
$$R_{t1} = 1 \implies M4 \text{ ON, MP4 OFF} \implies Q_{t1} = 0$$

2.
$$S_{t1} = 0$$
 and $Q_{t1} = 0 \Rightarrow M1$ OFF, M2 OFF, MP1 ON, MP2 ON $\Rightarrow \overline{Q}_{t1} = V_{DD}$

3.
$$\overline{Q}_{t1} = V_{DD} \implies M3 \text{ ON, MP3 OFF} \implies Q_{t1} = 0$$

Unclocked CMOS NOR Based SR Latch Operation - cont.

At t = t1 > t0

1. $S_{t1} = 0 \implies M1 \text{ OFF, MP1 ON}; R_{t1} = 0 \implies M4 \text{ OFF, MP4 ON}$

$$2a.\ Q_{t1}=Q_{t0}=V_{DD'}\qquad \overline{Q}_{t1}=\overline{Q}_{t0}=0 \Longrightarrow \textbf{M2 ON, MP2 OFF, M3 OFF, MP3 ON}$$

or

$$2b.\ Q_{t1}=Q_{t0}=0,\qquad \overline{Q}_{t1}=\overline{Q}_{t0}=V_{DD}=> \text{M2 OFF, MP2 ON, M3 ON, MP3 OFF}$$

Unclocked CMOS NOR Based SR Latch Operation - cont.

Estimate time to simultaneously switch $Q \& \overline{Q}$: solution of two coupled differential equations.

Conservative Estimate: Assume $Q \& \overline{Q}$ switch in sequence

$$\tau_{\text{rise,Q}}(\text{SR-latch}) = \tau_{\text{rise,Q}}(\text{NOR}\,2) + \tau_{\text{fall,}\overline{Q}}(\text{NOR}\,2)$$
 at $t = 0$: S -> 1, R -> 0

Unclocked CMOS NAND Based SR Latch Circuit - cont

t=t1>t=t0

S_{t1} R_{t1}	Q_{t1} \overline{Q}_{t1}	Operation
$egin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{Q}_{t0} \end{array}$	NOT allowed set reset hold

SR- Latches

- + Simplest form of latch
- Asynchronous
- Not Allowed Input Sequence

ASYNCHRONOUS NAND BASED SR LATCH

Unclocked CMOS NAND Based SR Latch Circuit

Clocked CMOS Latch Circuits

CLOCKED SR LATCH: Synchronization is introduced through clock CK.

When CK = 0, S' = R' = 1 independent of the values of S and $R \Rightarrow HOLD$

 $\begin{array}{lll} \text{HOLD STATE:} & \text{CK = 0, } S = x, & \text{R = x => } Q_{n+1} = Q_n, \overline{Q}_{n+1} = \overline{Q}_n \\ \text{SET STATE:} & \text{CK = 1, } S = 1, & \text{R = 0 => } Q_{n+1} = 1, & \overline{Q}_{n+1} = 0 \\ \text{RESET STATE:} & \text{CK = 1, } S = 0, & \text{R = 1 => } Q_{n+1} = 0, & \overline{Q}_{n+1} = 1 \end{array}$

NOT ALLOWED: CK = 1, S = 1, $R = 1 \Rightarrow S' = 0$, R' = 0

"ACTIVE HIGH"

Clocked CMOS Latch Circuits - cont.

HOLD STATE: CK = 0, S = x, $R = x = Q_{n+1} = Q_n$, $\overline{Q}_{n+1} = \overline{Q}_n$

SET STATE: CK = 1, S = 1, $R = 0 = Q_{n+1} = 1$, $\overline{Q}_{n+1} = 0$

RESET STATE: CK = 1, S = 0, R = 1 = 0, $\overline{Q}_{n+1} = 0$, $\overline{Q}_{n+1} = 1$

NOT ALLOWED: CK = 1, S = 1, R = 1

WHEN "GLITCH" ON S (OR R) OCCURS DURING CK = 1, Q IS SET (OR RESET)

LEVEL SENSITIVE: WHEN CK = 1, ANY CHANGES IN S, R WILL EFFECT Q.

Clocked CMOS Latch Circuits - cont.

Another Gate Level schematic of a Clocked NAND Based SR Latch

When CK = 1, S' = R' = 1 independent of the values of S and $R \Rightarrow HOLD$

"ACTIVE LOW"

CK	S	R	Q_{n+1} \overline{Q}_{n+1}	Operation
0	0	0	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ Q_n & \overline{Q}_n \end{array}$	NOT allowed
0	0	1		set
0	1	0		reset
1	x	x		hold

S' = R' = 0

Clocked CMOS Latch Circuits - cont.

CMOS Clocked NAND Based SR Latch or Flip-Flop

- Level Sensitive
- Not Allowed Input Sequence

CMOS Clocked Latch Circuits - cont.

NAND BASED CLOCKED JK FLIP-FLOP

Clocked NAND Based JK Latch Operation

CK = 1

	J	K	Q_n	Q_n	S	R	Q_{n+1}	\overline{Q}_{n+1}	Operation
	0	0	0	1	1	1	0	1	hold
	0	0	1	0	1	1	1	0	hold
İ	0	1	0	1	1	1	0	1	reset (hold)
	0	1	1	0	1	0	0	1	reset
	1	0	0	1	0	1	1	0	set
	1	0	1	0	1	1	1	0	set (hold)
	1	1	0	1	0	1	1	0	toggle
	1	1	1	0	1	0	0	1	toggle toggle

The <u>not-allowed</u> S, R values S = R = 0 do <u>not occur</u> for any values of J, K, CK.

osc \longrightarrow but the state Q_{n+1} , Q_{n+1} is $\underbrace{determinate}$

Clocked NAND Based JK Latch Operation

	J	K	Q_n	$\overline{\boldsymbol{Q}}_n$	S	R	Q_{n+1}	\overline{Q}_{n+1}	Operation	
	0	0	0	1	1	1	0	1	hold	
	0	0	1	0	1	1	1	0	hold	l.
CV 1	0	1	0	1	1	1	0	1	reset	
CK = 1	0	1	1	0	1	0	0	1	reset	
	1	0	0	1	0	1	1	0	set	
	1	0	1	0	1	1	1	0	set	W-
	1	1	0	1	0	1	1	0	toggle	080
	1	1	1	0	1	0	0	1	toggle toggle	OSC

TO PREVENT OSICLLATION WHEN J = K = 1:

 $\tau_{\text{JKP}} = \text{INPUT-OUTPUT PROP DELAY OF JK LATCH}$ (CK 1 -> 0 BEFORE Q, \overline{Q} CAN SWITCH 2nd TIME)

CLOCKED SR FLIP FLOP: Negative Edge Triggered.

- Start with CLK = 0, the S, R inputs are disconnected from the input Latch1.
- Changes in S, R cannot affect the state of Q, Q.

When CLK = 1, S, R are able to control the state of Latch1.

- Inverted CLK applied to Latch2 prevents the state of Latch1 from effecting Q, Q.
- Any changes to R, S are tracked by Latch1 while CLK = 1, but not reflected at Q, \overline{Q} .

When CLK = 0, S, R are again isolated from Latch1.

- Inverted CLK allows the current state of Latch1 to reach Latch2.
- Q, Q can only change state when the CLK signal falls from 1 to 0.
- This is the falling (negative) edge of the CLK signal.

CLOCKED EDGE TRIGGERED JK FLIP-FLOP

- + Synchronous Operation
- + No Not-Allowed Inputs
- + Not Level Sensitive
- + No Q, \overline{Q} Oscillation when J = K = 1

Since the behavior of the JK flip-flop is completely predictable under all conditions, it is the preferred type of flip-flop for most logic circuit designs.

CMOS D-Latch

CMOS D-Latch Operation

- + Much simpler then JK Latch.
- + Does not require Edge Triggering for Safe Operation.

CMOS D-Latch - cont.

alternative implementation using clocked tri-state inverters

CK = 1: Tri-state INV 1 is active, Tri-state INV 2 is Hi-Z and $Q_n = D_n$ CK = 0: Tri-state INV 1 is Hi-Z, Tri-state INV 2 is active and \overline{Q}_n are held

D-Latch Timing Requirements

t_{setup} - time before the POS(neg)-CLK edge the D-input has to be stable.

 \boldsymbol{t}_{hold} - time after POS(neg)-CLK edge that the D-input has to remain stable.

 $t_{\mbox{\tiny clock-to-Q}}$ - Delay from the POS(neg)-CLK edge to new stable value of Q output.

METASTABILITY AND SYNCRONIZATION FAILURES

If data and clock do not satisfy the setup & hold time constaints of a register, then syncronization failure may occur. This due to inherent analog nature of storage elements.

METASTABLE STATE - indeterminate state between "1" & "0", i.e. latch is perfectly balanced between making decision for "1" or "0". In practice noise will eventually arbitrarily push latch output to "0" or "1".

Example: register entering metastable state (shown for negative edge trigger case)

Positive D - Latch

Negative D - Latch

D Flip-Flop = Positive D-Latch + Negative D-Latch

CMOS D Flip-Flop – Positive Edge Triggered

FOR CLK = 1

- 1. CLK = 0: master Q_m tracks input D; slave Q_s = previous D_{n-1} sample (Q_s is transparent to variations in D).
- 2. CLK = 0 -> 1: master stores $Q_m = D_n$ (new D sample).
- 3. CLK = 1: master passes $Q_m = D_n$ to slave output $Q_s(Q_m$ and Q_s are transparent to variations in D).
- 4. CLK = 1 -> 0: slave locks in new D_n .
- 5. CLK = 0: master Q_m begins tracking D. $(Q_s$ is transparent to variations in D)
- 6. CLK = $0 \rightarrow 1$: master stores $Q_m = D_{n+1}$.

CMOS Dynamic D Flip-Flop

- 1. NO FEEDBACK REGENERATIVE FEEDBACK LOOP
- 2. STATES STORED ON SOFT NODES